SYSTEMS INITIATIVE

UVM-SystemC

Language Reference Manual

DRAFT

7 January 2017

Copyright notice

© 2012 — 2017 NXP B.V. All rights reserved.

© 2011 — 2013 Accellera Systems Initiative. All rights reserved.

© 2009 — 2011 Cadence Design Systems, Inc. (Cadence). All rights reserved.
License

This documentation is licensed under the Apache Software Foundation‘s Apache License, Version 2.0, January
2004. The full license is available at: http://www.apache.org/licenses/

Trademarks

Accellera, Accellera Systems Initiative, SystemC and UVM are trademarks of Accellera Systems Initiative Inc. All
other trademarks and trade names are the property of their respective owners.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility
to determine the applicable regulations and comply with them.

Disclaimer

THE CONTRIBUTORS AND THEIR LICENSORS MAKE NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgements

The creation of this document has been supported by the European Commission as part of the Seventh Framework
Programme (FP7) for Research and Technological Development in the project 'VERIFICATION FOR
HETEROGENOUS RELIABLE DESIGN AND INTEGRATION' (VERDI). The research leading to this result has
received funding from the European Commission under grand agreement No 287562.

More information on the Seventh Framework Programme (FP7) and VERDI project can be found here:
http://cordis.europa.eu/fp7
http://www.verdi-fp7.eu

Special thanks to the Accellera Systems Initiative to grant authorization to use portions of its Universal Verification
Methodology Reference Implementation (UVM version 1.1d, March 2013) in this document.

The partners in the VERDI consortium wish to thank Cadence Design Systems Inc. for the initial donation of the
UVM-SC Library Reference and documentation (UVM version 1.0, June 2011). This document has been derived
from this work, and further enhanced and extended to make it compatible with the UVM 1.1 standard.

Bugs and Suggestions
Please report bugs and suggestions about this document to:

uvm-systemc-feedback@lists.accellera.org

UVM-SystemC Language Reference Manual —- DRAFT Page 2

Table of Contents

Page 3

INTRODUGCTION ...ooiiiitiieiitiiiee ettt ettt ettt be st e be st e s e et e sb e s s eb e st e s s b e s s e s s as e et e s es e eb e s e seabe s eseabe s eneanennenen 16
TERMINOLOGY ..ottt sttt sttt sttt s s et s b e 2 e st b e sa e s s e b et e s e s et e b e s e et e b e b et et enenbe e eneenennenen 17
2.1 SHALL, SHOULD, MAY, CANuttttttittattateasueasaestesstessaeasseasseasseassasseasseesseasseassesssesteesaessbeansesnsesssesssessesssenns 17
2.2 IMPLEMENTATION, APPLICATIONutitiiutiautesteestessteesueasseanseasseassasseasseasseassesssesssssiessaesssesnsessesssesssesssessenns 17
2.3 CALL, CALLED FROM, DERIVED FROMutitiiiiestessieesteasseaseassesssasseasseessesssesssessssssessaesssesssesnsesssesssessesssenns 17
2.4 IMPLEMENTATION-DEFINEDciittiitiettautiasteaseestesstessteesaeasseassesssasstasseesseasseassesssesbeesaeesbeensesnsesssesssessesssenns 17
UVM-SYSTEMOC OVERVIEW ...ttt ittt ettt ettt e st e st et e e st e e aaa e e s saeesnae e snbeesnbeesrbeennnee e 18
3.1 INAMESPACE ... ettt ettt sttt sttt ettt e st e skt e s bt e e he e te e a bt eh et e Re e eR e ekt e Rkt eRbe e R beeR e e Rt e eEe e eReebeenneenreententeenreen 18
3.2 HEADER FILES ... ittt ittt ettt ettt sttt ettt ae e e bt e eb e ekt e skt e s e e st e e b e e bt e sbeenbeenbeeneeeneeaneenbeenreen 18
3.3 GLOBAL FUNCTIONS ... ttiuttittesteesttesteesteasteasaessaesteesteesaeeeeanseasseassasssasbeesseesseassesseesbessbeesbeesesnsesssesssesseensenns 18
K = Y N o] 1N =L TP RTOPOPRORN 18
3.5 POLICY CLASSES ...cuttittiiititetateestteste e te e e sstestte st e sbeesbe e teanbeaseeaaseebeesbe e be e s be e s besseesbeesbeeabeenbeanseaneesneenbeenbeen 18
3.6 REGISTRY AND FACTORY CLASSESctttutiautesteestessteesteeseeaseaseesseasseesseasseassesssessesssesssesssesssesnsessesssessesssenns 19
3.7 COMPONENT HIERARCHY CLASSES.ttttttutesttesteesteesteeseeanseaseesseasseesseessesssesssessesssesssesssesnsesssesssesssessesssenns 19
3.8 SEQUENCER CLASSESeettteittteitutesuteestteessseestssessseessssassssessssasssesssssesssesssssesssssssssessssessssesssesssseesssesssssesssees 20
3.9 SEQUENGCE CLASSES ...uvtiettieiteeeiteeestteestseessteessasessseesssseasssessesaassesssseessseessssesssesssssesssssssssesssesssnsesssesssssessees 20
3.10 CONFIGURATION AND RESOURGCE CLASSES......ceituttteeiteereeaneraneeaneesseesseesseasseessessesssesssesssesssesssesssessessesssenns 20
3.11 PHASING AND SYNCHRONIZATION CLASSESeiteeiteeiueeieeaeeaneeaneesseesteesteesteassessesssesssesssesnsesnsesssesssessesssenns 20
3.12 REPORTING CLASSES .. .utiuetiuetateeateesteenteasteasaeaseessessteesaeeeeanseaneeassasssesseeseesteassesseessessseesseenseanseansesseesseensenns 21
TR0 T Y o3 1 F TSP TSPSSPRN 21
3.14 EXISTING SYSTEMC FUNCTIONALITY USED IN UVM-SYSTEMC......ccciiiiiiiiiieie et 22
3.15 METHODOLOGY FOR HIERARCHY CONSTRUCTIONueeittauitauteaueanteesteesteesteesaesseessesseeesseenseansesseesseessessseens 23
GLOBAL FUNCTIONS ..ottt et e et e e et e et e e st e e eate e s steeanteesstaeanteesseeesnneesnneennneeans 24
4.1 UVM_SET _CONFIG_INT? tiiititiiitetiiitete et ete ettt ettt ettt et et e bt e s et et ebe st et et et et eae st et e s et ebete st et ese s abene s 24
4.2 UVM_SET_CONFIG_STRING? ...tiiiisirtetetetereseseseseesessssssesssasssesesesessssssssssesesesesesasesessssnsssesesesesesesesssssnsnsnses 24
4.3 RUN _TEST tttitieteetintenteaseste st ateesees e st b ekt e bt s b e ese e s s e s e bt o bt e R £ AR e e b e e b s e s s e s b e e b e AR e bt e b e e b e e s e e st e e et bt s bt eb e e bt enren e n e b nne s 24
BASE CLASSESottt sttt et e e et e st e e bt e e s te e e be e e e taeebe e e et e e e aaeeeaReeeaabeeaRteeaateenRbeeanreeaeeeanreean 25
5.1 UVM_VOID ittt e ek R e et R R Rt Rt e R nR e nre e n et e e nreenreen 25

L0 O R O 73 1= 14T oSSR 25
5.2 UVM_OBUIECT .. ttittittiteeteet etttk b e h et e e bbbt e b e e e s bt A et b b4 h e h e et et n Rt e Rt b e Rt e s et R Rt b e Rt e e nne s 25

LT O 73 [=) 14T oSSR 25

LT o] 11 1 11 1[0 o SRS 27

LR B [[T 01) o7 LA T] o PSSR 27

LI S 1 (- L1 o OSSOSO PSPPSRI 28

LT T = 101 1o PSSO 29

LT T = (=Tt (o 113 o SRS 30

UVM-SystemC Language Reference Manual — DRAFT

LT A o])Y/ 1 o PSSP 30

LT T o] 1110 U T [PPSR 31

TN B = (vt (1o PSSR 31
5.2.10 UNPACKING ...titiitiitiiieite et ee st st e st a et e e st et e te s te e e ess e ae st e tesbeateeseessesae e e beseestesseanseneeeesenrens 32
R0 R © 1o =Tt 1 - U] o £SO 33

ST I U1V V =T To i OSSPSR 34
B5.3.1 ClaSS AEFINITION .c.viiiieiieeiicie ettt bbbt et s e et b e b e nea 34

5.3.2 SIMUIALION CONIOL......ciiiiiiiciie e bbbt et sr e sbe e nea 35

LT 0 T I oo o | PSSRSO 36

5.3.4 Global VAriable........c.ooii e 36

514 UVM _PORT _BASE ..ttiiitiiiittteittt e sttt asttesstaeesbeeestaeesbee e s beeebe e e sk e e e kb e e s b b e e b b e e eb bt e ebb e e b e e e kb e e bb e e bb e e bae e bb e e ntneeebe s 37
541 ClasS deFINITION ...cueiuiiiiieiee ettt b b bbbt b e n b nre 37

5.4.2 Template parameter IFot et 38

ST T O70] 01 {0 Tod (o TP R PR PP 38

544 MEMDEE FUNCLIONS ..ottt bbbttt nb bbbt be e e e b nre 38

5.5 UVM_COMPONENT _NAME?cuiiiiietiieteteetetetetetete st st ete e etet et stese s stese st etese et atese st atese s etesesssseressetasessssesesnata 39
551 ClasS eFINITION ..oviiiiieiieiee ettt r bbbttt e b e 39

5.5.2 CONSIIAINTS ON USAQE ...vvevreviesresieesieesieesteeteaeesseesteesteeteestesseesseesseesseeseeanseanseassesseesseesseessnsssnsnees 39

5.5.3 CONSIIUCKON ...ttt bbbt b e bt e s bt et e bt an e br e nb e b e e b e e nnessnenneas 40

TR S B LT 1 (101 (o | S TP P PP PR PR PRPPRO 40

5.5.5 OPEIatOr CONSE CRAI™.......c.iiiiiiecie ettt st et e et e e e nt e s te e teesbeeeesnaesneas 40

5.6 UVM _CORESERVICE _Tuuttiittieittteitutesseeesiseassssestneassesesssssssssessssesssssssssesssesssssssssssssssssssesssssessseesssssssessisessssees 40
5.6.1 Class defiNITIONooueiuiiiiiee ettt bbbt e e nre 40

5.6.2 CONSIFAINTS ON USAQE ...vvevierveerieeiiesieesieesteestessestsestaestaeteestesseesseesteesaeesseanseanseassesseesseesseesresnsesnes 41

5.6.3 MEMBDEE FUNCLIONSeviiiiiiite et bbb b bbbt et e e b e 41

5.7 UVM_DEFAULT_CORESERVICE T tiiitttiituteitttesiutestueesineessssessstassssssssessssssssssssssssssssessssssssssssssssssessssssssesssnees 42
B5.7.1 ClasS defiNITION ..ottt et e bbbt e b nee 42

5.7.2 CONSLFAINTS ON USAGE .. .veeveeueentertentesieateeteetasteseestesbe st seasseseeseesbesbesbeeseassesseasebeseesbesbeansesenbenbesrens 42

5.7.3 MEMDEE FUNCLIONSeeiiiiiiee ettt ettt e sb et ene e e e b e 42

B. POLICY CLASSES ..ottt sttt sttt sttt te et st e be s be st e te st et e tesb et e beebe b ebeebe s ebeabe s etenbe s enenbetans 44
T R UV Y I 7 Yo = = B PSS PPTS 44
6.1.1 ClasS eFiNITION ..c..eiiiiicieeee ettt bbbt e b nee 44

6.1.2 CONSLFAINTS ON USAGE .. .veeveeneeneereentesieeteeteetastestesbesbesbesseeseesee s e besbesbeebeesseseeasebesaesbesbeaneesenbenbesren 47

B.1.3 PACKING ..ottt e bbb bt ne et e b nre 47

B.1.4 UNPACKING ...ttt bbbt a e bbbt bt bt e s e e e e b et sbeeb e s beeneene et e nbe e 48

6.1.5 OPErator <<, OPBIALOT >3iiiiieiiieesiie sttt ettt ettt et ie e s b e st e e sbe e abe e b e et e eabesbeesbeebeeareannesneas 49

6.1.6 Data members (VAriabIES)ooiiiiiiiiiee ettt aenae 49

LT UV Y I = |V 1= S PSPPSR 50

UVM-SystemC Language Reference Manual —- DRAFT Page 4

Page 5

LT A O P 1Yo [=1 7211 o) o 50

6.2.2 CONSLFAINIS ON USAQE +r.vvevververveiestesieareaseeeestestessessessessesssessessessessessessesssessessessessessessessessessessessens 53
LT T = €101 (100 IR0/ 1TSS 53
T S 4101 (=] V] o] Y o113V SRS 55
B.2.5 DA MEIMDEIS ...ttt ettt bbbt sb e e besb e s e et nbe e ebesbe e ebenrenea 56
8.3 UVM_TABLE_PRINTER ..tttetttttteseatestesestesseseasesseseasessessasessessasessessesessessesessessesessessesessensesessessesessensessssensenes 56
B.3.1 ClasS AEFINITION ...viuiieiieciie ettt bbbt bbb e ebenrenea 57
LT 7 0 01 {0 Tod (o PP PP PR 57
LT TR T -1 1 1 OSSO PSPPSRI 57
6.4 UVM_TREE_PRINTER .utttttttiittteitttastteesteeestseesiseessssestsesssssssbseasssesssseesssessssessssesstsesssseessaesnssesssneesssesssnssnsnes 57
6.4.1 Class deFINITIONooueiiiieie ettt bbbt r b e 57
LR 70 01 {0 Tod (o TP PR PR PRSP 57
B.4.3 BIMIE ettt bt E e bR e h e R e e bR nheeb e bt n e et b b nre 58
6.5 UVM_LINE_PRINTER .tttttttttettteitttesttessteeessseesiseessssestsessssssstseassesssseesssessbseesssessbaeenbseenbaeenbeeesbneesbeeentneensneas 58
6.5.1 Class eFINITIONoiueiiiiiiee bbbt sb ettt e e e 58
(ORI 70 01 {0 Tod (o TP P R PR PRSP 58
B.5.3 BIMIE et b bR e b b nh bt bRt e b b nre 58
6.6 UVM_COMPARERcttitttiitttaitttsitttastteestaeesteeestseesbeeesbaeeabee e s bbeeabbe e s bbeesbbe e sbbe e ebbe e e b e e e be e e s baeebb e e s baeenbeeenbaeenebe s 58
6.6.1 Class efiNITIONooueiuiiieieie bbb bbbt e b nre 58
6.6.2 CONSIFAINTS ON USAQE ...vvevierveesreeiieseestee st estestesseesteestaeteestesseesseesseesaeesteanseanseassesteesseesseeseesneesnees 60
6.6.3 MEMBDEE TUNCLIONS ...ttt e e bbbt b et e e b e 60
6.6.4 COMPAIET SELINGS ...vvevieitieteete e ee sttt e e et s bt e e et e st e s teesteesbeebeenbeassestaesteebeeseesnnennees 62
6.7 DEFAULT POLICY OBJECTS ...ttutitteiteeteesteastesseesteesseesseasseanseassesssesseesseeseessesssesseesseesseesseansesnsesnsesssesseensenns 64
REGISTRY AND FACTORY CLASSESottt sttt sttt sttt sttt sttt sttt s ene st nnens 66
7.1 UVM_OBJIECT _WRAPPER .. .ttittttitttestteestttestteestseassesestaeassssesteeassseestseessseesbaeesssesabeeeabeeesbaeeabeeenbaeesbeeentneensees 66
711 ClasS EFINITION ..ot bbb bbbttt be et e e b e 66
7.1.2 MEMDEE FUNCLIONS ...ttt bbbttt e et bbb ne e e e e e b e 67
7.2 UVM_OBJIECT _REGISTRY ..ttttittteitttestueestutessseesineessseessstassssessssasssssssssesssesssssesssssssssessssesssesssessseessseesssssssees 67
7.2.1 ClasS efiNITION ..c..oiiiicieeee ettt sb et e e b e 67
7.2.2 Template PAraMELEr Tt bbb bbb bbb e e b b nre 68
7.2.3 MEMDEE FUNCLIONS ...ttt bbb bbbt ne e e e e e b e 68
7.3 UVM_COMPONENT _REGISTRY ...ttteiutteitutesurtesineessseesiueassssessssassssesssssssseessssessssssssssssssesssssssesssssesssesssssesssees 69
7.3.1 ClasS defiNITION ..c.uiieiicieeee ettt bbbt e b nee 69
7.3.2 Template PArAMELEE T ettt bbb bbb bbbt et e bt nne 70
7.3.3 MEMDEE FUNCLIONS ...ttt bbbttt b bbb ne et e e e b e 70
A U YV B 7Y ox (0] 2 PRSPPI 72
TAL Class defiNITION ..c.ooueiiiieee ettt e et bbb e e b e 72
7.4.2 Retreiving the FACTONYooo oo bbb 74

UVM-SystemC Language Reference Manual — DRAFT

A T = (=T 13 (=Y 10 IR0 01T PSSP 74

7.4.4 Type and INStANCE OVEITIAES.cccviviieeeieiestesteseereeee e ste et e e e e e e e st e tesaestesteaneeseesensenreas 74

T 1 - L1 o OSSP PSPPSRI 76

TAB DEDUG ..ottt bbb bt r e b e et st e b nre e 77

7.5 UVM_DEFAULT_FACTORY ..otitiiteriatistesestesseseasesseseasessessasessessasessessasesssssesessessesessensesessessesessessessssensessssensenes 78
T.5. 1 ClasS AEFINITION .o.viiiieiieciie ettt bbbt b e ebe b e e b nrenea 78

7.5.2 REGISIEIING TYPES. . utiriureiieiteite st st s e e e e et e st e s te e et e e st e besbeateeseesseseesseteseesbesseenseneensesenren 80

7.5.3 Type and INStANCE OVEITIAES.cceiviieieieiesteste e ete e e et e see e ste e e e s e e e st e tesresresreanseseeseneenrens 80

AT S 1 - L1 o 3 OSSO PRPTPRTRIN 82

ST T B L o 1o OSSPSR PRTRIN 84

8. COMPONENT HIERARCHY CLASSES.... ..ottt sttt sttt sttt 86
S R UV Y [o0 1Y [T] 1| =1\ S P USTOTP PRSP PSP 86
8.1.1 ClasS AEFINITION ..ouiieiieiie ettt b b bbbt n b nre 86

8.1.2 CONSLIUCTION INEITACEouiiie ittt sre 90

8.1.3 HIerarChy INTErfACEccveiiiei ettt e et e e raenneas 90

8.1.4 PhaSiNg INTEITACEeivieii ettt s e e e st e et e e e e e ne e s te e te e beeseeanaesnees 92

8.1.5 Process CONIOl INTEITACEcoiiiiiiiiiee bbb 99

8.1.6 CoNfigUration INTEITACEc.vecueeieee e s e e sre e esneesreenreens 100

8.1.7 ODJECtiON INEITACE.....c.eiieieci e et e b e e e e e sreenneens 100

8.1.8 FACLONY INLEITACE ...ecuviciiicee ettt te e s te e beebe e e e sneesreenneens 101

8.1.9 Hierarchical reporting INTErfaCec.oiieiii e 103
00 I O 1V - Tod oL TP PP PTPRTRUROPRPPRORN 105

A UV Y B o] AV = o TSP PPTR 106
8.2.1 ClasS deFINITIONeiueiiiciiiiee bbb bbb e 106

8.2.2 TemPIate PAr@MELEIS.....ccuieivieiieie ettt ettt et e e s sre e st e e teea e nbe e e nraenraen 106

8.2 3 P OIS ettt E et h e b e R e e bt e n e enr e anrenrrenreen 106

8.2.4 MEMDEE FUNCLIONSetiiiiiee et ettt bbbttt e e b e 107

S T U AV Y I Y 0] 0] S TSRS 107
8.3.1 ClasS defiNITIONeiieieiciiiee bbb bbb e 107

8.3.2 MEMDEE FUNCLIONS ...ttt bbbttt bbb nn b e 108

SR U AV Y X = N TR PPR 108
8.4.1 Class defiNITIONceiiiieee e bbbt e 108

8.4.2 MEMBDEE FUNCLIONSetiiiiiiee e bbbt b bbbttt nn e e 108

ST U1V Y [=1 LY TR UPR 109
8.5.1 Class defiNITIONcoueiiiiieiie bbb et 109

8.5.2 MEMDEE FUNCLIONS ...t bbbt s e bbbt e e b e 109

S I U1V Y [1 =S PRSP 110
8.6.1 Class defiNITIONc.eiiiiiie e bbb e 110

UVM-SystemC Language Reference Manual —- DRAFT Page 6

10.

