OVL QUICK REFERENCE (www.eda.org/ovl)

Last updated: 28th April 2006

"OVL_ASSERT
"OVL_ASSUME
"OVL_IGNORE

msqg descriptive string

-y <OVL_DIR>/std_ovl
+incdir+<OVL_DIR>/std_ovl

* Counters (overflow/increment)
* FSM transitions
* X checkers (assert_never_unknown)

TYPE INAME PARAMETERS PORTS DESCRIPTION
Sinale-Cvcle |assert alwavs #(severitv level. propertv tvoe. msa. coveraae level) (clk. reset n. test exor) test exor must alwavs hold
Two Cycles |assert always on edge #(severity level, edae type, property type, msq, coverage level) (clk, reset n, sampling event, test expr) test expr is true immediately following the specified edge (edae type: 0=no-edae, 1=pos, 2=neg, 3=any)
n-Cycles assert_change #(severity_level, width, num_cks, action_on_new_start, property_type, msg, (clk, reset_n, start_event, test_expr) test_expr must change within num_cks of start_event (action_on_new_start: 0=ignore, 1=restart, 2=error)
coverace level)
n-Cycles assert_cycle_sequence #(severity_level, num_cks, necessary_condition, property_type, msg, coverage_level) (clk, reset_n, event_sequence) if the initial sequence holds, the final sequence must also hold (necessary_condition: O=trigger-on-most, 1=trigger-on-first, 2=trigger-on-first-
inninalinar)
Two Cvcles |assert decrement #(severitv level. width. value. propertv tvbe. msa. coveraae level) (clk. reset n. test exor) if test exor chanaes. it must decrement bv the value parameter (modulo 2*width)
Two Cycles assert delta #(severity level, width, min, max, property type, msg, coverage level) (clk, reset n, test expr) if test expr changes, the delta must be >=min and <=max
Single Cycle |assert even parity #(severity level, width, property type, msg, coverage level) (clk, reset n, test expr) test expr must have an even parity, i.e. an even number of bits asserted
Two Cycles |assert_fifo_index #(severity_level, depth, push_width, pop_width, property_type, msg, coverage_level, (clk, reset_n, push, pop) FIFO pointers should never overflow or underflow
simultaneous push bop)
n-Cycles assert_frame #(severity_level, min_cks, max_cks, action_on_new_start, property_type, msg, (clk, reset_n, start_event, test_expr) test_expr must not hold before min_cks cycles, but must hold at least once by max_cks cycles (action_on_new_start: 0=ignore, 1=restart,
coverace level) 2=error)
n-Cycles assert_handshake #(severity_level, min_ack_cycle, max_ack_cycle, req_drop, deassert_count, (clk, reset_n, req, ack) req and ack must follow the specified handshaking protocol
max_ack_length, property_type, msg, coverage_level)
Single-Cycle |assert implication #(severity level, property type, msg, coverage level) (clk, reset n, antecedent expr, consequent expr) if antecedent expr holds then consequent expr must hold in the same cyle
Two Cycles assert increment #(severity level, width, value, property type, msg, coverage level) (clk, reset n, test expr) if test expr changes, it must increment by the value parameter (modulo 2*width)
Single-Cycle |assert never #(severity level, property type, msg, coverage level) (clk, reset n, test expr) test expr must never hold
Single-Cycle |assert never unknown #(severity level, width, property type, msg, coverage level) (clk, reset n, qualifier, test expr) test expr must never be an unknown value, just boolean 0 or 1
Combinatorial |assert never unknown async #(severity level, width, property type, msg, coverage level) (reset n, test expr) test expr must never go to an unknown value asynchronously, it must remain boolean 0 or 1
n-Cycles assert_next #(severity_level, num_cks, check_overlapping, check_missing_start, property_type, (clk, reset_n, start_event, test_expr) test_expr must hold num_cks cycles after start_event holds
msg, coverage level)
Two Cycles |assert no_overflow #(severity level, width, min, max, property type, msg, coverage level) (clk, reset n, test expr) if test expr is at max, in the next cycle test expr must be >min and <=max