Page 7

o T |V, 11401 o =T g 0T (o1 1 {0 LR 110

8.7 UVM_SCOREBOARDccuttettiteseereateseaseasestesessesseseasesseseasesseseasesseseasesseseasesseseasessesessessesessessesessessesessenseneas 110
8.7.1 ClasS UEFINITIONcviiiieiicie ettt sbe e b 110
8.7.2 MEMDET FUNCLIONS ..ottt ettt sttt 111
8.8 UVM_SUBSCRIBERcutiteutetiiteietesteseetesteseesesteseesesteseeseasesseseabesbeseabeseeseebeseeseabesbeseabenbeseabesbeseabeneenenteneeneas 111
8.8.1 ClasS UEFINITIONoviiiiieiicie ettt nbe e 111
8.8.2 TemPlate PArAMELEr T ...cvciviie ettt sttt e e e st e tesre s beereeneeeenre e e 112
8.8.3 EXPIONT ceiiiiiiiitie ittt bbb bbbt e b b e bt 112
8.8.4 MEMDET FUNCLIONS ..ottt bbbt sttt 112
SEQUENCER CLASSEScoootiiiite ettt sttt sttt sttt sttt st st s et s b et e st b e bt st st e b e be st ebesbe s e resbe e ere st e e 113
0.1 UVM_SEQUENCER _BASE.....iiitttiiitteitteesirtastteasissasssassesassesassesasssssssessssssssesssssssssesssssssnsessnsessssessssessnsessnes 113
9.1.1 ClaSS AETINITION ...t bbb bbbt nr b e 113
9.1.2 CONSIIUCKON ...ttt ettt ettt b e bt e bt e bt s e s s e e s be e s be e sbeenneenneannesneenneenneens 114
9.1.3 MEMBDEE FUNCLIONS ...ttt bbbttt bbbt nn e e 114
9.2 UVM_SEQUENCER _PARAM_BASEuuiiiittiitiiasiteaitesasiesassesssiessssessstesssssssnsessstsssssesssssssnssssnssssnsessssssnsesssns 118
9.2.1 ClaSS AEFINITION ...ttt b e bbb nn b e 118
0.2.2 TemPlate PArAMELEIS.....cciecieeieee e e ettt et e e e re e sre e reenreeneenreeneenreenraen 119
LR R O70] 01 {0 Tod (o TP TP RT PR TROTROTR PRI 119
LS - o UL £ PR PRPR 119
0.3 UVM_SEQUENCER. .. .eettttitutatutsitteaseeasteeassesastseassesssbesassesasteeassssassessssseasseessbesanseeasbesaseessteesnsessssessnsesnnsns 119
0.3.1 ClaSS AEFINITION ...t bbb bbb r e nn e 119
LI - 14 0] P L C=l o U= T 4 (T SRS 120
9.3.3 CONSIIUCTON ...ttt ettt b bt b et et s b e e s be e sb e e sbe e bt enneennesneenbeenneen 120
LR T ¢ o0 T PO U R TR PR 120
0.3.5 SEOUENCET INEEITACEuviiticcie ettt e e s e e s reesbeenseeneesnsesraenneens 121
LR H T 1V - Tod (0L TP PP PTURRUPOURPPRORN 122
SEQUENGCE CLASSES.ottt sttt sttt st te b e e e se st e st e re et e st e s e et e sb et e e be st e s e ebe st ebesbe st etesbe st erenbensans 123
L10.1 UVM_TRANSACTION .. ttteteeetrtestteestrtestseessaeessseessseesssesssstessseesssessssesssseesssessssessssessssessssessnsessnsessssessnsessnses 123
10.1.1 ClaSS AEFINMITION ..ottt bbbt e e e 123
O A O] 11 £ U [od (0] £ U TP U PO PP P OO UPTUPRTR 124
10.1.3 CONSLIAINTS ON USAQE ...evverteeetirieeteeteasies et stestesbesbeaseeseeasesbesbesbesbeaseeseesesbeseesbesbeabeaseeneeseesbenees 124
10.1.4 MEMDEE TUNCHIONSuiiiiiie ittt bttt e e bbbt b e e e e 124
10.2 UVM_SEQUENCE_ITEM .iiuttiituteitueesiutessreesistessseessstesssesssssesssessssessssesssssssssesssssssssessssssssesssessnsessssessnsessnnes 124
10.2.1 ClaSS AETINMITION ..c.eeiiiiiiie bt bbbt see e 124
O O] 11 £ U010 £ PP U PP OO PP 125
10.2.3 MEMDEE FUNCEIONSveiiiiie ettt bbb s b et e e see e 125
10.3 UVM_SEQUENCE _BASE.....utiittteittteitttesureesistessseessstesssesssstesssesssssesssessssssssessssessssesssssssssessnsessssessssssnsessses 127
10.3.1 ClaSS AEFINMITION ...t et b et ae e e 127

UVM-SystemC Language Reference Manual — DRAFT

11.

F0.3.2 CONSITUCTOL ..iitiriiie ettt e e et e e e s s e b e e e e e e s e e bbb et e eeesessabbbeeeeeesesabbbaeeeeesassrres 129

10.3.3 SEOUENCE STALE....eeiiiiiieieiite ettt ettt ettt et b e st et e b b e e b et n e bt naee s 130
10.3.4 SEOUENCE EXECULION....c.eeuieieitestisiesteeeete et e ste e stesreeseesee st e teseesbeateesseseessesteseestesreeseeseeneeseeseenes 130
10.3.5 SEUUENCE CONIOL......iiiiiiiie ettt ettt e e et st e be e eraereeneeeeneern 132
10.3.6 SEQUENCE ItBM BXECULION. .. c.viitiiieiteeeeiee st te et e e ee st te st s e e e e e e e e e seesresreeneeraeneeseesrenrs 134
10.3.7 RESPONSE INTEITACEcvvevieieiie ittt e et st e s be e era e e e e e eeseeen 135
10.3.8 DA MEIMDELSviviiiitiitiietisie ettt bbbt s bbbt ettt be st e 137
104 UVM_SEQUENCEccutitttiteeetestestetestestesestestesessestesesteseesesbesseseabesteseabesees e et st eseabesbebeabe s ebesbe e ebenbeneesenbeens 137
10.4.1 ClaSS AFINITIONoviiiciiieiccee bbbttt 137
10.4.2 TemPlate PArAMELEIS. . .ccee i et e e sttt e e e et et e e sae e te e be e teesaessaesraesneenreeneenes 137
L0.4.3 CONSIIUCTON ...ttt sttt ettt sttt e s bt e s bt e b e e s e e se e ab e e e bt e b e e b e e snesreesreenreenreenneanns 138
10.4.4 MEMDEE TUNCTIONSuviiiieitest sttt bbb bbbt n e e e 138
CONFIGURATION AND RESOURCE CLASSES........cco ittt 139
R U1 Y B o0 N = [T o] T PP PP 139
11,11 ClaSS AETINMITION ..o bbbttt e e e e 139
11.1.2 Template PAramMELEr Teoe ettt et e st e be e beeseesnaesraesneenreeneenes 140
11.1.3 CONSLrAINTS ON USAJE ...eeveeveereeerreeuresteesteesteestesseesseesteesseesseasseanseassesssesseesseessesseessessssssseessesnseanes 140
11.1.4 MEeMDEE TUNCTIONSueiiiteieest sttt bbb bbbt ee e b 140
11,2 UVM_RESOURCE_DB ...uiiiuuiiiiieitetesiutassseesistessseesssessssesssstesssesssssesssesssssssssessssessnsessssessnsesssessssessssessnsessnnes 141
11.2.1 ClaSS AETINITION ..c.veiiiiiiiiee ettt sb bbb see e 141
11.2.2 Template PAramMELEr Tccie ettt e et e st e e ba e beeseesnaesreesneesaeeaeenes 143
7 T O Y1 = V[530 T 7 o -SSP 143
11.2.4 MEeMDEE TUNCHIONScviiiiieite st bbb bbbt n e e b 143
11.3 UVM_RESOURCE_DB_OPTIONSeiittteittteitutessteessstessseessstesssessssessssessssessssessssessnsessssessnsessnsessssesssssssnsesssns 145
11.3.1 ClaSS AETINMITION ..ottt bbbt be e e 145
11.3.2 MEMDEE TUNCEIONScuiieiiie ittt bbbt sa e 146
11,4 UVM_RESOURCE_OPTIONS ...uvteiuvteitttestreesiutessseessstesssesssseesssesssssesssesssssssssesssssssssessssessnsesssessnsessssessnsessnnes 146
11,41 ClaSS AEFINMITION ..oveiiiiiiee e et sb e e e e 146
11.4.2 MEMDEE TUNCEIONScviiiiie ettt bbbt e e e e 147
115 UVM _RESOURCE _BASE.....utiiitteittteitutestteesistessseessseesssesssstesssesssssesssesssssssssessssessssessssessssesssessnsesssessnsessses 147
1151 ClaSS AEFINMITION ..c.eeiiiiiiiie bbbt ee e e 147
I T O 11 £ U040 T PSR P PP OO PR PPN 148
11.5.3 Resource database INTErfaCecouiiiiiie e e 149
11.5.4 Read-0NIY INEEITACE ..o bt 149
1155 INOUTICALION ...t bbbt bbbt see e 149
11.5.6 SCOPE INEEITACE.ue ittt bbb b bbbt b e e e e e e e e 149
T 1 1o 1 SOV RO TP 150
11.5.8 ULITILY FUNCHIONS ... bbb a e e 150

UVM-SystemC Language Reference Manual —- DRAFT Page 8

12.

Page 9

11.5.9 AUAIE AT .cocoiiicice et 150

116 UVM_RESOURCE_POOL ...viuvitiiteiereatestesestestesessestesessessesessessesessessesessessesessessesessensesessensesessensasessessasessensans 151
11.6.1 ClaSS AEfINITION ...oviriciiieicce bbb bbbt 151
0L T2 o =) OO OO SOUTTSTR 152
11.6.3 SPEHL_CRECK ..cvviiiiicei e e e nrern 152
L1164 SEEINTEITACE ..veveieiiiictiet bbbt b ettt b et re st e 153
LGRS o o] (o OO OSSP 153
TR ST B o] o) /2SSO 155
LT A B 1= o 1 o OO S PSP 156

L10.7 UVM _RESOURCE ... utiiitttiittesstttestteastetestseestseessseestseesaseesbseessseeasbeeasbeeas bt e aabeeas bt e aa b e e asbeeenb e e sab e e anbeensbeeanbeeentes 156
11.7.1 ClaSS AETINMITION ...veiieiiiiie st bbb bbbt eesn b 156
11.7.2 Template PAramMELEr Tcoe et e et et e st e te e be e e e seesraesraesneesreeneenes 157
T T I o Lo T 1 =] - Lot S 157
11.7.4 SEUGELINTEITACE ..ottt bttt b bbbt b e e e e b 158
11.7.5 ReAU/NWVIITE INTEITACEc.eeeeieeee it et ee e 158
I T = To] 1 YOO OSSOSO 159

11.8 UVM_RESOURCE_TYPES ..uttiitttiitttestttestttesistessseeststesssesssstesssesssssesssessssessssessssessnsessssesssessnsessnsessssessnsessnses 159
11.8.1 ClaSS AETINMITIONeeiiiiiiiieree ettt bbbt e e e sn e 159
11.8.2 Type definitions (LYPEUETS)ccviiriiieci e 160

PHASING AND SYNCHRONIZATION CLASSES. ..ottt ettt 161

L2.1 UVM _PHASE ..ottt eitit sttt ettt ettt et e e st bt e st e e s bt e s bb e e b b4 e e b e e e 4R bt e e Rt e e e E bt e e R b e e e b e e e a b e e e st e e e nb e e e Rt e e e beeanbeeebe e et 161
12,11 ClaSS AETINITION ..o bbbt sa e 161
1212 CONSIIUCTION ...ttt et bbb bbbt bttt e e b et sb e eb e bt eb e e b e e e e b nne b 163
12,13 SHAIE coeiueeeticti ettt R R ARt E bt E e bRt R e Rt bt n et n e 163
12,114 CAlIDACKS.ottt bbb bt bbbt na e 164
12,15 SCREAUIE ...t b ettt sttt ettt ene 165
12.1.6 SYNCAFONMIZALION ...ttt et b ettt e et bt bbbt e b e e e e e e e 166
50 N 111 1 1o 1o o SO PRO PR 167

2 1Y w0 Y | TP PPR 167
12.2.1 ClaSS AETINMITION ...t bbbt ee e e 167
A O] 11 {101 (0] U T OO TURT PP U OO UPTUPRN 168
12.2.3 MEMDEE TUNCEIONSuiiieiie et bttt bbbt e e see e 168

12,3 UVM_BOTTOMUP _PHASE ...eittteitteeitttestteesiatessseessstesssesssstesssesssseesssesssssesssessssessssessssesssessnsessnsessssessnsessnnes 169
12.3.1 ClaSS AEFINMITION ...t bbbt e 169
R I O] 11 £ U (o1 (0] T PSP TP PP UP PR PRN 169
12.3.3 MEMDEE TUNCHIONSeeiiiiie ettt bttt bbbt e e e 170

12,4 UVM_TOPDOWN_PHASEiiittieititeitttestreesittessseessstesssesssstesssesssseasssessssessssessssessssessssessnsessnsessnsesssssssnsessnses 170
12,41 ClaSS AEFINITION ..cviiiiiiiie et e bbbt ae e e 170

UVM-SystemC Language Reference Manual — DRAFT

12.4.2 CONSITUCTON ...ttt et sr e et n et e st am e e R e n e e e e e e s ne e s re e nreenneeneenns 171
12.4.3 MEMDEE FUNCLIONS ...ttt bbbttt sbe e 171

12,5 UVM_PROCESS_PHASE® (UVM_TASK_PHASE")cuciciiiiiiiiiiieiisie ettt et es st benis 171
1251 ClasS AEFINITION ...veieieiiiiie e et ee e e 171
12.5.2 MEMDEE FUNCHIONScviiiiie ettt et ee e e 172

12,6 UVM_OBUIECTION ..utiiutiauteatteeteesteesteesteesteateasseaasesaeasbe e bt esbeesbeasseaseesheeshe e ebeeabeembeeaeeeb b e ebeenbeebeenbeesbenreesnnas 172
12.6.1 ClasS AEFINITION ..ottt see e 172

I I O] 11 £ U [o{ (0] PSP U PP UPTTPR 174
12.6.3 ODJECHION CONTIOL ...ttt 174
12.6.4 CallDACK NOOKS.ccuieiieiiiesiestise sttt sttt ettt sae st besne e s e e e eeneenes 176
12.6.5 ODJECHIONS SLALUSeuvvieieiitiiteetcst ettt bbbt b e b 177

12,7 UVM_CALLBACK ...ttt sttt ettt h et eh et e bbbt e bRt b e bt et et n e b bt eb e e st nennenrs 178
12.7.1 ClasS AEFINITION ..oveiviciieiee et be e ne s e nee e 178
12.7.2 MEMDEE TUNCHIONS ..ottt st st reene s e e neenes 178

12.8 UVM_CALLBACK_ITER ..iutiitiitiiteetiaseetete st asesseabeesees e sre b skt bt s e nb bbbt e e nb e r b bt e s nnenns 179
12.8.1 ClasS AEFINITION ...c.eivieieiie sttt ene e e nee e 179
12.8.2 Template PAraMELEr Tooociieiciiteeeiirie ettt bbbt b b 179
12.8.3 Template Parameter CB ...t 179
I T S O] 1511 £ U o{ (0 SRR 179
12.8.5 MEMDEE FUNCLIONScvviiieiesee sttt sttt see st e eneere e e eeneenees 180

12,9 UVM_CALLBACKS ..itiutiuteitiateste sttt ettt b et be e e btk h s et e e e bt e Rtk b et e st et e nn e b e e bt ebe e e e e e nennenns 180
12.9.1 ClasS AEFINMITION ...veieieeieee et reene e e e e nnenes 181
12.9.2 Template PAraMELEL To.iiieiiiiteee e b et bbbt bbb e 182
12.9.3 Template Parameter CB ..o e 182
I B S O] 1511 £ U o{ (0 SRS 182
12.9.5 Add/elete INTEITACEc..e e st nee e 182
e | (-1 - (0] G101 =T 7 TR 183
I T A B 1= o 1 o OO TSRS 184

13, REPORTING CLASSES ...ttt sttt ettt eesee s e steeste e teeneeaneeasseaseenteeteeneeareesreesreeneeeneeanes 185
13.1 UVM_REPORT _OBJIECT ..cutittatiteatiaseestestesseasesseaseeseessessesseas st aseeseess e e sb e ab e bt bt e heess et e nb e e b e nbeebe e s e enr e e nnennes 185
IR 00 A @ TSt 1 1o S 186

R 00 A 0 11 o4 0 S 189
13,13 REPOILING oottt ettt ettt s bbbtttk b ettt b et b bbbt nne e 189
13.1.4 VerbosSity CONTIGUIALIONc.ooviiiiiiie e 192
13.1.5 ACHION CONFIGUIALION ...ttt bbbttt 193
13.1.6 File CONTIQUIALION......cuiiiie ittt st reeneere e e eeneenen 193
13.1.7 OVerride CONFIGUIALION........ceiiieireeei ettt sr b e ene e e e seenrenes 194
13.1.8 Report handler CONFIQUIAtIONoviieeiecc e 195

UVM-SystemC Language Reference Manual —- DRAFT Page 10

13.2

13.3

13.4

135

13.6

13.7

13.8

13.9

13.10

Page 11

UVM_REPORT_HANDLERt.ttttttttseatesteseetesteseasestesesestessesessassesesbessessabessesesbesbessabesbensasesbensasesbensasessensane 195
13.2.1 ClaSS AEFINITIONoviriciiieicce bbb sbe e 196
R O 11 £ U010 PRSP TPTPR PR 196
13.2.3 MEMDET FUNCLIONS ...ttt bbb bbb 196
UVM_REPORT_SERVERctttertetintiseatesteseasestestasestessasessessesessassesessessessssessessasessensasessensasessensasessensasessensne 197
13.3.1 ClaSS AEINITION ..o bbbttt nbe e 197
13.3.2 MEMDBET FUNCLIONS ...ttt bbbttt 198
UVM_DEFAULT_REPORT_SERVER.....cuttututttirtestattstentasestestastssessasessessesessessesessessensasessensasessensasessensasessensens 201
13.4.1 ClaSS AFINITIONoviiciiieice bbbttt 201
G 3 O 11 £ U [o{ (o PP PRR PP 202
13.4.3 Generic MemMBEr TUNCHIONSoiiiiiiieie st 202
L1344 QUIT COUNE ...ttt ettt sttt s bbb bt st et b e be e b et e e 202
G ST T | Y oo 0 | SRS 203
I T T [o1 OSSOSO 204
R B A |V [T Vo T ot] (o [T S 204
13.4.8 MESSAQPE PrOCESSING ..vveveereeteareauresttesteesteesteastesseesteesteesteasseanseassesssesseeseesseaseessaessaesseesseensesnes 205
UVM_REPORT_CATCHER ..1iuttteitttestteesittestteesiatessseestseasssessbsaessseesbsasssseestaeesbseesbaeessseesbaesssseentaessseeensnesnsneas 205
13.5.1 ClaSS AETINMITIONeiieiiiiiie sttt bbbt sn e 206
13.5.2 CONSIIUCTON ...ttt ittt ettt ettt bt bbbt e et ab e eb ekt e bt et eeseenbe e s beesbeenneenneanns 208
13.5.3 CUITENT MESSAQGE SALE ..eevvieirieiiieesiiiesiie et e sttt e et e et e e e e e st e e s bee e sbb e e sbaeesbb e e sbaeesbbeesreeenene s 208
13.5.4 Change MESSAQE STALE ...veeiveeieiiiiiecti ettt e e te et et e e e st et e e be e beesaessaesraesneesaeenaeenes 210
TS T ST B 1= o 1 o OSSR 211
13.5.6 CallDACK INTEITACEcueiiiieieeet e bbbt 211
T T A T o Yo 4 1 o TSP 212
UVM_REPORT_MESSAGE_ELEMENT _BASEviiittiiiiuieitieesiteestseesiaessssessisessssessssessssssssssssssssssssssssesssnssssens 213
13.6.1 ClaSS AETINITIONeviiiiiiiie et bbbt se e 213
13.6.2 MEMDEI FUNCLIONSveiiiiiie ettt st a e sre e sreeaeenes 214
UVM_REPORT_MESSAGE_INT_ELEMENT ..vtiitvteitttesirtesteeesireessseesssesssseessseesssessssssssssssssssssssssssssssssssnssssnes 214
13.7.1 ClasS defiNItIONooiiiiie ettt ra e s re e sre e reeaeenes 214
13.7.2 MeMDEI FUNCLIONSc.veiiice e ettt e et sre e aeeeeenes 215
UVM_REPORT_MESSAGE_STRING_ELEMENT ..ietttiiitieitieesittestreesineessseesiaeesssesssnesssssesssessssssssnsssssssssnesssnes 215
13.8.1 ClasS AefiNItIONciiiiiiie e ettt a e sre e e aeenes 215
13.8.2 MEMDEI FUNCLIONSc.viiiiie e et ettt st sre e sreeeeenes 216
UVM_REPORT_MESSAGE_OBJECT_ELEMENT 11tittteittteitteesireestreessseessseessaeesssesssssssssssssssssssesssnssssssssneessnes 216
13.9.1 ClasS AefiNItIONc.ociiiiic e et e e e sre e re e enes 216
13.9.2 MEeMDEI FUNCLIONS .. .c.veiiee e e sttt e et ee e s ta e ste e reeeeenes 216
UVM_REPORT_MESSAGE_ELEMENT_CONTAINERecitttiiitteitttesineestreesiseessseessnesssseesssessssssssnsssssssssnesssnes 217
13.10.1 Class AefiNItIONc..ciiiiii e et be e be e be e s ra e s te e sreesreeneeenes 217

UVM-SystemC Language Reference Manual — DRAFT

L13.10.2 CONSITUCTOL ..ciiiiiriiie e ettt et e e e et e e e e s s e b b b e e e e e e s e sab b b et e eeesesabbbeeeeeesessabbbeeeeeesasarres 218

13.10.3 MEMDBET FUNCLIONS ...ttt b ettt bbbt 218

13.11 UVM_REPORT_MESSAGEecutiterieteiteseesestestesestestesesteseesessessasesseseasessessesessessesessessesessensesessensasessensasessensans 219
13.11.1 ClaSS AEFINITION ..ot bbb b et bbb 219
R I A O 11 U o{ o PP UR PR 221
13.11.3 Generic MembEr FUNCLIONSc..ciiiiiirieiese bbbttt 221
13.11.4 INFraStruCture FETEIEINCESoiiiiiieiei ettt bbbt sr e 221
13.11.5 MESSAQE TIEIAS ...eveeereiieice ettt r e et nrern 222
13.11.6 MESSAQE BIEMENE APIS....c.oiiiiitiiecieceeie ettt st a et st et reenaese e e e seesrenrs 225

S V1 N @1 =@ 1 SRRSO 226
14.1 COMPONENT AND OBJECT REGISTRATION MACROScctvetiaitiriresinesieesreesseesseasesssesssesseesseessesssesssesnssnns 226
1411 MACKO AEfINITIONS ...ttt bbb bbbt e e nes 226
14.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILSc.ccoiririiiirinenee e 226
14.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS......cccccvrvvrrrrrienn. 227

14.2 REPORTING MACROScoutiittestiesteesteesteasseaseasreasssaseeaseeaseasseassessseaseesseesseesseeaseanseanseassesbeenneebeenneasnesnnesseas 227
14.2.1 MACKO AfINITIONSoiuiiiie et bbbt nes 227
14.2.2 UVIM_INFO ..ottt ettt bbbttt sttt e e 227
14.2.3 UVM_WARNINGccootiiiiiieiseetse ettt sttt bbbttt st e 228
14.2.4 UVM_ERROR......ciiiiiiiiie ettt b bbbttt bt re st e e 228
1425 UV _FATAL oottt b et b ettt sttt ene 228

14.3 SEQUENCE EXECUTION MAGCROS. . .cciiiiititttittteeeieiittttetseesssiistbaetssssssssstbsstssssssssssbassssssssssssssssessessssasssseses 228
14.3.1 MACKO AefiNItIONS ...ttt bbbt e nes 228

14.3.2 UVIM_DO ..ottt bbbttt b ettt 229
14.3.3 UVIM_DO PRI ..ottt ettt sttt sttt sttt ene 229
14.3.4 UVIM_DO _ON ..ottt ettt sttt st s ettt be st be st e e 229
14.35 UVM_DO _ON_PRI oottt ettt sttt 229
14.3.86 UVIM _CREATE......oiiiitiiciseiei sttt ettt st sttt be st te st e 229
14.3.7 UVM_CREATE_ON ..ottt ettt sttt sttt bt ne st nens 230
14.3.8 UVM_DECLARE_P_SEQUENCERccccoitiiiiiiiieisesees ettt 230

14,4 CALLBACK MACROS......ccuttiutiattesteeiteesteasseastasseaaeeaseaaseaaseasbeasseasseaseesheesbeeabe e bt emseameees b e abeeabeebeesbeasbenseesieas 230
1441 MACKO AefiNItIONS ..ot bbbt e 230

1442 UVM_REGISTER_CB......ciiiiiiiitiieireese ettt sttt sttt st nns 230
14.4.3 UVM_DO _CALLBACKS.ottt sttt sttt st nens 230

15, TLIM INTERFAGCESottt ettt bbbt ettt bbbttt b et e b st et et es e nbe st enennennenen 232
15.1 UVM_BLOCKING _PUT_PORT ttteiutteitutesurtesintessseessstesssesssstessseessssesssesssssssssesssssssnsessssssansesssessnsessssessnsessnnes 233
15.1.1 ClaSS AEFINMITION ...t et b et see e 233

15.1.2 Template PArAMELEN Toui ittt b et e et bbbt e e b e b et 233
15.1.3 CONSIIUCTO ...ttt itee ettt ettt ettt b et s e bt e be e bt e bt e b e e ab e e ae e eb e e eb e e bt e bt e seesbeesaeesbeenbeenneanns 233

UVM-SystemC Language Reference Manual —- DRAFT Page 12

15.2

15.3

154

155

15.6

15.7

15.8

15.9

Page 13

0 O 1Y 1< o1 o 1< g 0T € o o R 233

UVM_BLOCKING _GET_PORT ...ttttiseatisteseaststeseasestessasessessesessessasessessesessessessasessensssessensasessensasessensasessensane 234
15.2.1 ClaSS AEfINITIONoviviciiieiccec bbbt 234
15.2.2 Template PAramMELEr Tccoiiiiie e ettt e e et stesbe e enaereeneeseesrenrn 234
15.2.3 CONSIIUCTONviieeieesiee sttt et s e et et e e me e am e r e n e e e e e e s e e s r e e nr e e nneeneenns 234
15.2.4 MEMDEE FUNCLIONS ...ttt bbbttt 235
UVM_BLOCKING_PEEK_PORTttutiutitisteseattstestasesseeasessessesessessesessessesessessessasessensasessensasessensasessensasessensans 235
15.3.1 ClaSS AEfINITIONoviniieiieicee bbbttt 235
15.3.2 Template PAramMELEr Tccoiiiiieceeieei ettt e et seesbe e enaereeneeseenrenrn 235
TR T T O] 11 £ U010 PP TP PR 236
15.3.4 IMEMDEE TUNCTIONSuviiiiiieest ettt bbbt nn e 236
UVM_BLOCKING _GET_PEEK _PORT ..ttttteitttesittestteesintassseesisssssssessssssssssssssssssssssssssssssssssssssessssssssssssesnsnees 236
15.4.1 ClaSS AEFINMITIONeeiiiiiiice ettt sb bbbt nes 236
15.4.2 Template PAramMELEr Tccieee e e et e st et e be e teeseesraesraesneesreeneenes 237
T R O] 11 £ U010 PP URR PR 237
15.4.4 MEMDEE TUNCTIONSovviiiieitest et bbb bbbt ee e e 237
UVM_NONBLOCKING _PUT_PORT 1uttttittteitttesiutestteesinesssseesissessssssssssssesssnees 238
15.5.1 ClaSS AETINMITIONeeiiiiiiiie bbbttt se e 238
15.5.2 Template PAramMELer Tcooe ettt e e e e st e st e ba e e e saesraesraesneesreereenes 238
15.5.3 CONSIIUCTON ...ttt ittt ettt ettt bbbt bt b e st eb et e e bt et eesnenbe e s beesbeenneenneenns 238
15.5.4 IMEMDEE TUNCHIONSoueiiiieite st bbb bbbt se e 238
UVM_NONBLOCKING _GET _PORT 1.utttttttteitttesittestteesiaeesssessisesssssssssessssessesssnes 239
15.6.1 ClaSS AETINITIONeviiiiiiiie ittt s b ettt nes 239
15.6.2 Template PAramMELEr Tccceee e e et e st et et et e e saesraesreesneesreeaeenes 239
15.6.3 CONSIIUCTON ...ttt ittt ettt ettt s bbbt e bt h e eb e bt e bt et e e s e e nb e e nbeenbeenneenneenns 239
15.6.4 MEMDEE TUNCHIONScueiiiiiiite sttt bbbt sae e 240
UVM_NONBLOCKING_PEEK _PORT ..tttttteiuttesirtessteesiseessesessssessssessssssssssssssessssssssssssssesssssssssssssssssessssesssnes 240
15.7.1 ClaSS AEFINITION ..c.eeiiiiiiie bt bbbt e e e 240
15.7.2 Template PAraMELEN T ..ot bbbttt e et bbbt e bbb e 241
15.7.3 CONSIIUCTON ...ttt ettt ettt ettt h e bbbt bt e bt e st e ae e eb e e b e e bt et e e seenbeesbeesbeenbeenneenes 241
15.7.4 IMEMDEE TUNCHIONSviiiiie ettt ettt b e e e e e 241
UVM_NONBLOCKING_GET_PEEK _PORT ...utttitvieitttesiteestttesiseessseesssessssesssseessssssssssssssssssssssssssssssssssssnesssnes 241
15.8.1 ClaSS AEFINMITION ..ot bbbt e e 241
15.8.2 Template PArAMELEN Tccui ittt bttt bbb b b 242
15.8.3 CONSIIUCTONviieitie ittt ettt ettt ettt h e bt bt s bttt et he e eb e e bt e bt et e e st e ebeesbeesbeenbeenneenes 242
15.8.4 IMEMDEE TUNCHIONSveiiiiie et bbb et b et ae e e 242
UVM _ANALY SIS PORT .. tttettteitttesuteesistassseeststesssesssseasssssssssassseessssssssesssseesssesssssessseessssssssesssssesssessisesssees 243
15.9.1 ClaSS AEFINMITION ... et e bt a e e e 243

UVM-SystemC Language Reference Manual — DRAFT

15.9.2 Template PAramMELEr Tccoieiiieeeeiei ettt e e e e seesbe s teenaereeneeseenrenrs 244

15.9.3 CONSIIUCTON ...ttt r e n et n e as e r e n e e sn e e e e s re e nneenneeneenns 244
15.9.4 MEMDEE FUNCLIONSeoviiiiiitieete bbbttt 244
15.10 UVM_ANALYSIS_EXPORT .uvettiteeeresteseesestestesessestesesseseesessessesessessesessessesessessesessessasessensesessessasessensasessensans 244
15.10.1 ClaSS AEFINITIONoviviiiiieiciiee bbb bbb 245
15.10.2 Template PAramMELEr Tccoiiiiieeeeeeieee sttt e e te st e e e e e et saesbesreenaereeneeseesrenrn 245
15.10.3 CONSIIUCTONveeeeieeiiee sttt sttt r s r e n e e s e am e r e n e e e e e e sre e s e e nneenneeneenns 245
15.10.4 MEMDBET FUNCLIONS ...ttt bbbttt sbe e 245
15,11 UVM_ANALYSIS_IMP .octiterietesteitetesteseetestestesestestesesteseesesbessesesbeseesesbeseeseabeseesesbestasesbe st esesbensebesbeseesesbensane 246
15.11.1 ClaSS AEFINMITIONeeiiiiiiiie sttt bbbt sn e 246
15.11.2 TemPlate PAramMELErS....cceeieeieeieceeeti ettt e e e et e et e e sae e te e be e teesaessaesraesneesreeneenes 246
15.11.3 CONSIIUCTOveieeieesiee sttt st ettt et e s bt e s bt e s e e et e se e em e e bt e b e e r e e snesreesreesreenneenneanns 246
15.11.4 MEMDEE TUNCEIONSueiiiiieieest sttt bbb bbbttt n e e nes 247
15.12 UVM_TLM_REQ_RSP_CHANNEL ..eiitttiittteitutesiteesintesseeststesssesssseesssesssseesssessssessssessssessnsessssessnsessssessnsesssns 247
15.12.1 ClaSS AEFINMITIONeiiiiiiiie bbb bbbt nes 247
T - o 1o F L o s 1] (=T S 248
T R B 0T 3 g0 =D 0o TSRS 248
15.12.4 CONSIIUCTOtiieeieesiee sttt ettt ettt e e s bt e s bt e st e et e se e ab e e s bt e be et e e snesreenreesreenneenneanns 250
15.13 UVM_SQR_IF _BASE .iuttteituteiuteitetesirtasseeeststessseessstssssesssstesssesssseesssessssessssesssssssssessssessnsesssessssessssessnsessnses 250
15.13.1 ClaSS AETINMITIONeeiiiiiiie ettt bbbt se e 250
15.13.2 TemMPIate PAraMELErSccuee e eie ettt et et e et e e st e s te e be e beesaessaesraesneesreeneenes 251
15.13.3 MEMDEE TUNCEIONScuviniiie ittt bbb bbbt sn e 251
15.14 UVM_SEQ _ITEM_PULL _PORT ttttttttitttestrtestutessseessstesssesssstesssesssssssssessssessssessssessnsessssessnsesssessssesssessnsessnnes 253
15.14.1 ClaSS AETINITIONeviiiiiiie ettt bbbt se e 254
15.14.2 TemPIate PAramMELErS....c.ee e et cieceeete ettt et e et e e e st e s te e be e beesaesraesraesneesreeeeenes 254
15.14.3 CONSIIUCTONtitteieestee ettt ettt ettt b e bt e s bt s bt e bt e bt e he e eb e e bt e bt et e e seenbeesbeesbeenneenneanns 254
15.14.4 MEMDEE TUNCEIONSveiiiieiee ettt b ettt bbbt ae et 254
15.15 UVM_SEQ _ITEM_PULL_EXPORT ..tiittteiurtesiutessreessstesssesssstesssesssuesssessssessssessssesasessssessnsessnsessnsessssssnsesssns 254
15.15.1 ClaSS AEFINMITION ..ot bbbt b e e e e 254
15.15.2 TemMPIate PATMELEESouiiteitirteeti ettt sttt bbbt e et e e e e et sbesbe b e abe e e e b e e sbenees 255
15.15.3 CONSIIUCTONviiueetie ittt ettt sttt ettt b e sb e s bt e bt e ae e e ae e ebe e bt e bt et e e seesbeesbeesbeenbeenneenns 255
15.15.4 MEMDEE TUNCEIONSueiiiiiiee ettt bbbt e e see e 255
15.16 UVM_SEQ _ITEM_PULL_IMP ...uiiiuitiiitiesireesittessteestttesssesssstesssesssseesssessssassssessssassssessssessnsessssessnsessssessnsessnnes 255
15.16.1 ClaSS AEFINMITION ..ot et see e 255
15.16.2 TemMPIAte PATAIMELELSotiitiitiiteitt ettt bttt b ettt st et e e et sb et st eebe e e e b e e sbenbas 256
15.16.3 CONSIIUCTONviteiieeitee ittt ettt ettt ettt e b e bt e e bt e bt et e e ab e e ae e eb e e ek e ekt et e e seesbeeseeesbeenaeenneenne 256
15.16.4 MEMDEE FUNCHIONS ...ttt bttt bbb e e e 256

UVM-SystemC Language Reference Manual —- DRAFT Page 14

16. GLOBAL DEFINES, TYPEDEFS AND ENUMERATIONS.........ccociiiiiii 257

16.1 GLOBAL DEFINES .eettuviteretteresesseseensesessssesessasesessesessssnsesessssessssesesessesessssasessssesessssasessssesessssesessssesessssasens 257
16.1.1 UVM_MAX _STREAMBITScotitiiiiieieiseerinte ettt sneseennas 257

16.1.2 UVM_PACKER_MAX BYTES......ccciiieitriseiririeeesse st esestsse s esessssessssesesessssessssesesensas 257

16.1.3 UVM_DEFAULT _TIMEOUT ...cceitiiiiiieiiissiei e ettt ssssenesennas 257

16.2 TYPE DEFINITIONS (TYPEDEFS) .. .ueevitetestestesreaseasesssessessessessesssssesssessessessessessssssssessessessessessessenssessessenses 257
T2 VAV T o] 13 1 -V N PSS 257

T2 V1Y I 121 C=To - 1 PSSO 257

16.2.3 UVIM_FILE ..ottt ettt ettt e e e e nnas 257

N S V1V o [=T Yo o A o oSS 257

M ST V1AV o [oo o o T S S 257

M I VAV o oo o o TS € oSS 258

M V1Y o oo o T T] o] 1< S SRS 258

16.2.8 UVM_CONTIG WEAPPET w.eeveeieeie sttt ettt te et e et e e s e sae e ta e beesbeeseesnaesraesneenreenneenes 258

16.3 ENUMERATIONttitietiesteettesteesteestee bt e st se s e sse e sse e bt e se e be e s se e s s e e s e e she e she e nR e e Eeenn e emn e es b e nb e e nbeebeanneasnenrnesnnas 258
R T R 1Y/ - Tod 1 o] SRS 258

O T V1Y o [T T4 | 2SS 258

16.3.3 UVML_VEIDOSILY ©.vviiieiiie ittt ettt et e e st et e be e e e saesnaesreesreeneeeneeenes 258

16.3.4 UVM_ACtiVe_PASSIVE _EINMUIMuiiuiiieieitieite et e e ete st te et e et e s e st e te e be e teesaesnaesraesreesreenneenes 259

16.3.5 UVM_SEQUENCE_STATE EINMUIM....iiiiiiiiiieitieesite ettt et e sae et e ae et e e s ba e et e e sbaeesbb e e sbaeesbeeesbneenene s 259

16.3.6 UVML_PRASE LYPE oottt ettt e ettt e st et e et e e e e e e e aeereenes 259

ANNEX A. UVM-SYSTEMVERILOG FEATURES NOT INCLUDED IN UVM-SYSTEMC..........cccvevevenene. 261
AL NO FIELD MACROS. ... ttiuttautt sttt atteatteteeteasbeassesseesbeesbeesbeaaseeaseaa st ab e e eb e e bt e s bt e s b e ehbesbeenbeeebe e bt enneenneanrenbeenneen 261

A.2 NO AUTOMATED CONFIGURATION ..cutteutieuteattesteesteesteesteaseassesssesseesseesesssesssesssesseesbeesseanseansesssesssesssensenns 261

A3 NO TRANSACTION RECORDINGcttetientiastesstesteesteesteesseaseasseassesseesseaaseassesssesssesseesseesseanseansesssessnesseessenns 261

A4 NOREGISTER ABSTRACTION LAYERcttiutiiutesieesieesteanteanseastassesseesseesseasesssesssesseesseesseassesnsesssesseesseessenns 261

A.5 NO CONSTRAINT RANDOMIZATION AND COVERAGE CLASSES.......cciieitiatiaiesieesieesieesseessessessnessnesseesseens 261

AALB INO ASSERTIONS. ... teetteuitaite ettt attesteesbe e beesbeeseesbeesbeesbeeabeea bt e aeeea s e eb b e eb e ekt e sk e e sbeeheesheenbeeabeebeanbeenbeearenbeenbeen 261
ANNEX B. RENAMED FUNCTIONS UVM-SYSTEMC VERSUS UVM-SYSTEMVERILOG 262
ANNEX C. TERMINOLOGYcociiiitiiiiiteiit sttt sttt sttt et s et se st et s bt s e st s et et ene st et re s tene s 263
C.1 DEFINITIONS . uttittettaiet ettt att e bt e bt et e et e s teesbeesbeesbe e eeeaseeheeeh e e ke e s b e es b e eh e e e Ee e nb e e nbe e ke e mbeembeebbenb e et e e beasbeennesneas 263

C.2 ACRONYMS AND ABBREVIATIONS.uutittiiteesteaittasteasseaseesstesseesseassesssessesssesssesssesnseassesssesseessesssessesnsesnns 265
INDEX .. ittt ettt sttt ettt ettt ettt b et et bbb 4o s e s b e s a4 e b e R e s ek et e s e b e R e e koA e s e bR e bR e R e s bR et et e R et et e R e b et eRe e bete et aere et et 267

Page 15

UVM-SystemC Language Reference Manual — DRAFT

1. Introduction

UVM-SystemC is a SystemC library extension offering features compatible with the Universal Verification
Methodology (UVM). This library is built on top of the SystemC language standard and defines the Application
Programming Interface aligned with that of the existing UVM standard and associated base class library
implementation in SystemVerilog (SV). The UVM-SystemC library does not cover the entire UVM standard, nor
the existing UVM implementation in SystemVerilog. However, the UVM-SystemC library offers the essential
ingredients to create verification environments which are compliant with the UVM standard.