Two Cycles assert no transition #(severity level, width, property type, msg, coverage level) (clk, reset n, test expr, start state, next state) if test expr==start state, in the next cycle test expr must not change to next state
Two Cycles |assert no_underflow #(severity level, width, min, max, property type, msg, coverage level) (clk, reset n, test expr) if test expr is at min, in the next cycle test expr must be >=min and <max
Single-Cycle |assert odd parity #(severity level, width, property type, msg, coverage level) (clk, reset n, test expr) test expr must have an odd parity, i.e. an odd number of bits asserted
Single-Cycle |assert one cold #(severity level, width, inactive, property type, msg, coverage level) (clk, reset n, test expr) test expr must be one-cold i.e. exactly one bit set low (inactive: O=also-all-zero, 1=also-all-ones, 2=pure-one-cold)
Single-Cycle |assert_one_hot #(severity_level, width, property_type, msg, coverage_level) (clk, reset_n, test_expr) test_expr must be one-hot i.e. exactly one bit set high
Combinatorial |assert proposition #(severity level, property type, msg, coverage level) (reset n, test expr) test expr must hold asynchronously (ot just at a clock edge)
Two Cycles assert quiescent state #(severity level, width, property type, msg, coverage level) (clk, reset n, state expr, check value, sample event) state expr must equal check value on a rising edge of sample event (also checked on rising edge of ‘OVL END OF SIMULATION)
Single-Cycle |assert_range #(severity_level, width, min, max, property_type, msg, coverage_level) (clk, reset_n, test_expr) test_expr must be >=min and <=max
n-Cycles assert time #(severity level, num cks, action on new start, property type, msg, coverage level) (clk, reset n, start event, test expr) test expr must hold for num cks cycles after start event (action on new start: O=ignore, 1=restart, 2=error)
Two Cycles |assert_transition #(severity_level, width, property_type, msg, coverage_level) (clk, reset_n, test_expr, start_state, next_state) if test_expr changes from start_state, then it can only change to next_state
n-Cycles assert_unchange #(severity_level, width, num_cks, action_on_new_start, property_type, msg, (clk, reset_n, start_event, test_expr) test_expr must not change within num_cks of start_event (action_on_new_start: O=ignore, 1=restart, 2=error)
coveraae level)
n-Cycles assert_width #(severity_level, min_cks, max_cks, property_type, msg, coverage_level) (clk, reset_n, test_expr) test_expr must hold for between min_cks and max_cks cycles
Event-bound |assert win change #(severity level, width, property type, msg, coverage level) (clk, reset n, start event, test expr, end event) test expr must change between start eventand end event
Event-bound |assert window #(severity level, property type, msg, coverage level) (clk, reset n, start event, test expr, end event) test expr must hold after the start event and up to (and including) the end event
Event-bound |assert win unchange #(severity level, width, property type, msg, coverage level) (clk, reset n, start event, test expr, end event); test expr must not change between start event and end event
Single-Cycle _|assert zero one hot #(severity level, width, prope e, msg, coverage level clk, reset n, test_expr) |test_expr must be one-hot or zero, i.e. at most one bit set high
PARAMETERS USING OVL DESIGN ASSERTIONS INPUT ASSUMPTIONS
severity level +define+OVL_ASSERT_ON Monitors internal signals & Outputs Restricts environment
"OVL_FATAL +define+OVL_MAX_REPORT_ERROR=1
"OVL_ERROR +define+OVL_INIT_MSG Examples Examples
"OVL_WARNING +define+OVL_INIT_COUNT=<tbench>.ovl_init_count * One hot FSM * One hot inputs
"OVL_INFO * Hit default case items * Range limits e.g. cache sizes
property type +libext+.v+.vlib * FIFO / Stack * Stability e.g. cache sizes

* No back-to-back reqs
* Handshaking sequences
* Bus protocol