UVM-SystemC is released as proof-of-concept library that works with any IEEE 1666-2011 compliant SystemC
simulation environment. Note that UVM-SystemC uses certain specialized SystemC features introduced since the
revision in 2011, such as process control constructs, which are not implemented in all SystemC simulators. The
UVM-SystemC functionality can be used together with the Accellera Systems Initiative (formerly OSCI) SystemC
proof-of-concept library [1].

UVM-SystemC uses existing SystemC functionality wherever suitable, and introduces new UVM classes on top of
the SystemC base classes to facilitate the creation of modular, configurable and reusable verification environments.
Certain UVM in SystemVerilog functionality is available as native SystemC language features, and therefore UVM-
SystemC uses the existing SystemC classes as foundations for the UVM extensions. Also the transaction-level
modeling (TLM) concepts natively exist in SystemC and IEEE Std. 1666-2011, so UVM-SystemC uses the original
SystemC TLM definitions and base classes.

Elements which are part of the UVM-SystemC library and language definition and which are not part of the
UVM SystemVerilog standard are marked with symbol #. Elements marked with symbol ° are renamed in UVM-
SystemC, in contrast to the UVM SystemVerilog standard, due to their incompatibility due to reserved keywords in
C/C++ or an inappropriate name in the context of SystemC base class of member function definitions. The reference
to the original UVM SystemVerilog name is given in brackets and marked with 7. Note that these original names are
not used in UVM-SystemC.

[1] As process control extensions are only supported in the Accellera Systems Initiative SystemC 2.3.0 release (or later) of the
proof-of-concept library, it is required to have this library installed prior to UVM-SystemC installation.

UVM-SystemC Language Reference Manual —- DRAFT Page 16

2. Terminology

2.1 Shall, should, may, can

The word shall is used to indicate a mandatory requirement.

The word should is used to recommend a particular course of action, but it does not impose any obligation.
The word may is used to mean shall be permitted (in the sense of being legally allowed).

The word can is used to mean shall be able to (in the sense of being technically possible).

In some cases, word usage is qualified to indicate on whom the obligation falls, such as an application may or an
implementation shall.

2.2 Implementation, application

The word implementation is used to mean any specific implementation of the full UVM-SystemC class library as
defined in this standard, only the public interface of which need be exposed to the application.

The word application is used to mean a C++ program, written by an end user, that uses the UVM-SystemC class
library, that is, uses classes, functions, or macros defined in this standard.

2.3 Call, called from, derived from

The term call is taken to mean call directly or indirectly. Call indirectly means call an intermediate function that in
turn calls the function in question, where the chain of function calls may be extended indefinitely.

Similarly, called from means called from directly or indirectly.

Except where explicitly qualified, the term derived from is taken to mean derived directly or indirectly from.
Derived indirectly from means derived from one or more intermediate base classes.

2.4 Implementation-defined

The italicized term implementation-defined is used where part of a C++ definition is omitted from this standard. In
such cases, an implementation shall provide an appropriate definition that honors the semantics defined in this
standard.

Page 17 UVM-SystemC Language Reference Manual — DRAFT

3. UVM-SystemC overview

3.1 Namespace

All UVM-SystemC classes and functions shall reside inside the namespace uvm.

3.2 Header files

An application shall include the C++ header file uvm or uvm.h to make use of the UVM-SystemC class library
functions. The header file named uvm shall only add the name uvm to the declarative region in which it is included,
whereas the header file named uvm.h shall add all of the names from the namespace uvm to the declarative region
in which it is included.

NOTE-It is recommended that an application includes the header file uvm rather than the header file uvm.h. This means the
namespace uvm has to be mentioned explicitly when using UVM-SystemC classes and functions. Alternatively, an application
may use the C++ using directive at the global and local scope to gain access to these classes and functions.

3.3 Global functions

A minimal set of global functions is defined in the global namespace offering generic UVM capabilities and
convenience functions for configuration and printing. The global functions are specified in section 4.

3.4 Base classes
These classes define the base UVM class for all other UVM classes, and the base class for data objects:
e uvm_void
e uvm_object
e uvm_root
e uvm_port_base
e uvm_component_name?*
e uvm_coreservice_t

The base classes are specified in section 5.

3.5 Policy classes
These classes include policy objects for various operations based on class uvm_object:

e The class uvm_printer provides an interface for printing objects of type uvm_object in various formats.
Classes derived from class uvm_printer implement pre-defined printing formats or policies:

e The class uvm_table_printer prints the object in a tabular form.
e The class uvm_tree_printer prints the object in a tree form.

e The class uvm_line_printer prints the information on a single line, but uses the same object separators
as the tree printer.

UVM-SystemC Language Reference Manual —- DRAFT Page 18

These printer classes have ‘knobs’ that an application may use to control what and how information is
printed. These knobs are contained in a separate knob class uvm_printer_knobs

e uvm_comparer: performs deep comparison of objects derived from uvm_object. An application may
configure what is compared and how miscompares are reported.

e uvm_packer: performs packing (serialization) and unpacking of properties.

The policy classes are specified in section 6.

3.6 Registry and factory classes

The registry and factory classes include the uvm_factory and associated classes for object and component
registration. The class uvm_default_factory implements the factory pattern. A singleton factory instance is created
for a given simulation run. Class types are registered with the factory using the class uvm_object wrapper and its
derivatives. The factory supports type and instance overrides.

The factory classes are:
e uvm_object_wrapper

e uvm_object_registry
e uvm_component_registry
e uvm_factory

e uvm_default_factory

The registry and factory classes are specified in section 7.

3.7 Component hierarchy classes

These classes define the base class for hierarchical UVM components and the test environment. The class
uvm_component provides interfaces for:

e Hierarchy—Provides methods for searching and traversing the component hierarchy.

e Configuration—Provides methods for configuring component topology and other parameters before and
during component construction.

e Phasing—Defines a phased test flow that all components follow. Methods include the phase callbacks, such
as run_phase and report_phase, overridden by the derived classes. During simulation, these callbacks are
executed in precise order.

e Factory—Provides a convenience interface to the uvm_factory. The factory is used to create new
components and other objects based on type-wide and instance-specific configuration.

All structural component classes uvm_env, uvm_test, uvm_agent, uvm_driver, uvm_monitor, and
uvm_scoreboard are derived from the class uvm_component.

The UVM component classes are specified in section 8.

Page 19 UVM-SystemC Language Reference Manual — DRAFT

3.8 Sequencer classes

The sequencer classes serve as an arbiter for controlling transaction flow from multiple stimulus generators. More
specifically, the sequencer controls the flow of transactions of type uvm_sequence_item generated by one or more
sequences based on type uvm_sequence. The sequencer classes are:

e uvm_sequencer_base

e uvm_sequencer_param_base
e uvm_sequencer

e uvm_sqr_if base

The sequencer classes are specified in section 9.

3.9 Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsulated as a
sequence or sequence item. The following sequence classes are defined:

e uvm_transaction

e UVM_Sequence_item
e uvm_sequence_base
e uvm_sequence

The sequence classes are specified in section 10.

3.10 Configuration and resource classes

The configuration and resource classes provide access to the configuration and resource database. The configuration
database is used to store and retrieve both configuration time and run time properties. The configuration and
resource classes are:

o uvm_config_db: Configuration database, which acts as interface on top of the resource database.
e uvm_resource_db: Resource database.

e uvm_resource_options: Provides a namespace for managing options for the resources facility.

e uvm_resource_base: Provides a non-parameterized base class for resources.

e uvm_resource_pool: Provides the global resource database.

e uvm_resource: Defines the parameterized resource.

This configuration and resource classes are specified in section 11.

3.11 Phasing and synchronization classes

The phasing classes define the order of execution of pre-defined callback function and processes, which run either
sequentially or concurrently. In addition, dedicated member functions for synchronization are available to coordinate
the execution of or status of these processes between all UVM components or objects.

UVM-SystemC Language Reference Manual —- DRAFT Page 20

The phasing and synchronization classes are:

uvm_phase: The base class for defining a phase’s behavior, state, context.

uvm_domain: Phasing schedule node representing an independent branch of the schedule.
uvm_bottomup_phase: A phase implementation for bottom up function phases.
uvm_topdown_phase: A phase implementation for top-down function phases.

uvm_process_phase® (uvm_task_phase’): A phase implementation for phases which are launched as
spawned process.

uvm_objection: Mechanism to synchronize phases based on passing execution status information between
running processes.

uvm_callbacks: The base class for implementing callbacks, which are typically used to modify or
augment component behavior without changing the component base class for user-defined callback classes.

uvm_callback _iter: A class for iterating over callback queues of a specific callback type.

uvm_callback: The base class for user-defined callback classes.

The phasing and synchronization classes are specified in section 12.

3.12 Reporting classes

The reporting classes provide a facility for issuing reports (messages) with consistent formatting and configurable
side effects, such as logging to a file or exiting simulation. An application can also filter out reports based on their
verbosity, identity, or severity.

The following reporting classes are defined:

uvm_report_catcher: The class which captures and counts all reports issued by the class
uvm_report_server.

uvm_report_handler: The class which acting as implementation for the member functions defined in the
class uvm_report_object.

uvm_report_message: The base class which provides the interface to the UVM report message element.
uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.

uvm_report_server: The class acting as global server that processes all of the reports generated by the
class uvm_report_handler.

The reporting classes are specified in section 13.

3.13 Macros

The UVM-SystemC macros make common code easier to write. It is not imperative to use the macros, but in many
cases the macros can save a substantial amount of user-written code. The macros defined in UVM-SystemC are:

Page 21

Macros for component and object registration:
o UVM_OBJECT_UTILS
o UVM_OBJECT_PARAM_UTILS

UVM-SystemC Language Reference Manual — DRAFT

o UVM_COMPONENT_UTILS

o UVM_COMPONENT_PARAM_UTILS
e Sequence execution macros:

o UVM_DO,UVM DO _ON and UVM_DO _ON_PRI

o UVM_CREATE, UVM_CREATE_ON

o UVM_DECLARE_P_SEQUENCER
e Reporting macros:

o UVM_INFO, UVM_ERROR, UVM_WARNING and UVM_FATAL
e Callback macros:

o UVM_REGISTER_CB and UVM_DO_CALLBACKS

Detailed information for the macros or the associated member functions are specified in section 14.

3.14 Existing SystemC functionality used in UVM-SystemC

Because SystemVerilog does not support multiple inheritance, UVM-SystemVerilog is constrained to have only one
base class, from which both data elements and hierarchical elements inherit. As SystemC is based on C++, it
supports multiple inheritance. As such, UVM-SystemC uses multiple inheritance where suitable.

In UVM-SystemVerilog, the class uvm_component inherits from class uvm_report_object. In UVM-SystemC,
class uvm_component applies multiple inheritance and derives from the SystemC class sc_core::sc_module and
from uvm_report_object. Note that the class uvm_object is not derived from class sc_core::sc_object, but from
class uvm_void.

The class sc_core::sc_module already offer the hierarchical features that uvm_component needs, namely parent
and children, and a full instance name. Therefore the parent of a component does not need to be explicitly specified
as a constructor argument; instead the class uvm_component_name keeps track of the component hierarchy.

The class sc_core::sc_module has natural equivalents to some of the UVM pre-run phases, which can used in a
UVM-SystemC uvm_component. For example:

e The UVM-SystemC callback before_end_of elaboration is mapped onto the UVM callback build_phase.
Note that UVM-SystemC also provides the callback build_phase as an alternative to
before_end_of elaboration. It is recommended to use this UVM member function.

e The UVM-SystemC callback end_of elaboration is mapped onto the UVM callback
end_of_elaboration_phase. UVM-SystemC also provides the callback end_of elaboration_phase with
the argument of type uvm_phase as an alternative to the callback end_of elaboration, which does give
access to the phase information. It is recommended to use this UVM member function.

e The UVM-SystemC callback start_of simulation is mapped onto the UVM callback
start_of _simulation_phase. UVM-SystemC also provides the callback start_of simulation_phase with
the argument of type uvm_phase as an alternative to the callback start_of simulation, which does give
access to the phase information. It is recommended to use this UVM member function.

UVM-SystemC also defines the callback run_phase as a thread process of a uvm_component. This works because
sc_core::sc_module in SystemC already has the ability to own and spawn thread processes.

UVM-SystemC Language Reference Manual —- DRAFT Page 22

UVM-SystemVerilog defines the TLM-1 interfaces like put and get, as well as some predefined TLM-1 channels
like tim::tim_fifo. These already natively exist in the SystemC standard. UVM-SystemC supports the original
SystemC TLM-1 definitions. The same holds for the analysis interface in UVM. UVM-SystemC offers a
compatibility and convenience layer on top of the SystemC TLM interface proper tim::tim_analysis_if and analysis
port tim::tim_analysis_port, defining elements such as uvm_analysis _port, uvm_analysis export and
uvm_analysis_imp.

The SystemC fork-join constructs SC_FORK and SC_JOIN can be used as a pair to bracket a set of calls to
function sc_core::sc_spawn within a UVM component run_phase, enabling the creation of concurrent processes.

3.15 Methodology for hierarchy construction

The UVM in SystemVerilog recommends the use of configurations by using the static member function set of the
uvm_config_db in the build phase, followed by hierarchy construction through the factory, in the same phase.

In UVM-SystemVerilog, it is necessary to make the connections (port binding) in the connect phase, which happens
after hierarchy construction of components, ports and exports in the build phase. This enables configuration of
port/export construction using the configuration database uvm_config_db. In that case, if a parent creates a child in
the build phase, that child’s port/export does not exist at that point, and it has to wait for the next phase to bind the
child’s port/export.

Consistent with UVM in SystemVerilog, UVM-SystemC also recommends configurations using uvm_config_db
and hierarchy construction through the factory uvm_factory in the build phase. This implies that child objects
derived from class uvm_component should be declared as pointers inside the parent class, and these children should
be constructed in the UVM callback build_phase through the UVM factory, which does not contradict the
SystemC standard, as the SystemC standard allows construction activity in the callback
before_end_of elaboration, which is equivalent to the UVM build phase.

In SystemC, the ports/exports are usually becoming members of a uvm_component and not pointers. In that case,
the ports/exports are automatically created and initialized in the constructor of the parent uvm_component. This
implies that in UVM-SystemC the ports/export construction is not configurable through uvm_config_db. Because
the bulk of the UVM hierarchy construction occurs in the build phase, the port/export bindings that depend on the
entire hierarchy being constructed have to be done in a later phase. Similar as in UVM-SystemVerilog, the connect
phase is introduced in UVM-SystemC to perform the port bindings using the sc_core::sc_port member function
bind or operator(). The UVM binding mechanism using the member function connect of the ports is made
available for compatibility purposes.

Page 23 UVM-SystemC Language Reference Manual — DRAFT

4. Global functions

All global functions reside in the UVM namespace. Functions marked with symbol ¢ are not compatible with the
UVM SystemVerilog standard.

4.1 uvm_set_config_int¥

void uvm_set config int(const std::string& inst name,
const std::string& field name,

int value);

The global function uvm_set_config_int shall create and place an integer in a configuration database. The argument
inst_name shall define the full hierarchical pathname of the object being configured. The argument field_name is the
specific field that is being searched for. Both arguments inst_name and field_name may contain wildcards.

NOTE-This global function is made available since there is no command line interface option to pass configuration data.

4.2 uvm_set_config_string®

void uvm_set config string(const std::string& inst name,
const std::string& field name,

const std::string& value);

The global function uvm_set_config_string shall create and place a string in a configuration database. The
argument inst_name shall define the full hierarchical pathname of the object being configured. The argument
field_name is the specific field that is being searched for. Both arguments inst_name and field_name may contain
wildcards.

NOTE-This global function is made available since there is no command line interface option to pass configuration data.

4.3 run_test

void run test(const std::stringé& test name = "");

The function run_test is a convenience function to start member function uvm_root::run_test. (See 5.3.2.1)

UVM-SystemC Language Reference Manual —- DRAFT Page 24

5. Base Classes

5.1 uvm void

The class uvm_void shall provide the base class for all UVM classes. It shall be an abstract class with no data
members or functions, to allow the creation of a generic container of objects.

An application may derive directly from this class and will inherit none of the UVM functionality, but such classes
may be placed in uvm_void-typed containers along with other UVM objects.

5.1.1 Class definition

namespace uvm {
class uvm_void {};

} // namespace uvm

5.2 uvm_object

The class uvm_object shall provide the base class for all UVM data and hierarchical classes. Its primary role is to
define a set of member functions for common operations such as create, copy, compare, print, and record. Classes
deriving from uvm_object shall implement the member functions such as create and get_type name.

5.2.1 Class definition

namespace uvm {

class uvm_object : public uvm void
{
public:
// Group: Construction
uvm_object () ;

explicit uvm object(const std::string& name);

// Group: Identification

virtual void set name(const std::string& name);
virtual const std::string get name () const;
virtual const std::string get_full name () const;
virtual int get inst id() const;

static int get_inst_count();

static const uvm _object wrapper* get type();

virtual const uvm object wrapper* get object type () const;

Page 25 UVM-SystemC Language Reference Manual — DRAFT

virtual const std::string get type name () const;

// Group: Creation
virtual uvm object* create(const std::string& name = "");

virtual uvm_object* clone();

// Group: Printing

void print(uvm printer* printer = NULL) const;
std::string sprint(uvm printer* printer = NULL) const;
virtual void do_print(const uvm printers& printer) const;

virtual std::string convert2string() const;

// Group: Recording
void record(uvm_recorder* recorder = NULL);

virtual void do_record(const uvm recorders& recorder);

// Group: Copying
void copy(const uvm objects rhs);

virtual void do_copy(const uvm_object& rhs);

// Group: Comparing
bool compare(const uvm_objecté& rhs,

const uvm_comparer* comparer = NULL) const;

virtual bool do_compare(const uvm_objects& rhs,

const uvm_comparer* comparer = NULL) const;

// Group: Packing

int pack(std::vector<bool>& bitstream, uvm packer* packer = NULL);

int pack bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);
int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);

virtual void do_pack (uvm packers packer) const;

// Group: Unpacking

int unpack(const std::vector<bool>& v, uvm_packer* packer = NULL);

int unpack bytes(const std::vector<unsigned char>& v, uvm_packer* packer = NULL);
int unpack_ints(const std::vector<unsigned int>& v, uvm_packer* packer = NULL);

virtual void do_unpack (uvm packers packer);

UVM-SystemC Language Reference Manual —- DRAFT Page 26

}: // class uvm object

} // namespace uvm

5.2.2 Construction

5.2.2.1 Constructors

uvm_object () ;

explicit uvm object(const std::string& name);

The constructor shall create a new uvm_object with the given instance name passed as argument. If no argument is
given, the default constructor shall call function sc_core::sc_gen_unique_name(“object”) to generate a unique
string name as instance name of this object.

5.2.3 ldentification

5.2.3.1 set_name

virtual void set name(const std::string& name);

The member function set_name shall set the instance name of this object passed as argument, overwriting any
previously given name. It shall be an error if the name is already in use for another object.

5.2.3.2 get_name

virtual const std::string get_name () const;

The member function get_name shall return the name of the object, as provided by the argument name via the
constructor or member function set_name.

5.2.3.3 get_full_name

virtual const std::string get full name () const;

The member function get_full_name shall return the full hierarchical name of this object. The default
implementation is the same as get_name, as objects of type uvm_object do not inherently possess hierarchy.

NOTE-Objects possessing hierarchy, such as objects of type uvm_component, override the default implementation. Other
objects might be associated with component hierarchy, but are not themselves components. For example, sequence classes of
type uvm_sequence are typically associated with a sequencer class of type uvm_sequencer. In this case, it is useful to override
get_full_name to return the sequencer’s full name concatenated with the sequence’s name. This provides the sequence a full
context, which is useful when debugging.

5.2.3.4 get_inst_id

virtual int get_inst id() const;

Page 27 UVM-SystemC Language Reference Manual — DRAFT

The member function get_inst_id shall return the object’s unique, numeric instance identifier.

5.2.3.5 get_inst_count

static int get_inst_count();

The member function get_inst_count shall return the current value of the instance counter, which represents the
total number of objects of type uvm_object that have been allocated in simulation. The instance counter is used to
form a unique numeric instance identifier.

5.2.3.6 get_type

static const uvm_object_wrapper* get_type ()’

The member function get_type shall return the type-proxy (wrapper) for this object. The uvm_factory’s type-based
override and creation member functions take arguments of uvm_object_wrapper. The default implementation of
this member function shall produce an error and return NULL.

To enable use of this member function, a user’s subtype must implement a version that returns the subtype’s
wrapper.
5.2.3.7 get_object_type

virtual const uvm_object wrapper* get object type() const;

The member function get_object_type shall the return the type-proxy (wrapper) for this object. The uvm_factory’s
type-based override and creation member functions take arguments of uvm_object wrapper. The default
implementation of this member function does a factory lookup of the proxy using the return value from
get_type_name. If the type returned by get_type_name is not registered with the factory, then the member function
shall return NULL.

This member function behaves the same as the static member function get_type, but uses an already allocated object
to determine the type-proxy to access (instead of using the static object).

5.2.3.8 get_type name
virtual const std::string get type name () const;

The member function get_type_name shall return the type name of the object, which is typically the type identifier
enclosed in quotes. It is used for various debugging functions in the library, and it is used by the factory for creating
objects.

5.2.4 Creation

5.24.1 create

virtual uvm object* create(const std::string& name = "");

The member function create shall allocate a new object of the same type as this object and returns it via a base
handle of type uvm_object. Every class deriving from uvm_object, directly or indirectly, shall implement the
member function create.

UVM-SystemC Language Reference Manual —- DRAFT Page 28

5.2.4.2 clone

virtual uvm_object* clone();

The member function clone shall create and return a pointer to an exact copy of this object.

NOTE-As the member function clone is virtual, derived classes may override this implementation if desired.

5.2.5 Printing

5.25.1 print

void print(uvm_printer* printer = NULL) const;

The member function print shall deep-print this object’s properties in a format and manner governed by the given
argument printer. If the argument printer is not provided, the global uvm_default_printer shall be used (see
6.7.1.4)

The member function print is not virtual and shall not be overloaded. To include custom information in the print
and sprint operations, derived classes shall override the member function do_print and can use the provided printer
policy class to format the output.

5.2.5.2 sprint

std::string sprint(uvm printer* printer = NULL) const;

The member function sprint shall return the object’s properties as a string and in a format and manner governed by
the given argument printer. If the argument printer is not provided, the global uvm_default_printer shall be used
(see 6.7.1.4)

The member function sprint is not virtual and shall not be overloaded. To include additional fields in the print and
sprint operation, derived classes shall override the member function do_print and use the provided printer policy
class to format the output. The printer policy will manage all string concatenations and provide the string to sprint
to return to the caller.

5.2.5.3 do_print

virtual void do_print(const uvm printers printer) const;

The member function do_print shall provide a context called by the member functions print and sprint that allows
an application to customize what gets printed. The argument printer is the policy object that governs the format and
content of the output. To ensure correct print and sprint operation, and to ensure a consistent output format, the
printer shall be used by all do_print implementations.

5.2.5.4 convert2string

virtual std::string convert2string() const;

The member function convert2string shall provide a context which may be called directly by the application, to
provide object information in the form of a string. Unlike the member function sprint, there is no requirement to use

Page 29 UVM-SystemC Language Reference Manual — DRAFT

a uvm_printer policy object. As such, the format and content of the output is fully customizable, which may be
suitable for applications not requiring the consistent formatting offered by the print/sprint/do_print API.

5.2.6 Recording

5.2.6.1 record

void record(uvm_ recorder* recorder = NULL);

The member function record shall deep-records this object’s properties according to an optional recorder policy.
The member function is not virtual and shall not be overloaded. To include additional fields in the record operation,
derived classes should override the member function do_record.

The optional argument recorder specifies the recording policy, which governs how recording takes place. If a
recorder policy is not provided explicitly, then the global uvm_default_recorder policy is used (see 6.7.1.7).

NOTE-The recording mechanism is vendor-specific. By providing access via a common interface, the uvm_recorder policy
provides vendor-independent access to a simulator’s recording capabilities.

5.2.6.2 do_record

virtual void do_record(const uvm recorders& recorder);

The member function do_record shall provide a context called by the member function record. A derived class
should overload this member function to include its fields in a record operation.

The argument recorder is policy object for recording this object. A do_record implementation should call the
appropriate recorder member function for each of its fields.

NOTE-Vendor-specific recording implementations are encapsulated in the recorder policy, thereby insulating user-code from
vendor-specific behavior.

5.2.7 Copying
5.2.7.1 copy
void copy(const uvm objects& rhs);

The member function copy shall make a copy of the specified object passed as argument.

The member function is not virtual and shall not be overloaded in derived classes. To copy the fields of a derived
class, that class shall overload the member function do_copy.

5.2.7.2 do_copy

virtual void do_copy(const uvm object& rhs);

The member function do_copy shall provide a context called by the member function copy. A derived class should
overload this member function to include its fields in a copy operation.

UVM-SystemC Language Reference Manual —- DRAFT Page 30

5.2.8 Comparing

5.2.8.1 compare

bool compare(const uvm objecté& rhs,

const uvm_comparer* comparer = NULL) const;
The member function compare shall compare members of this data object with those of the object provided in the
rhs (right-hand side) argument. It shall return true on a match; otherwise it shall return false.

The optional argument comparer specifies the comparison policy. It allows an application to control some aspects of
the comparison operation. It also stores the results of the comparison, such as field-by-field miscompare information
and the total number of miscompares. If a comparer policy is not provided or set to NULL, then the global
uvm_default_comparer policy is used (see 6.7.1.6).

The member function is not virtual and shall not be overloaded in derived classes. To compare the fields of a derived
class, that class shall overload the member function do_compare.

5.2.8.2 do_compare
virtual bool do_compare(const uvm objects& rhs,

const uvm_comparer* comparer = NULL) const;

The member function do_compare shall provide a context called by the member function compare. A derived class
should overload this member function to include its fields in a compare operation. The member function shall return
true if the comparison succeeds; otherwise it shall return false.

5.2.9 Packing

5.29.1 pack

int pack(std::vector<bool>& bitstream, uvm _packer* packer = NULL);

The member function pack shall concatenate the object properties into a vector of bits. The member function shall
return the total number of bits packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer policy
is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 6.7.1.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields in the

pack operation, derived classes shall overload the member function do_pack.

5.2.9.2 pack_bytes

int pack_bytes(std::vector<char>& bytestream, uvm_packer* packer = NULL);

The member function pack bytes shall concatenate the object properties into a vector of bytes. The member
function shall return the total number of bytes packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer policy
is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 6.7.1.5).

Page 31 UVM-SystemC Language Reference Manual — DRAFT

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields in the
pack operation, derived classes shall overload the member function do_pack.

5.2.9.3 pack_ints

int pack_ints(std::vector<int>& intstream, uvm_packer* packer = NULL);

The member function pack_ints shall concatenate the object properties into a vector of integers. The member
function shall return the total number of integers packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer policy
is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 6.7.1.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields in the
pack operation, derived classes shall overload the member function do_pack.

5.2.9.4 do_pack

virtual void do_pack (uvm packers packer) const;

The member function do_pack shall provide a context called by the member functions pack, pack bytes and
pack_ints. A derived class should overload this member function to include its fields in a packing operation.

The argument packer is the policy object for packing and should be used to pack objects.

5.2.10 Unpacking

5.2.10.1 unpack

int unpack(const std::vector<bool>& bitstream, uvm_packer* packer = NULL);
The member function unpack shall extract the values from a vector of bits. The member function shall return the
total number of bits unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs both the pack and unpack operation. If a
packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 6.7.1.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields in the
unpack operation, derived classes shall overload the member function do_unpack.

NOTE-The application of the member function for unpacking shall exactly correspond to the member function for packing. This
is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of
packing used to create the input vector. The behavior is undefined in case a different packer policy or ordering is applied for
packing and unpacking.

5.2.10.2 unpack_bytes
int unpack_bytes(const std::vector<char>& bytestream, uvm_packer* packer = NULL);

The member function unpack_bytes shall extract the values from a vector of bytes. The member function shall
return the total number of bytes unpacked from the given vector.

UVM-SystemC Language Reference Manual —- DRAFT Page 32

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If a
packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 6.7.1.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields in the
unpack operation, derived classes shall overload the member function do_unpack.

NOTE-The application of the member function for unpacking shall exactly correspond to the member function for packing. This
is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of
packing used to create the input vector. The behavior is undefined in case a different packer policy or ordering is applied for
packing and unpacking.

5.2.10.3 unpack_ints

int unpack_ints(const std::vector<int>& intstream, uvm_packer* packer = NULL);
The member function unpack_ints shall extract the values from a vector of integers. The member function shall
return the total number of integers unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If a
packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 6.7.1.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields in the unpack
operation, derived classes shall overload the member function do_unpack.

NOTE-The application of the member function for unpacking shall exactly correspond to the member function for packing. This
is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of
packing used to create the input vector. The behavior is undefined in case a different packer policy or ordering is applied for
packing and unpacking.

5.2.10.4 do_unpack

virtual void do_unpack (uvm_packers& packer) const;

The member function do_unpack shall provide a context called by the member functions unpack, unpack_bytes
and unpack_ints. A derived class should overload this member function to include its fields in a unpacking
operation. The member function shall return true if the unpacking succeeds; otherwise it shall return false.

The argument packer is the policy object for unpacking and should be used to unpack objects.

NOTE-The application of the member function for unpacking shall exactly correspond to the member function for packing. This
is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of
packing used to create the input vector. The behavior is undefined in case a different packer policy or ordering is applied for
packing and unpacking.

5.2.11 Object macros
UVM-SystemC provides the following macros for a uvm_object:
o utility macro UVYM_OBJECT_UTILS(classhame) is to be used inside the class definition that expands to:

o The declaration of the member function get_type_name, which returns the type of a class as string

o The declaration of the member function get_type, which returns a factory proxy object for the
type

o The declaration of the proxy class uvm_object registry<classname> used by the factory.

Page 33 UVM-SystemC Language Reference Manual — DRAFT

Template classes shall use the macro UVM_OBJECT_PARAM_UTILS, to guarantee correct registration of one or
more parameters passed to the class template. Note that template classes are not evaluated at compile-time, and thus
not registered with the factory. Due to this, name-based lookup with the factory for template classes is not possible.
Instead, an application shall use the member function get_type for factory overrides.

5.3 uvm_root

The class uvm_root serves as the implicit top-level and phase controller for all UVM components. An application
shall not directly instantiate uvm_root. A UVM implementation shall create a single instance of uvm_root that an
application can access via the global variable uvm_top.

5.3.1 Class definition

namespace uvm {

class uvm_root : public uvm_component
{
public:

static uvm_root* get();

// Group: Simulation control

virtual void run_test(const std::stringé& test name = "");

virtual void die();

void set_timeout(const sc_core::sc_times& timeout, bool overridable = true);
void set_finish on completion(bool enable);

bool get_finish on completion() ;

// Group: Topology

uvm_component* find(const std::string& comp match);

void find all(const std::string& comp match,
std::vector<uvm_component*>& comps,
uvm_component* comp = NULL) ;

void print_ topology(uvm printer* printer = NULL);

void enable print topology(bool enable = true);

// Global variable

const uvm_root* uvm_top;

}; // class uvm root

} // namespace uvm

UVM-SystemC Language Reference Manual —- DRAFT Page 34

5.3.2 Simulation control

5.3.2.1 run_test

virtual void run_test(const std::string& test name = "");

The member function run_test shall register the UVM phasing mechanism. If the optional argument test_name is
provided, then the specified test component is created just prior to phasing, if and only if this component is derived
from class uvm_test. Otherwise it shall be an error.

The phasing mechanism is used during test execution, where all components are called following a defined set of
registered phases. The member function run_test will register both the common phases as well as the UVM run-
time phases. (See section 12).

NOTE 1-Selection of the test via the command line interface is not yet available.

NOTE 2-The test execution is started using the SystemC function sc_core::sc_start. It is recommended not to specify the
simulation stop time, as the end-of-test is automatically managed by the phasing mechanism.

5.3.2.2 die

virtual void die();

The member function die shall be called by the report server if a report reaches the maximum quit count or has a
UVM_EXIT action associated with it, e.g., as with fatal errors. The member function shall call the member function
uvm_component::pre_abort on the entire UVM component hierarchy in a bottom-up fashion. It then shall call
uvm_report_server::report_summarize and terminate the simulation.

5.3.2.3 set_timeout

void set_timeout(const sc_core::sc_times& timeout, bool overridable = true);

The member function set_timeout shall define the timeout for the run phases. If not called, the default timeout shall
be set to UVM_DEFAULT_TIMEOUT (see 16.1.3).

5.3.2.4 set_finish_on_completion

void set finish on completion(bool enable);

The member function set_finish_on_completion shall define how simulation is finalized. If the application did not
call this member function or if the argument enable is set to true, it shall terminate the simulation after execution of
the UVM phases. If the argument enable is set to false, the simulation shall be paused after execution of the UVM
phases.

NOTE-An implementation may call the function sc_core::sc_stop to terminate the simulation. An implementation may call the
function sc_core::sc_pause to pause the simulation.

5.3.2.5 get_finish_on_completion

bool get_finish on completion() ;

Page 35 UVM-SystemC Language Reference Manual — DRAFT

The member function get_finish_on_completion shall return true if the application has not called member function
set_finish_on_completion or if the member function was called with the argument enable as true; otherwise it shall
return false. (See also 5.3.2.4.)

5.3.3 Topology

5.3.3.1 find

uvm_component* find(const std::string& comp match);

The member function find shall return a component handle matching the given string comp_match. The string may
contain the wildcards <*’ and “?°. Strings beginning with character ‘.’ are absolute path names.

5.3.3.2 find_all

void find all(const std::stringé& comp match,
std::vector<uvm_component*>& comps,

uvm_component* comp = NULL) ;

The member function find_all shall return a vector of component handles matching the given string comp_match.
The string may contain the wildcards “** and *?”. Strings beginning with character °.” are absolute path names. If the
optional component argument comp is provided, then the search begins from that component down; otherwise it
searches all components.

5.3.3.3 print_topology

void print_ topology (uvm printer* printer = NULL);

The member function print_topology shall print the verification environment’s component topology. The argument
printer shall be an object of class uvm_printer that controls the format of the topology printout; a NULL printer
prints with the default output.

5.3.3.4 enable_print_topology
void enable print topology(bool enable = true);

The member function enable_print_topology shall print the entire testbench topology just after completion of the
end_of elaboration phase, if enabled. By default, the testbench topology is not printed, unless enabled by the
application by calling this member function.

5.3.4 Global variable

5.3.4.1 uvm_top

const uvm_root* uvm_top;

The data member uvm_top is a handle to the top-level (root) component that governs phase execution and provides
the component search interface. By default, this handle is provided by the uvm_root singleton.

The uvm_top instance of uvm_root plays several key roles in the UVM:

UVM-SystemC Language Reference Manual —- DRAFT Page 36

Implicit top-level: The uvm_top serves as an implicit top-level component. Any UVM component which is
not instantiated in another UVM component (e.g. when instantiated in an sc_core::sc_module or in
sc_main) becomes a child of uvm_top. Thus, all UVM components in simulation are descendants of
uvm_top.

Phase control: uvm_top manages the phasing for all components.

Search: An application may use uvm_top to search for components based on their hierarchical name. See
member functions find and find_all.

Report configuration: An application may use uvm_top to globally configure report verbosity, log files,
and actions. For example, uvm_top.set_report_verbosity level _hier(UVM_FULL) would set full
verbosity for all components in simulation.

Global reporter: Because uvm_top is globally accessible, the UVM reporting mechanism is accessible
from anywhere outside uvm_component, such as in modules and sequences. See uvm_report_error,
uvm_report_warning, and other global methods.

The uvm_top instance checks during the end_of_elaboration_phase if any errors have been generated so far. If
errors are found a UVM_FATAL error is generated as result so that the simulation will not continue to the
start_of_simulation_phase.

5.4 uvm_port_base

The class uvm_port_base shall provide methods to bind ports to interfaces or to other ports or exports, and to
forward interface method calls to the channel to which the port is bound, according to the same mechanism as
defined in SystemC. Therefore this class shall be derived from the class sc_core::sc_port.

5.4.1 Class definition

namespace uvm {

template <class IF>

class uvm_port base : public sc_core::sc_port<IF>

{

Page 37

public:
uvm_port base () ;

explicit uvm port base(const std::string& name);

virtual const std::string get_name () const;
virtual const std::string get_full name() const;
virtual uvm component* get parent () const;

virtual const std::string get_type name () const;

virtual void connect(IF&);

virtual void connect(uvm port base<IF>&) ;

UVM-SystemC Language Reference Manual — DRAFT

// class uvm port base

} // namespace uvm

5.4.2 Template parameter IF

The template parameter IF shall specify the name of the interface type used for the port. The port can only be bound
to a channel which is derived from the same type, or to another port or export which is derived from this type.

5.4.3 Constructor

uvm_port base () ;

explicit uvm_port base(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name, if passed as an argument.
5.4.4 Member functions

5.4.4.1 get_name

virtual const std::string get_name () const;
The member function get_name shall return the leaf name of this port.
5.4.4.2 get full_name
virtual const std::string get_full name () const;
The member function get_full_name shall return the full hierarchical name of this port.
5.4.4.3 get parent
virtual uvm _component* get parent() const;
The member function get_parent shall return the handle to this port’s parent, or NULL if it has no parent.
5.4.4.4 get _type_name
virtual const std::string get type name () const;

The member function get_type_name shall return the type name to this port. Derived port classes shall implement
this member function to return the concrete type.

5.4.45 connect

virtual void connect(IF&);

virtual void connect(uvm port base<IF>&);

UVM-SystemC Language Reference Manual —- DRAFT Page 38

The member function connect shall bind this port to the interface given as argument.

NOTE-The member function connect implements the same functionality as the SystemC member function bind.

5.5 uvm_component_name?

The class uvm_component_name is shall provide the mechanism for building the hierarchical names of component
instances and component hierarchy during elaboration.

An implementation shall maintain the UVM component hierarchy, that is, it shall build a list of hierarchical
component names, where each component instance is named as if it were a child of another component (its parent).
The mechanism to implement such component hierarchy is implementation-defined.

NOTE 1-The hierarchical name of an instance in the component hierarchy is returned from member function get_full_name of
class uvm_component, which is the base class of all component instances.

NOTE 2-An object of type uvm_object may have a hierarchical name and may have a parent in the component hierarchy, but
such object is not part of the component hierarchy.

5.5.1 Class definition

namespace uvm {

class uvm_component namef

{

public:
uvm_component name (const char* name);
uvm_component name (const uvm_component_name& name) ;
~uvm_component_name () ;

operator const char* () const;

private:

// Disabled

uvm_component name () ;

uvm_component name& operator= (const uvm _component name& name) ;

}i; // class uvm component name

} // namespace uvm

5.5.2 Constraints on usage

The class uvm_component_name shall only be used as argument in a constructor of a class derived from class
uvm_component. Such constructor shall only contain this argument of type uvm_component_name.

Page 39 UVM-SystemC Language Reference Manual — DRAFT

5.5.3 Constructor

uvm_component name (const char* name);

The constructor uvm_component_name(const char* name) shall store the name in the component hierarchy. The
constructor argument name shall be used as the string name for that component being instantiated within the
component hierarchy.

NOTE-An application shall define for each class derived directly or indirectly from class uvm_component a constructor with a
single argument of type uvm_component_name, where the constructor uvm_component_name(const char*) is called as an
implicit conversion.

uvm_component name (const uvm_componet name& name) ;

The constructor uvm_component_name(const uvm_component_name& name) shall copy the constructor
argument but shall not modify the component hierarchy.

NOTE-When an application derives a class directly or indirectly from class uvm_component, the derived class constructor calls
the base class constructor with an argument of class uvm_component_name and thus this copy constructor is called.

5.5.4 Destructor

~uvm_component name () ;

The destructor shall remove the object from the component hierarchy if, and only if, the object being destroyed was
constructed by using the constructor signature uvm_component_name(const char* name).

5.5.5 operator const char*

operator const char* () const;

This conversion function shall return the string name (not the hierarchical name) associated with the
uvm_component_name.

5.6 uvm_coreservice_t

The class uvm_coreservice_t shall provide a common entry for all central UVM services such as uvm_factory,
uvm_report_server, etc.

5.6.1 Class definition

namespace uvm {

class uvm_coreservice_t

{

public:
virtual uvm factory* get factory() const = 0;
virtual void set_factory(uvm_ factory* £) = 0;

virtual uvm_report server* get report server() const = 0;

UVM-SystemC Language Reference Manual —- DRAFT Page 40

virtual void set report server (uvm report server* server) = 0;
virtual uvm_root* get_root() const = 0;

static uvm default coreservice t* get();

private:
uvm_coreservice t();

}i // class uvm coreservice t

} // namespace uvm

5.6.2 Constraints on usage

An application should not create an object of type uvm_corservice_t. Instead, it should call the static member
function get which returns a handle to the object uvm_default_coreservice_t, which give access to the member
functions to get and set the services.

5.6.3 Member functions
5.6.3.1 get factory
virtual uvm_ factory* get factory() const = 0;
The member function get_factory shall return a handle to the currently enabled UVM factory.
5.6.3.2 set_factory
virtual void set_factory(uvm_factory* f) = 0;
The member function set_factory shall set the current UVM factory.
5.6.3.3 get_report_server
virtual uvm report server* get report server () const = 0;

The member function get_report_server shall return a handle to the current report server.

5.6.3.4 set_report_server

virtual void set_report server(uvm report server* server) = 0;

The member function set_report_server shall set the current report server.

5.6.3.5 get_root

virtual uvm_root* get_root() const = 0;

The member function get_root shall return a handle to the root UVM component (uvm_root).

Page 41 UVM-SystemC Language Reference Manual — DRAFT

5.6.3.6 get

static uvm default coreservice t* get();

The member function get shall return a handle to the object uvm_default_coreservice_t.

5.7 uvm_default_coreservice t

The class uvm_default_coreservice_t shall provide a default implementation of the uvm_coreservice_t API. It
instantiates uvm_default_factory, uvm_default_report_server, and uvm_root.

5.7.1 Class definition

namespace uvm {

class uvm_default coreservice t : public uvm coreservice t

{
public:
virtual
virtual
virtual
virtual

virtual

private:

uvm_factory* get_ factory() const;

void set factory(uvm_ factory* f);

uvm_report server* get_report server() const;

void set_report_server (uvm report_server* server);

uvm_root* get root() const;

uvm_default coreservice t();

}; // class uvm default coreservice t

} // namespace uvm

5.7.2 Constraints on usage

An application should not create an object of type uvm_default_corservice_t. Instead, it should call the static
member function uvm_corservice_t::get which returns a handle to this object, which give access to the member
functions to get and set the services.

5.7.3 Member functions

5.7.3.1 get_factory

virtual uvm factory* get factory() const;

UVM-SystemC Language Reference Manual —- DRAFT Page 42

The member function get_factory shall return a handle to the currently enabled UVM factory. When no factory has
been set before, it shall instantiate the default factory of type uvm_default_factory and return the handle to this
object.

5.7.3.2 set_factory
virtual void set factory(uvm factory* £);

The member function set_factory shall set the current UVM factory.

NOTE-In case an application-specific factory is used, the application should comply to the factory API and offer functionality
which is compatible with or delegated to the original factory.

5.7.3.3 get_report_server
virtual uvm _report server* get report server () const;

The member function get_report_server shall return a handle to the current report server. If no report server has
been set before, it shall return a handle to the default report server of type uvm_default_report_server.

5.7.3.4 set_report_server

virtual void set report server (uvm report server* server);
The member function set_report_server shall set the current report server.
5.7.3.5 get_root

virtual uvm _root* get_root() const;

The member function get_root shall return a handle to the root UVM component (uvm_root). When no root
component has been set before, it shall instantiate the UVM root component and return the handle to this
component.

Page 43 UVM-SystemC Language Reference Manual — DRAFT

6. Policy classes

The UVM policy classes provide specific tasks for printing, comparing, recording, packing, and unpacking of
objects derived from class uvm_object. They are implemented separately from class uvm_object so that an
application can plug in different ways to print, compare, etc. without modifying the object class being operated on.
The user can simply apply a different printer or compare “policy” to change how an object is printed or compared.

Each policy class includes several user-configurable parameters that control the operation. An application may also
customize operations by deriving new policy subtypes from these base types. For example, the UVM provides four
different printer policy classes derived from the policy base class uvm_printer, each of which print objects in a
different format.

The following policy classes are defined:
e uvm_packer
e uvm_printer, uvm_table_printer, uvm_tree_printer, uvm_line_printer and uvm_printer_knobs.
e uvm_recorder

e uvm_comparer

6.1 uvm_packer

The class uvm_packer provides a policy object for packing and unpacking objects of type uvm_object. The
policies determine how packing and unpacking should be done. Packing an object causes the object to be placed into
a packed array of type byte or int. Unpacking an object causes the object to be filled from the pack array. The logic
values X and Z are lost on packing. The maximum size of the packed array is defined by
UVM_PACKER_MAX_BYTES (see 16.1.2).

6.1.1 Class definition

namespace uvm {

class uvm_packer

{

public:

// Group: Packing

virtual void pack_field(const uvm bitstream t& value, int size);
virtual void pack field int(const uvm _integral_ t& value, int size);
virtual void pack string(const std::string& value);

virtual void pack_time(const sc_core::sc_times value);

virtual void pack_real (double value);

virtual void pack real(float value);

virtual void pack object(const uvm objects value);

virtual uvm _packer& operator<< (bool value);

UVM-SystemC Language Reference Manual —- DRAFT Page 44

virtual uvm packers operator<< (double& value);

virtual uvm_packer& operator<< (floaté& value);

virtual uvm_packer& operator<< (char value);

virtual uvm packers operator<< (unsigned char value);

virtual uvm _packerd operator<< (short value);

virtual uvm _packerd operator<< (unsigned short value);

virtual uvm packers operator<< (int value);

virtual uvm packers operator<< (unsigned int value);

virtual uvm_packer& operator<< (long value);

virtual uvm _packers operator<< (unsigned long value);

virtual uvm _packers operator<< (long long value);

virtual uvm_packerd operator<< (unsigned long long value);
virtual uvm packers operator<< (const std::string& value);
virtual uvm packers operator<< (const char* value);

virtual uvm_packer& operator<< (const uvm objects& value);
virtual uvm_packerd operator<< (const sc_dt::sc_logics& value);
virtual uvm _packers operator<< (const sc_dt::sc_bv _bases value);
virtual uvm_packer& operator<< (const sc_dt::sc_lv bases& value);
virtual uvm_packer& operator<< (const sc_dt::sc_int bases value);
virtual uvm packer& operator<< (const sc_dt::sc_uint bases value);
virtual uvm_packerd operator<< (const sc_dt::sc_signeds& value);

virtual uvm_packer& operator<< (const sc_dt::sc_unsigneds value);

template <class T>

uvm_packers operator<< (const std::vector<T>& value);

// Group: Unpacking

virtual bool is null();

virtual uvm _integral t unpack_field int(int size);
virtual uvm bitstream t unpack field(int size);
virtual std::string unpack string(int num chars = -1);
virtual sc_core::sc_time unpack time();

virtual double unpack_real();

virtual float unpack real();

virtual void unpack object(uvm objects value);

virtual unsigned int get packed size() const;

virtual uvm packers operator>> (bools& value);

Page 45 UVM-SystemC Language Reference Manual — DRAFT

virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers
virtual uvm_packers

virtual uvm_packers

template <class T>

virtual uvm_packers

operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>
operator>>

operator>>

operator>>

// Data members (variables)

bool physical;
bool abstract;
bool use_metadata;

bool big_endian;

private:
// Disabled

uvm_packer () ;

}: // class uvm packer

} // namespace uvm

UVM-SystemC Language Reference Manual —- DRAFT

double& value);

float& value);

charé& value);

unsigned char& value);
shorté& value);

unsigned short& value);
ints& value);

unsigned int& value);

long& value);

unsigned long& value);

long longé& value);

unsigned long long& value);
std::string& value);
uvm_objects value);
sc_dt::sc_logic& value);
sc_dt::sc_bv _bases value);
sc_dt::sc_lv_bases& value);
sc_dt::sc_int_bases value);
sc_dt::sc_uint bases& value);
sc_dt::sc_signeds value);

sc_dt::sc_unsigneds value);

std::vector<T>& value);

Page 46

6.1.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_packer.

6.1.3 Packing

6.1.3.1 pack_field

virtual void pack_ field(const uvm bitstream t& value, int size);

The member function pack_field shall pack an integral value (less than or equal to UVM_MAX_STREAMBITYS)
into the packed array. The argument size is the number of bits of value to pack.

6.1.3.2 pack_field_int

virtual void pack field int(const uvm _integral t& value, int size);

The member function pack_field_int shall pack the integral value (less than or equal to 64 bits) into the packed
array. The argument size is the number of bits of value to pack.

NOTE-This member function is the optimized version of pack_field is useful for sizes up to 64 bits.

6.1.3.3 pack_string

virtual void pack_string(const std::stringé& value);

The member function pack_string shall pack a string value into the packed array. When the variable metadata is
set, the packed string is terminated by a NULL character to mark the end of the string.

6.1.3.4 pack_time
virtual void pack_time(const sc_core::sc_times& value);
The member function pack_time shall pack a time value as 64 bits into the packed array.

6.1.3.5 pack_real

virtual void pack_real (double value);

virtual void pack real(float value);

The member function pack_real shall pack a real value as binary vector into the packed array. When the argument
is a double precision floating point value of type double, a 64 bit binary vector shall be used. When the argument is
a single precision floating point value of type float, a 32 bit binary vector shall be used. The convertion of the
floating point representation to binary vector shall be according to the IEEE Standard for Floating-Point Arithmetic
(IEEE Std. 754-1985).

6.1.3.6 pack_object

virtual void pack object(const uvm objects value);

Page 47 UVM-SystemC Language Reference Manual — DRAFT

The member function pack _object shall pack an object value into the packed array. A 4-bit header is inserted ahead
of the string to indicate the number of bits that was packed. If a NULL object was packed, then this header will be 0.

6.1.4 Unpacking

6.1.4.1 is_null

virtual bool is null();

The member function is_null shall be used during unpack operations to peek at the next 4-bit chunk of the pack data
and determine if it is zero. If the next four bits are all zero, then the return value is a true; otherwise it returns false.

NOTE-This member function is useful when unpacking objects, to decide whether a new object needs to be allocated or not.
6.1.4.2 unpack_field_int
virtual uvm_integral t unpack field int(int size);

The member function unpack_field_int shall unpack bits from the packed array and returns the bit-stream that was
unpacked. The argument size is the number of bits to unpack; the maximum is 64 bits.

NOTE-This member function is a more efficient variant than unpack_field when unpacking into smaller vectors.

6.1.4.3 unpack_field

virtual uvm bitstream t unpack field(int size);

The member function unpack_field shall unpack bits from the packed array and returns the bit-stream that was
unpacked. The argument size is the number of bits to unpack; the maximum is defined by
UVM_MAX _STREAMBITS.

6.1.4.4 unpack_string
virtual std::string unpack _string(int num chars = -1);

The member function unpack_string shall unpack a string. The argument num_chars specifies the number of bytes
that are unpacked into a string. If num_chars is -1, then unpacking stops on at the first NULL character that is
encountered.

6.1.4.5 unpack_time
virtual sc_core::sc_time unpack time();

The member function unpack_time shall unpack the next 64 bits of the packed array and places them into a time
variable.

6.1.4.6 unpack_real

virtual double unpack real();

virtual float unpack real();

UVM-SystemC Language Reference Manual —- DRAFT Page 48

The member function unpack_real shall unpack the next 64 bits of the packed array and places them into a real
variable. The 64 bits of packed data shall be converted to double precision floating point notation according to the
IEEE Standard for Floating-Point Arithmetic (IEEE Std. 754-1985).

6.1.4.7 unpack_object

virtual void unpack object(uvm objects value);

The member function unpack_object shall unpack an object and stores the result into value. Argument value must
be an allocated object that has enough space for the data being unpacked. The first four bits of packed data are used
to determine if a null object was packed into the array. The member function is_null can be used to peek at the next
four bits in the pack array before calling this member function.

6.1.4.8 get_packed_size

virtual unsigned int get packed size() const;

The member function get_packed_size returns the number of bits that were packed.

6.1.5 operator <<, operator >>

The class uvm_packer defines operator<< for packing, and operator >> for unpacking basic C++ types, SystemC
types, the type uvm_object, and std::vector types. The supported data types are:

e Basic C++ types: bool, double, float, char, unsigned char, short, unsigned short, int, unsigned int, long,
unsigned long, long long, and unsigned long long.

e SystemC types: sc_dt::sc_logic, sc_dt::sc_bv, sc_dt::sc_lv, sc_dt::sc_int, sc_dt::sc_uint,
sc_dt::sc_signed, and sc_dt::sc_unsigned.

e String of type std::string and const char*

o When packing, an additional NULL byte is packed after the string is packed when use_metadata
is set to true (see 6.1.6.3).

e Any type that derives from class uvm_object

e Vector types: std::vector<T>, where T is one of the supported data types listed above, and has an
operator<< defined for it:

o When packing, additional 32 bits are packed indicating the size of the vector, prior to packing
individual elements.

An application may use operator<< or operator>> for the implementation of the member function do_pack and
do_unpack as part of an application-specific object definition derived from class uvm_object.

6.1.6 Data members (variables)

6.1.6.1 physical

bool physical;

Page 49 UVM-SystemC Language Reference Manual — DRAFT

The data member physical shall provides a filtering mechanism for fields. The abstract and physical settings allow
an object to distinguish between two different classes of fields. An application may, in the member functions
uvm_object::do_pack and uvm_object::do_unpack, test the setting of this field, to use it as a filter. By default, the
data member physical is set to true in the constructor of uvm_packer.

6.1.6.2 abstract

bool abstract;

The data member abstract shall provides a filtering mechanism for fields. The abstract and physical settings allow
an object to distinguish between two different classes of fields. An application may, in the member functions
uvm_object::do_pack and uvm_object::do_unpack, test the setting of this field, to use it as a filter. By default, the
data member abstract is set to false in the constructor of uvm_packer.

6.1.6.3 use_metadata

bool use metadata;

The data member use_metadata shall indicate whether to encode metadata when packing dynamic data, or to
decode metadata when unpacking. Implementations of uvm_object::do_pack and uvm_object::do_unpack should
regard this bit when performing their respective operation. When set to true, metadata should be encoded as follows:

e For strings, pack an additional NULL byte after the string is packed.

e For objects, pack 4 bits prior to packing the object itself. Use 0b0000 to indicate the object being packed is
null, otherwise pack 0b0001 (the remaining 3 bits are reserved).

e For queues, dynamic arrays, and associative arrays, pack 32 bits indicating the size of the array prior to to
packing individual elements.

By default, use_metadata is set to false.
6.1.6.4 big_endian
bool big_endian;

The data member big_endian shall determine the order that integral data is packed (using the member functions
pack_field, pack_field_int, pack_time, or pack_real) and how the data is unpacked from the pack array (using the
member functions unpack_field, unpack_field_int, unpack_time, or unpack_real). By default, the data member
is set to true in the constructor of uvm_packer. When the data member is set, data is associated msb to Isb;
otherwise, it is associated Isb to msb.

6.2 uvm_printer

The class uvm_printer shall provide the basic printer functionality, which shall be overloaded by derived classes to
support various pre-defined printing formats.

6.2.1 Class definition

namespace uvm {

UVM-SystemC Language Reference Manual —- DRAFT Page 50

class uvm_printer

{

public:

// Group: Printing types

virtual void print field(const std::string& name,

const uvm bitstream t& value,

int size = -1,

uvm_radix enum radix
const char* scope separator

const std::string& type name

virtual void print field int(const std::string& name,

virtual

virtual

virtual

virtual

virtual

Page 51

UVM_NORADIX,

non
L4

"") const;

const uvm_integral t& value,

int size = -1,

uvm_radix_enum radix

UVM_NORADIX,

const char* scope separator oWy

const std::string& type name

void print_real (const std::string& name,

double value,

const char* scope separator

void print_ double (

void print_ object (

const std::string& name,
double value,

const char* scope separator

const std::string& name,
const uvm_objects value,

const char* scope separator

= nn)

const;

W o)

const;

= W, 0

const;

= ".") const;

void print object header (const std::string& name,

void print string(

const uvm_objects value,

const char* scope separator

const std::string& name,
const std::string& value,

const char* scope separator

= ".") const;

= o

const;

UVM-SystemC Language Reference Manual — DRAFT

virtual void print time(const std::string& name,
const sc_core::sc_time& value,

const char* scope separator = ".") const;

virtual void print generic(const std::string& name,
const std::string& type name,
int size,
const std::string& value,

const char* scope separator = ".") const;

// Group: Printer subtyping

virtual std::string emit();

virtual std::string format row(const uvm printer row_info& row);
virtual std::string format header();

virtual std::string format footer();

std::string adjust_name (const std::string& id,

const char* scope separator = ".") const;

virtual void print array header(const std::string& name,
int size,
const std::string& arraytype = "array",
const char* scope separator = ".") const;
void print_array range(int min, int max) const;

void print_array footer(int size = 0) const;

// Data members

uvm_printer knobs knobs;

protected:

// Disabled

uvm_printer() ;

}; // class uvm printer

} // namespace uvm

UVM-SystemC Language Reference Manual —- DRAFT Page 52

6.2.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_printer.
6.2.3 Printing types

6.2.3.1 print_field

virtual void print field(const std::string& name,
const uvm_bitstream t& value,
int size = -1,
uvm_radix_enum radix = UVM NORADIX,
const char* scope separator = ".",

const std::string& type name = "");

The member function print_field shall print a field of type uvm_bitstream_t. The argument name defines the name
of the field. The argument value contains the value of the field. The argument size defines the number of bits of the
field. The argument radix defined radix to use for printing. The printer knob for radix is used if no radix is specified.
The argument scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a “.” (dot) or “[”” (open bracket).

6.2.3.2 print_field_int

virtual void print field int(const std::string& name,
const uvm_integral t& value,
int size = -1,
uvm_radix_enum radix = UVM NORADIX,
const char* scope separator = ".",

const std::string& type name = "");

The member function print_field_int shall print an integer field. The argument name defines the name of the field.
The argument value contains the value of the field. The argument size defines the number of bits of the field. The
argument radix defined radix to use for printing. The printer knob for radix is used if no radix is specified. The
argument scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a “.” (dot) or “[”” (open bracket).

6.2.3.3 print_real

virtual void print real(const std::string& name,
double value,

const char* scope separator = ".");

The member function print_real shall print a real (double) field. The argument name defines the name of the field.
The argument value contains the value of the field. The argument scope_separator is used to find the leaf name
since many printers only print the leaf hame of a field.

Page 53 UVM-SystemC Language Reference Manual — DRAFT

6.2.3.4 print_double*

virtual void print double(const std::string& name,
double value,

const char* scope separator = ".");

The member function print_double shall print a real (double) field. The argument name defines the name of the
field. The argument value contains the value of the field. The argument scope_separator is used to find the leaf
name since many printers only print the leaf name of a field.

NOTE-This member function has been introduced to be more compatible with C++/SystemC coding styles and types. The
member function has identical functionality to print_real.

6.2.3.5 print_object

virtual void print object(const std::string& name,
const uvm_objects value,

const char* scope separator = ".") const;

The member function print_object shall print an object. The argument name defines the name of the object. The
argument value contains the reference to the object. The argument scope_separator is used to find the leaf name
since many printers only print the leaf name of the object.

Whether the object is recursed depends on a variety of knobs, such as the depth knob; if the current depth is at or
below the depth setting, then the object is not recursed. By default, the children of objects of type uvm_component
are printed. To disable automatic printing of these objects, an application can set the member function
uvm_component::print_enabled to false for the specific children to be excluded from printing.

6.2.3.6 print_object_header

virtual void print object header(const std::string& name,
const uvm_objects value,

const char* scope separator = ".") const;

The member function print_object_header shall print an object header. The argument name defines the name of the
object. The argument value contains the reference to the object. The argument scope_separator is used to find the
leaf name since many printers only print the leaf name of a field.

6.2.3.7 print_string

virtual void print string(const std::string& name,
const std::string& value,

const char* scope separator = ".");

The member function print_string shall print a string field. The argument name defines the name of the field. The
argument value contains the value of the field. The argument scope_separator is used to find the leaf name since
many printers only print the leaf name of a field.

UVM-SystemC Language Reference Manual —- DRAFT Page 54

6.2.3.8 print_time

virtual void print time(const std::string& name,
const sc_core::sc_times& value,

const char* scope separator = ".");

The member function print_time shall print the time. The argument name defines the name of the field. The
argument value contains the value of the field. The argument scope_separator is used to find the leaf name since
many printers only print the leaf name of a field.

6.2.3.9 print_generic

virtual void print generic(const std::stringé& name,
const std::string& type name,
int size,
const std::strings& value,

const char* scope separator = ".");

The member function print_generic shall print a field using the arguments name, type_name, size, and value. The
argument scope_separator is used to find the leaf name since many printers only print the leaf name of a field.

6.2.4 Printer subtyping
6.2.4.1 emit
virtual std::string emit();

The member emit shall return a string representing the contents of an object in a format defined by an extension of
this object.

6.2.4.2 format_row

virtual std::string format row(const uvm printer_ row_info& row);

The member format_row shall offer a hook for producing custom output of a single field (row).

6.2.4.3 format_header

virtual std::string format header () ;

The member format_header shall offer a hook to override the base header with a custom header.

6.2.4.4 format_footer

virtual std::string format footer();

The member format_footer shall offer a hook to override the base footer with a custom footer.

Page 55 UVM-SystemC Language Reference Manual — DRAFT

6.2.4.5 adjust_name
std::string adjust_name(const std::string& id,

const char* scope separator = ".") const;

The member function adjust_name shall print a field’s name, or id, which is the full instance name. The intent of
the separator is to mark where the leaf name starts if the printer is configured to print only the leaf name of the
identifier.

6.2.4.6 print_array_header

virtual void print array header(const std::string& name,
int size,
const std::string& arraytype = "array",

const char* scope separator = ".") const;

The member function print_array_header shall print the header of an array. This member function shall be called
before each individual element is printed. The member function print_array_footer shall be called to mark the
completion of array printing.

6.2.4.7 print_array_range
void print array range(int min, int max) const;

The member function print_array_range shall print a range using ellipses for values. This method is used when
honoring the array knobs for partial printing of large arrays, uvm_printer_knobs::begin_elements and
uvm_printer_knobs::end_elements. This member function should be called after
uvm_printer_knobs::begin_elements have been printed and before uvm_printer_knobs::end_elements have
been printed.

6.2.4.8 print_array_footer

void print_array footer(int size = 0) const;

The member function print_array_footer shall print the footer of an array. This member function marks the end of
an array print. Generally, there is no output associated with the array footer, but this method lets the printer know
that the array printing is complete.

6.2.5 Data members

6.2.5.1 knobs

uvm_printer knobs knobs;

The data member knobs shall provide access to the variety of knobs associated with a specific printer instance.

6.3 uvm_table_printer

The class uvm_table_printer shall provide a pre-defined printing output in a tabular format.

UVM-SystemC Language Reference Manual —- DRAFT Page 56

6.3.1 Class definition

namespace uvm {

class uvm_table printer : public uvm printer
{

public:

uvm_table printer();

virtual std::string emit();

}: // class uvm table printer

} // namespace uvm

6.3.2 Constructor

uvm_table printer();
The constructor shall create a new instance of type uvm_table_printer.

6.3.3 emit

The member function emit shall format the collected information for printing into a table format.

6.4 uvm_tree printer

The class uvm_tree_printer shall provide a pre-defined printing output in a tree format.

6.4.1 Class definition

namespace uvm {

class uvm_tree_printer : public uvm printer
{

public:

uvm_tree_printer();

virtual std::string emit();

}; // class uvm tree printer

} // namespace uvm

6.4.2 Constructor

uvm_tree printer();

Page 57 UVM-SystemC Language Reference Manual — DRAFT

The constructor shall create a new instance of type uvm_tree_printer.

6.4.3 emit

The member function emit shall format the collected information for printing into a hierarchical tree format.

6.5 uvm_line_printer

The class uvm_table_printer shall provide a pre-defined printing output in a line format.

6.5.1 Class definition

namespace uvm {

class uvm_line printer : public uvm printer
{

public:

uvm_line printer();

virtual std::string emit();

}; // class uvm line printer

} // namespace uvm

6.5.2 Constructor

uvm_line printer();
The constructor shall create a new instance of type uvm_line_printer.

6.5.3 emit

The member function emit shall format the collected information for printing into a line format, which contains no
line-feeds and indentation.

6.6 uvm_comparer

The class uvm_comparer shall provide a policy object for doing comparisons. The policies determine how
miscompares are treated and counted. Results of a comparison are stored in the comparer object. The member
functions uvm_object::compare and uvm_object::do_compare are passed a uvm_comparer policy object.

6.6.1 Class definition

namespace uvm {

class uvm_comparer

{

UVM-SystemC Language Reference Manual —- DRAFT Page 58

public:
// Group: member functions
virtual bool compare field(const std::stringé& name,
const uvm bitstream t& lhs,
const uvm bitstream t& rhs,
int size,

uvm_radix enum radix = UVM NORADIX) const;

virtual bool compare field int(const std::string& name,
const uvm_integral té& lhs,
const uvm_integral té& rhs,
int size,

uvm_radix enum radix = UVM NORADIX) const;

virtual bool compare field real(const std::string& name,
double 1hs,

double rhs) const;

virtual bool compare field real(const std::string& name,
float lhs,

float rhs) const;

virtual bool compare object(const std::string& name,
const uvm_objects lhs,

const uvm_object& rhs) const;

virtual bool compare string(const std::string& name,
const std::stringé& I1hs,

const std::string& rhs) const;

void print msg(const std::string& msg) const;

// Group: Comparer settings

void set policy(uvm recursion policy enum policy = UVM DEFAULT POLICY);
uvm_recursion policy enum get policy () const;

void set_max messages(unsigned int num = 1);

unsigned int get max messages() const;

void set verbosity(unsigned int verbosity = UVM LOW);

Page 59 UVM-SystemC Language Reference Manual — DRAFT

unsigned int get verbosity () const;
void set_severity(uvm_severity sev = UVM_INFO) ;

uvm_severity get_ severity () const;

void set miscompare string(const std::stringé& miscompares = "");

std::string get_miscompare_ string() const;

void set_field attribute(uvm field enum attr = UVM PHYSICAL) ;

uvm_field enum get field attribute() const;
void compare type(bool enable = true);

unsigned int get_result() const;
private:

// Disabled

uvm_comparer () ;

}: // class uvm_comparer

} // namespace uvm

6.6.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_comparer.

6.6.3 Member functions

6.6.3.1 compare_field

virtual bool compare field(const std::stringé& name,
const uvm bitstream t& lhs,
const uvm bitstream t& rhs,

int size,

uvm_radix_enum radix = UVM NORADIX)

const;

The member function compare_field shall compare two integral values. The argument name is used for purposes of
storing and printing a miscompare. The left-hand-side Ihs and right-hand-side rhs objects are the two objects used
for comparison. The size variable indicates the number of bits to compare; size must be less than or equal to
UVM_MAX_STREAMBITS. The argument radix is used for reporting purposes, the default radix is hex.

6.6.3.2 compare_field_int

virtual bool compare field int(const std::string& name,
const uvm _integral t& lhs,

const uvm_integral té& rhs,

UVM-SystemC Language Reference Manual —- DRAFT

Page 60

int size,

uvm_radix_enum radix = UVM NORADIX) const;

The member function compare_field_int shall compare two integral values. This member function is same as
compare_field except that the arguments are small integers, less than or equal to 64 bits. It is automatically called
by compare_field if the operand size is less than or equal to 64.

The argument name is used for purposes of storing and printing a miscompare. The left-hand-side Ihs and right-
hand-side rhs objects are the two objects used for comparison. The size variable indicates the number of bits to
compare; size must be less than or equal to 64. The argument radix is used for reporting purposes, the default radix
is hex.

6.6.3.3 compare_field_real, compare_field_double

virtual bool compare field real(const std::string& name,
double lhs,

double rhs) const;

virtual bool compare field real(const std::string& name,
float 1hs,

float rhs) const;

The member function compare_field_real shall compare two real numbers, represented by type double or float. The
left-hand-side Ihs and right-hand-side rhs arguments are used for comparison.

6.6.3.4 compare_object

virtual bool compare object(const std::string& name,
const uvm_objects lhs,

const uvm _object& rhs) const;

The member function compare_object shall compare two class objects using the data member policy to determine
whether the comparison should be deep, shallow, or reference. The argument name is used for purposes of storing
and printing a miscompare. The lhs and rhs objects are the two objects used for comparison. The data member
check type determines whether or not to verify the object types match (the return from lhs.get type name()
matches rhs.get_type_name()).

6.6.3.5 compare_string

virtual bool compare string(const std::string& name,
const std::stringé& I1hs,

const std::string& rhs) const;

The member function compare_string shall compare two two string variables. The argument name is used for
purposes of storing and printing a miscompare. The lhs and rhs objects are the two objects used for comparison.

Page 61 UVM-SystemC Language Reference Manual — DRAFT

6.6.3.6 print_msg

void print msg(const std::string& msg) const;

The member function print_msg shall cause the error count to be incremented and the message passed as argument
to be appended to the miscompares string (a newline is used to separate messages). If the message count is less than
the data member show_max setting, then the message is printed to standard-out using the current verbosity (see
6.6.4.5) and severity (see 6.6.4.7) settings.

6.6.4 Comparer settings

6.6.4.1 set_policy

set_policy(uvm_recursion_policy enum policy = UVM DEFAULT POLICY);

The member function set_policy shall set the comparison policy. The following arguments are valid: UVM_DEEP,
UVM_REFERENCE, or UVM_SHALLOW. The default policy shall be set to UVM_DEFAULT_POLICY.

6.6.4.2 get_policy

uvm_recursion policy enum get policy() const;
The member function get_policy shall return the comparison policy.
6.6.4.3 set_max_messages

void set_max messages(unsigned int num = 1);

The member function set_ max_messages sets the maximum number of messages to send to the printer for
miscompares of an object. The default number of messages shall be set to one.

6.6.4.4 get_max_messages
unsigned int get_max messages () const;

The member function get_max_messages shall return the maximum number of messages to send to the printer for
miscompares of an object.

6.6.4.5 set_verbosity

void set verbosity(unsigned int verbosity = UVM LOW);

The member function set_verbosity shall set the verbosity for printed messages. The verbosity setting is used by the
messaging mechanism to determine whether messages should be suppressed or shown. The default verbosity shall
be set to UVM_LOW.

6.6.4.6 get_verbosity

unsigned int get verbosity() const;

The member function get_verbosity shall return the verbosity for printed messages.

UVM-SystemC Language Reference Manual —- DRAFT Page 62

6.6.4.7 set_severity

void set_severity(uvm_severity sev = UVM_INFO) ;

The member function set_severity shall set the severity for printed messages. The severity setting is used by the
messaging mechanism for printing and filtering messages. The default severity shall be set to UVM_INFO.

6.6.4.8 get_severity
uvm_severity get severity () const;

The member function get_severity shall return the severity for printed messages.

6.6.4.9 set_miscompare_string

void set_miscompare string(const std::string& miscompares = "");

The member function set_miscompare_string shall set the miscompare string. This string is reset to an empty string
when a comparison is started. The string holds the last set of miscompares that occurred during a comparison. The
default miscompare string shall be empty.

6.6.4.10 get_miscompare_string

std::string get_miscompare_string() const;

The member function get_miscompare_string shall return the last set of miscompares that occurred during a
comparison.

6.6.4.11 set_field_attribute

void set_field attribute(uvm_field enum attr = UVM PHYSICAL) ;

The member function set_field_attribute shall set the field attribute to UVM_PHYSICAL or UVM_ABSTRACT.
The physical and abstract settings allow an object to distinguish between these two different classes of fields.

NOTE-An application can use the callback uvm_object::do_compare to check the field attribute if it wants to use it as a filter.
6.6.4.12 get_field_attribute
uvm_field enum get field attribute() const;

The member function get field_attribute shall return the field attribute being UVM_PHYSICAL or
UVM_ABSTRACT.

6.6.4.13 compare_type
void compare type(bool enable = true);

The member function compare_type shall determine whether the type, given by uvm_object::get_type_name, is
used to verify that the types of two objects are the same. If enabled, the member function compare_object is called.
By default, type checking shall be enabled.

Page 63 UVM-SystemC Language Reference Manual — DRAFT

NOTE-In some cases an application may disable type checking, when the two operands are related by inheritance but are of
different types.

6.6.4.14 get_result
unsigned int get_result() const;

The member function get_result shall return the number of miscompares for a given compare operation. An
application can use the result to determine the number of miscompares that were found.

6.7 Default policy objects

This section lists the default policy objects.
6.7.1.1 uvm_default_table_printer
extern uvm_table printer* uvm default table printer;

The global object uvm_default_table_printer shall define a handle to an object of type uvm_table_printer, which
can be used with uvm_object::do_print to get tabular style printing.

6.7.1.2 uvm_default_tree printer
extern uvm_tree printer* uvm default_ tree printer;

The global object uvm_default_tree_printer shall define a handle to an object of type uvm_tree_printer, which
can be used with uvm_object::do_print to get a multi-line tree style printing.

6.7.1.3 uvm_default_line_printer
extern uvm_line printer* uvm default line printer;

The global object uvm_default_line_printer shall define a handle to an object of type uvm_line_printer, which
can be used with uvm_object::do_print to get a single-line style printing.

6.7.1.4 uvm_default_printer
extern uvm_printer* uvm_default_printer;

The global object uvm_default_printer shall define the default printer policy, which shall be set to
uvm_default_table_printer. An application can redefine the default printer, by setting it to any legal uvm_printer
derived type, including the global line, tree, and table printers in the previous sections.

6.7.1.5 uvm_default_packer

extern uvm_printer* uvm_default_printer;

The global object uvm_default_packer shall define the default packer policy. It shall be used when calls to
uvm_object::pack and uvm_object::unpack do not specify a packer policy.

UVM-SystemC Language Reference Manual —- DRAFT Page 64

6.7.1.6 uvm_default_comparer

extern uvm_comparer* uvm default comparer;

The global object uvm_default_comparer shall define the default comparer policy. It shall be used when calls to
uvm_object::compare do not specify a comparer policy.

6.7.1.7 uvm_default_recorder

extern uvm_recorder* uvm default recorder;

The global object uvm_default_recorder shall define the default recorder policy. It shall be used when calls to
uvm_object::record do not specify a recorder policy.

Page 65 UVM-SystemC Language Reference Manual — DRAFT

7. Registry and factory classes

The registry and factory classes offer the interface to register and use UVM objects and components via the factory.
The following classes are defined:

e uvm_object wrapper

e uvm_object_registry

e uvm_component_registry

e uvm_factory

uvm_default_factory

The class uvm_object wrapper forms the base class for the registry classes uvm_object registry and
uvm_component_registry, which act as lightweight proxies for UVM objects and components, respectively.

UVM object and component types are registered with the factory via typedef or macro invocation. When the
application requests a new object or component from the factory, the factory will determine what type of object to
create based on its configuration, and will ask that type’s proxy to create an instance of the type, which is returned to
the application.

7.1 uvm_object_wrapper

The class uvm_object_wrapper shall provide an abstract interface for creating object and component proxies.
Instances of these lightweight proxies, representing every object or component derived from uvm_object or
uvm_component respectively in the test environment, are registered with the uvm_factory. When the factory is
called upon to create an object or component, it shall find and delegate the request to the appropriate proxy.

7.1.1 Class definition

namespace uvm {

class uvm_object wrapper
{
public:
virtual uvm object* create object(const std::string& name = "");
virtual uvm_component* create_component(const std::string& name,
uvm_component* parent) ;

virtual const std::string get type name () const = 0;

} // namespace uvm

UVM-SystemC Language Reference Manual —- DRAFT Page 66

7.1.2 Member functions

7.1.2.1 create_object

virtual uvm object* create object(const std::string& name =)8

The member function create_object shall create a new object with the optional name passed as argument. An object
proxy (e.g., uvm_object_registry<T>) implements this member function to create an object of a specific type, T
(see 7.2).

7.1.2.2 create_component

virtual uvm_component* create_component(const std::stringé& name,

uvm_component* parent) ;

The member function create_component shall create a new component, by passing to its constructor the given
name and parent. The component proxy (e.g. uvm_component_registry<T>) implements this member function to
create a component of a specific type, T (see 7.3).

7.1.2.3 get_type_name

virtual const std::string get type name () const = 0;

The implementation of the pure virtual member function get_type_name shall return the type name of the object
created by create_component or create_object. The factory uses this name when matching against the requested
type in name-based lookups.

7.2 uvm_object registry

The class uvm_object_registry shall provide a lightweight proxy for a uvm_object of type T. The proxy enables
efficient registration with the uvm_factory. Without it, registration would require an instance of the object itself.

The macros UVM_OBJECT _UTILS or UVM_OBJECT_PARAM_UTILS shall create the appropriate class
uvm_object_registry necessary to register that particular object wth the factory.

7.2.1 Class definition

namespace uvm {

template <typename T = uvm_object>

class uvm_object_ registry<T> : public uvm object wrapper

{

public:
virtual uvm object* create object(const std::string& name = "");
virtual const std::string get type name () const;

static uvm object registry<T>* get();

Page 67 UVM-SystemC Language Reference Manual — DRAFT

static T* create(const std::string& name = "",
uvm_component* parent = NULL,

const std::string& contxt = "");

static void set_ type override(uvm_object wrapper* override type,

bool replace = true);

static void set_inst_override (uvm_object_wrapper* override type,
const std::string& inst path,
uvm_component* parent = NULL) ;

}; // class uvm _object registry

} // namespace uvm

7.2.2 Template parameter T

The template parameter T specifies the object type of the objects being registered. The object type must be a
derivative of class uvm_object.

7.2.3 Member functions

7.2.3.1 create_object

virtual uvm object* create object(const std::string& name = "");

The member function create_object shall create an object of type T and returns it as a handle to a uvm_object. This
is an overload of the member function in uvm_object_wrapper. It is called by the factory after determining the type
of object to create. An application shall not call this member function directly. Instead, an application shall call the
static member function create.

7.2.3.2 get_type _name
virtual const std::string get type name () const;

The member function get_type_name shall return the type name of the object. This member function overloads the
member function in uvm_object_wrapper.

7.2.3.3 get
static uvm_object_registry<T>* get();

The member function get shall return the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

UVM-SystemC Language Reference Manual —- DRAFT Page 68

7.2.3.4 create

static T* create(const std::string& name = "",
uvm_component* parent = NULL,

const std::string& contxt = "");

The member function create shall return a new instance of the object type, T, represented by this proxy, subject to
any factory overrides based on the context provided by the parent’s full name. The new instance shall have the given
leaf name name, if provided as argument. The argument contxt, if supplied, supersedes the parent’s context.

7.2.3.5 set_type_override

static void set_ type override(uvm_object wrapper* override type,

bool replace = true);

The member function set_type_override shall configure the factory to create an object of the type represented by
override_type whenever a request is made to create an object of the type represented by this proxy, provided no
instance override applies. The original type, T, is typically a super class of the override type.

When replace is true, a previous override on original_type is replaced, otherwise a previous override, if any, remains
intact.

7.2.3.6 set_inst_override

static void set inst_override(uvm _object wrapper* override type,
const std::string& inst path,

uvm_component* parent = NULL);

The member function set_inst_override shall configure the factory to create an object of the type represented by
argument override_type whenever a request is made to create an object of the type represented by this proxy, with
matching instance paths. The original type, T, is typically a super class of the override type.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which enables
instance overrides to be set from outside component classes. If argument parent is specified, argument inst_path is
interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path may contain
wildcards for matching against multiple contexts.

7.3 uvm_component_registry

The class uvm_component_registry shall provide a lightweight proxy for a uvm_component of type T. The proxy
enables efficient registration with the uvm_factory. Without it, registration would require an instance of the
component itself.

The macros UVM_COMPONENT _UTILS and UVM_COMPONENT_PARAM_UTILS shall create the
appropriate class uvm_component_registry necessary to register that particular component with the factory.

7.3.1 Class definition

namespace uvm {

Page 69 UVM-SystemC Language Reference Manual — DRAFT

template <typename T = uvm_component>
class uvm_component_registry : public uvm object wrapper
{
public:
virtual uvm_component* create_component(const std::stringé& name,

uvm_component* parent) ;

virtual const std::string get_type name () const;

static uvm_component_registry<T>* get();

static T* create(const std::string& name = "",
uvm_component* parent = NULL,

const std::string& contxt = "");

static void set_ type override(uvm_object wrapper* override type,

bool replace = true);

static void set_inst override(uvm_object wrapper* override type,
const std::string& inst path,
uvm_component* parent = NULL);

}; // class uvm component registry

} // namespace uvm

7.3.2 Template parameter T

The template parameter T specifies the object type of the components being registered. The object type must be a
derivative of class uvm_component.

7.3.3 Member functions

7.3.3.1 create_component

virtual uvm component* create component(const std::string& name,

uvm_component* parent) ;

The member function create_component shall create an object of type T having the provided name and parent, and
returns it as a handle to a uvm_component. This is an overload of the member function in uvm_object wrapper. It
is called by the factory after determining the type of component to create. An application shall not call this member
function directly. Instead, an application shall call the static member function create.

UVM-SystemC Language Reference Manual —- DRAFT Page 70

7.3.3.2 get_type name

virtual const std::string get_type name () const;

The member function get_type_name shall return the type name of the component. This member function overloads
the member function in uvm_object_wrapper.

7.3.3.3 get

static uvm_component_registry<T>* get();

The member function get shall return the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

7.3.3.4 create

static T* create(const std::string& name = "",
uvm_component* parent = NULL,

const std::string& contxt = "");

The member function create shall return a new instance of the component type, T, represented by this proxy, subject
to any factory overrides based on the context provided by the parent’s full name. The new instance shall have the
given leaf name name, if provided as argument. The argument contxt, if supplied, supersedes the parent’s context.

7.3.3.5 set_type override

static void set type_override(uvm object wrapper* override type,

bool replace = true);

The member function set_type_override shall configure the factory to create a component of the type represented
by argument override_type whenever a request is made to create a component of the type represented by this proxy,
provided no instance override applies. The override type shall be derived from the original type, T.

When replace is true, a previous override on original_type is replaced, otherwise a previous override, if any, remains
intact.

7.3.3.6 set_inst_override

static void set_inst_override (uvm object_ wrapper* override type,
const std::stringé& inst path,

uvm_component* parent = NULL) ;

The member function set_inst_override shall configure the factory to create a component of the type represented by
argument override_type whenever a request is made to create a component of the type represented by this proxy,
with matching instance paths. The override type shall be derived from the original type, T.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which enables
instance overrides to be set from outside component classes. If argument parent is specified, argument inst_path is
interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path may contain
wildcards for matching against multiple contexts.

Page 71 UVM-SystemC Language Reference Manual — DRAFT

7.4 Uvm_factory

The class uvm_factory is the base class defining the API for the factory design pattern. It shall provide a type- and
name-based interface for UVM object and component overrides.

7.4.1 Class definition

namespace uvm {

class uvm_factory
{

public:

// Group: Retreiving the factory

static uvm_factory* get();

// Group: Registering types

virtual void do_registerO (uvm_object wrapper* obj) = 0;

// Group: Type & instance overrides
virtual void set_inst override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

const std::string& full inst path) = 0;

virtual void set_inst_override by name(const std::string& original type name,
const std::stringé& override type name,

const std::string& full inst path) = 0;

virtual void set_type override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

bool replace = true) = 0;

virtual void set type override by name(const std::string& original type name,
const std::stringé& override type name,

bool replace = true) = 0;
// Group: Creation

virtual uvm object* create object by type(uvm object wrapper* requested type,

const std::stringé& parent inst path = "",

UVM-SystemC Language Reference Manual —- DRAFT Page 72

const std::string& name = "") = 0;
virtual uvm_object* create object by name(const std::stringé& requested type name,
const std::string& parent inst path = "",

const std::string& name = "") = 0;

virtual uvm_component* create component by type(uvm object wrapper* requested type,

const std::string& parent inst path = "",
const std::string& name = "",
uvm_component* parent = NULL) = 0;

virtual uvm_component* create_ component by name(const std::stringé& requested type name,
const std::string& parent inst path = "",

const std::string& name =

uvm_component* parent = NULL) = 0;
// Group: Debug
virtual void debug create by type(uvm object wrapper* requested type,
const std::string& parent inst path = "",
const std::string& name = "") = 0;
virtual void debug create by name(const std::stringé& requested type name,
const std::stringé& parent inst path = "",

const std::string& name = "") = 0;

virtual uvm object wrapper* find override by type(uvm_object_ wrapper* requested type,

const std::string& full inst path) = 0;

virtual uvm object wrapper* find override by name(const std::string& requested type name,

const std::string& full inst path) = 0;

virtual void print(int all types = 1) = 0;

}; // class uvm factory

} // namespace uvm

Page 73 UVM-SystemC Language Reference Manual — DRAFT

7.4.2 Retreiving the factory

7.4.2.1 get

static uvm_factory* get();

The static member function get shall return the handle to the factory via the member function
uvm_coreservice_t::get_factory.

7.4.3 Registering types

7.4.3.1 do_register® (register?)

virtual void do_register (uvm object wrapper* obj) = 0;

The member function do_register® shall be used to register an object or a component with the factory.

NOTE 1-Typically, an application uses the macros UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS,
UVM_COMPONENT_UTILS, or UVM_COMPONENT_PARAM_UTILS to register a particular object or component
respectively with the factory.

NOTE 2-The UVM standard defines the member function register” for factory registration. As ‘register’ is a reserved keyword
in C++, this member function has been renamed to do_register® in UVM-SystemC.

7.4.4 Type and instance overrides

7.4.4.1 set_inst_override by type

virtual void set_inst_override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

const std::string& full inst path) = 0;

The member function set_inst_override_by type shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type using a context that matches full_inst_path.
The override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

The argument full_inst_path is matched against the concatenation of parent instance path and name
(parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards (‘*’
and “?°) such that a single instance override can be applied in multiple contexts. An argument full_inst_path of “*’ is
effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue shall be processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides. This way, the general
override will not override the specific override.

7.4.4.2 set_inst_override_by name

virtual void set inst override by name(const std::string& original type name,

UVM-SystemC Language Reference Manual —- DRAFT Page 74

const std::stringé& override type name,

const std::string& full inst path) = 0;

The member function set_inst_override_by name shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type using a context that matches full_inst_path.
The original type is typically a super class of the override type.

The original_type _name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Future calls to any of the member functions create object by type, create object by name,
create_component_by type or create_component_by name with the same string and matching instance path will
produce the type represented by override_type _name, which must be preregistered with the factory.

The argument full_inst_path is matched against the concatenation of parent instance path and name
(parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards (‘*’
and “?’) such that a single instance override can be applied in multiple contexts. An argument full_inst_path of “*’ is
effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue shall be processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides. This way, the general
override will not override the specific override.

7.4.4.3 set_type override by type

virtual void set_type override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

bool replace = true) = 0;

The member function set_inst_override_by type shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type, provided no instance override applies. The
override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

When argument replace is true, a previous override on original_type is replaced, otherwise a previous override, if
any, remains intact.

7.4.4.4 set_type override_by name

virtual void set type override by name(const std::string& original type name,
const std::string& override type name,

bool replace = true) = 0;

The member function set_inst_override_by name shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type, provided no instance override applies. The
original type is typically a super class of the override type.

The original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Future calls to any of the member functions create object by type, create object by name,
create_component_by type or create_component_by name with the same string and matching instance path will
produce the type represented by override_type _name, which must be preregistered with the factory.

Page 75 UVM-SystemC Language Reference Manual — DRAFT

When argument replace is true, a previous override on original_type name is replaced, otherwise a previous
override, if any, remains intact.

7.4.5 Creation

7.45.1 create_object_by type

virtual uvm object* create object by type(uvm object wrapper* requested type,
const std::string& parent inst path = "",

const std::string& name = "") = 0;

The member function create_object_by type shall create and return an object of the requested type, which is
specified by argument requested_type. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument is
provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search for
an instance override. Newly created object shall have the given name, if provided.

7.4.5.2 create_object_by name

virtual uvm object* create object by name(const std::string& requested type name,
const std::string& parent inst path = "",

const std::string& name = "") = 0;

The member function create_object_by name shall create and return an object of the requested type, which is
specified by argument requested_type_name. The requested type must have been registered with the factory with
that name prior to the request. If the factory does not recognize the requested type name, an error is produced and
the member function shall return NULL. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument is
provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search for
an instance override. If no instance override is found, the factory then searches for a type override. Newly created
object shall have the given name, if provided.

NOTE-The convenience function create_object is available in the class uvm_component for the creation of an object (See
Section 8.1.1). Alternatively, an application can create an object by using the static member function create via the
uvm_object_registry, which is made available via the macro UVM_OBJECT_UTILS or UVM_OBJECT_PARAM_UTILS.

7.4.5.3 create_component_by type

virtual uvm_component* create_component by type(uvm object wrapper* requested type,

const std::string& parent inst path = "",
const std::string& name = "",
uvm_component* parent = NULL) = 0;

The member function create_component_by type shall create and return a component of the requested type, which
is specified by argument requested_type. A requested component shall be derived from the base class
uvm_component.

UVM-SystemC Language Reference Manual —- DRAFT Page 76

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this argument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search
for an instance override. Newly created components shall have the given name and parent.

7.4.5.4 create_component_by name

virtual uvm_component* create component by name(const std::string& requested type name,

const std::string& parent inst path = "",
const std::string& name = "",
uvm_component* parent = NULL) = 0;

The member function create_component_by name shall create and return a component of the requested type,
which is specified by argument requested_type name. The requested type must have been registered with the
factory with that name prior to the request. If the factory does not recognize the requested type name, an error is
produced and the member function shall return NULL. A requested component shall be derived from the base class
uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this argument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search
for an instance override. If no instance override is found, the factory then searches for a type override. Newly
created components shall have the given name and parent.

NOTE-The convenience function create_component is available in the class uvm_component for the creation of a component
(see section 8.1.1). Alternatively, an application can create an object by using the static member function create via the
uvm_component_registry which is made available via the macro UVM_COMPONENT_UTILS or
UVM_COMPONENT_PARAM_UTILS.

7.4.6 Debug

7.4.6.1 debug_create_by type

virtual void debug create by type(uvm object wrapper* requested type,
const std::string& parent inst path = "",

const std::string& name = "") = 0;

The member function debug_create by type shall perform the same search algorithm as the member function
create_object_by type, but it shall not create a new object. Instead, it provides detailed information about what
type of object it would return, listing each override that was applied to arrive at the result. Interpretation of the
arguments are exactly as with the member function create_object_by type.

7.4.6.2 debug_create_by name

virtual void debug create by name(const std::stringé& requested type name,
const std::stringé& parent inst path = "",

const std::string& name = "") = 0;

The member function debug_create_by name shall perform the same search algorithm as the member function
create_object_by name, but it shall not create a new object. Instead, it provides detailed information about what

Page 77 UVM-SystemC Language Reference Manual — DRAFT

type of object it would return, listing each override that was applied to arrive at the result. Interpretation of the
arguments are exactly as with the member function create_object_by name.
7.4.6.3 find_override_by type

virtual uvm _object wrapper* find override by type(uvm_object wrapper* requested type,

const std::string& full inst path) = 0;

The member function find_override_by type shall return the proxy to the object that would be created given the
arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf name of the
object to be created.

7.4.6.4 find_override_by name

virtual uvm object wrapper* find override by name(const std::string& requested type name,

const std::string& full inst path) = 0;

The member function find_override_by_name shall return the proxy to the object that would be created given the
arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf name of the
object to be created.

7.4.6.5 print

virtual void print(int all types = 1) = 0;
The member function print shall print the state of the uvm_factory, including registered types, instance overrides,
and type overrides.

When argument all_types is set to zero, only type and instance overrides are displayed. When all_types is set to 1
(default), all registered user-defined types are printed as well, provided they have names associated with them.
When all_types is set to 2, the UVM types (prefixed with uvm_) are included in the list of registered types.

7.5 uvm_default_factory

The class uvm_default_factory shall offer the default implementation of the UVM factory. Object and component
types are registered with the factory using proxies to the actual objects and components being created. The classes
uvm_object_registry<T> and uvm_component_registry<T> are used to proxy objects of type uvm_object and
uvm_component respectively. These registry classes both use the uvm_object_wrapper as abstract base class.

7.5.1 Class definition

namespace uvm {
class uvm_default factory : public uvm_ factory

{

public:

UVM-SystemC Language Reference Manual —- DRAFT Page 78

// Group: Registering types

virtual void do_registerO (uvm_object_wrapper* obj);

// Group: Type & instance overrides
virtual void set inst override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

const std::string& full inst path);

virtual void set_inst override by name(const std::string& original type name,
const std::string& override type name,

const std::string& full inst path);

virtual void set_type override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

bool replace = true);

virtual void set type override by name(const std::string& original type name,
const std::stringé& override type name,

bool replace = true);

// Group: Creation
virtual uvm_object* create object by type(uvm object wrapper* requested type,
const std::string& parent inst path = "",

const std::string& name = "");

virtual uvm_object* create object by name(const std::stringé& requested type name,
const std::stringé& parent inst path = "",

const std::string& name = "");

virtual uvm_component* create_component by type(uvm object wrapper* requested type,
const std::stringé& parent inst path = "",
const std::string& name = "",

uvm_component* parent = NULL) ;
virtual uvm component* create component by name(const std::string& requested type name,

const std::string& parent inst path = "",

const std::string& name = "",

Page 79 UVM-SystemC Language Reference Manual — DRAFT

uvm_component* parent = NULL) ;

// Group: Debug

virtual void debug_create by type(uvm object wrapper* requested type,

const std::string& parent inst path =

const std::string& name = "");

virtual void debug create by name(const std::stringé& requested type name,
const std::stringé& parent inst path = "",

const std::string& name = "");

virtual uvm_object wrapper* find override by type(uvm_object wrapper* requested type,

const std::string& full inst path);

virtual uvm _object wrapper* find override by name(const std::string& requested type name,

const std::string& full inst path);
virtual void print(int all types = 1);
}: // class uvm default factory

} // namespace uvm

7.5.2 Registering types

7.5.2.1 do_register® (register’)
virtual void do_register (uvm object wrapper* obj);

The member function do_register® shall be used to register an object or a component with the factory.

NOTE 1-Typically, an application uses the macros UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS,
UVM_COMPONENT_UTILS, or UVM_COMPONENT_PARAM_UTILS to register a particular object or component
respectively with the factory.

NOTE-The UVM standard defines the member function register” for factory registration. As ‘register’ is a reserved keyword in
C++, this member function has been renamed to do_register® in UVM-SystemC.

7.5.3 Type and instance overrides

7.5.3.1 set_inst_override by type

virtual void set_inst override by type(uvm object wrapper* original type,

UVM-SystemC Language Reference Manual —- DRAFT Page 80

uvm_object wrapper* override type,

const std::string& full inst path);

The member function set_inst_override_by type shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type using a context that matches full_inst_path.
The override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

The argument full_inst_path is matched against the concatenation of parent instance path and name
(parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards (‘*’
and “?°) such that a single instance override can be applied in multiple contexts. An argument full_inst_path of “*’ is
effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue shall be processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides. This way, the general
override will not override the specific override.

7.5.3.2 set_inst_override_by name

virtual void set_inst override by name(const std::string& original type name,
const std::stringé& override type name,

const std::string& full inst path);

The member function set_inst_override_by name shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type using a context that matches full_inst_path.
The original type is typically a super class of the override type.

The original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Future calls to any of the member functions create object by type, create object by name,
create_component_by type or create_component_by name with the same string and matching instance path will
produce the type represented by override_type _name, which must be preregistered with the factory.

The argument full_inst_path is matched against the concatenation of parent instance path and name
(parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards (‘*’
and “?°) such that a single instance override can be applied in multiple contexts. An argument full_inst_path of “*’ is
effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue shall be processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides. This way, the general
override will not override the specific override.

7.5.3.3 set_type override by type

virtual void set_type override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

bool replace = true);

Page 81 UVM-SystemC Language Reference Manual — DRAFT

The member function set_inst_override_by type shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type, provided no instance override applies. The
override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

When replace is true, a previous override on original_type is replaced, otherwise a previous override, if any, remains
intact.

7.5.3.4 set_type_override_by name

virtual void set_type override by name(const std::string& original type name,
const std::stringé& override type name,

bool replace = true);

The member function set_inst_override_by name shall configure the factory to create an object of the override’s
type whenever a request is made to create an object of the original type, provided no instance override applies. The
original type is typically a super class of the override type.

The original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Future calls to any of the member functions create object by type, create object by name,
create_component_by type or create_component_by name with the same string and matching instance path will
produce the type represented by override_type _name, which must be preregistered with the factory.

When replace is true, a previous override on original_type_name is replaced, otherwise a previous override, if any,
remains intact.

7.5.4 Creation

7.5.4.1 create_object_by type

virtual uvm object* create object by type(uvm object wrapper* requested type,
const std::string& parent inst path = "",

const std::string& name = "");

The member function create_object by type shall create and return an object of the requested type, which is
specified by argument requested_type. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument is
provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search for
an instance override. Newly created object shall have the given name, if provided.

7.5.4.2 create_object by name

virtual uvm _object* create object by name(const std::stringé& requested type name,
const std::stringé& parent inst path = "",

const std::string& name = "");

The member function create_object_by name shall create and return an object of the requested type, which is
specified by argument requested_type_name. The requested type must have been registered with the factory with

UVM-SystemC Language Reference Manual —- DRAFT Page 82

that name prior to the request. If the factory does not recognize the requested_type _name, an error is produced and
the member function shall return NULL. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument is
provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search for
an instance override. If no instance override is found, the factory then searches for a type override. Newly created
object shall have the given name, if provided.

NOTE-The convenience function create_object is available in the class uvm_component for the creation of an object (See
Section 8.1.1). Alternatively, an application can create an object by using the static member function create via the
uvm_object_registry, which is made available via the macro UVM_OBJECT_UTILS or UVM_OBJECT_PARAM_UTILS.

7.5.4.3 create_component_by type

virtual uvm_component* create component by type(uvm object wrapper* requested type,
const std::string& parent inst path = "",
const std::string& name = "",

uvm_component* parent = NULL) ;

The member function create_component_by_type shall create and return a component of the requested type, which
is specified by argument requested type. A requested component shall be derived from the base class
uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this argument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search
for an instance override. Newly created components shall have the given name and parent.

7.5.4.4 create_component_by name

virtual uvm component* create_component by name (const std::stringé& requested type name,
const std::stringé& parent inst path = "",
const std::string& name = "",

uvm_component* parent = NULL);

The member function create_component_by name shall create and return a component of the requested type,
which is specified by argument requested_type name. The requested type must have been registered with the
factory with that name prior to the request. If the factory does not recognize the requested_type_name, an error is
produced and the member function shall return NULL. A requested component shall be derived from the base class
uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this argument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search
for an instance override. If no instance override is found, the factory then searches for a type override. Newly
created components shall have the given name and parent.

NOTE-The convenience function create_component is available in the class uvm_component for the creation of a component
(see section 8.1.1). Alternatively, an application can create an object by using the static member function create via the
uvm_component_registry which is made available via the macro UVM_COMPONENT_UTILS or
UVM_COMPONENT_PARAM_UTILS.

Page 83 UVM-SystemC Language Reference Manual — DRAFT

7.5.5 Debug

7.5.5.1 debug_create_by type

virtual void debug_create by type(uvm object wrapper* requested type,
const std::stringé& parent inst path = "",

const std::string& name = "");

The member function debug_create by type shall perform the same search algorithm as the member function
create_object_by type, but it shall not create a new object. Instead, it provides detailed information about what
type of object it would return, listing each override that was applied to arrive at the result. Interpretation of the
arguments are exactly as with the member function create_object_by type.

7.5.5.2 debug_create_by name

virtual void debug create by name(const std::stringé& requested type name,
const std::string& parent inst path = "",

const std::string& name = "");

The member function debug_create_by name shall perform the same search algorithm as the member function
create_object_by name, but it shall not create a new object. Instead, it provides detailed information about what
type of object it would return, listing each override that was applied to arrive at the result. Interpretation of the
arguments are exactly as with the member function create_object_by name.
7.5.5.3 find_override_by type

virtual uvm object wrapper* find override by type(uvm_object_ wrapper* requested type,

const std::string& full inst path);

The member function find_override_by type shall return the proxy to the object that would be created given the
arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf name of the
object to be created.

7.5.5.4 find_override_by name

virtual uvm object wrapper* find override by name(const std::string& requested type name,

const std::string& full inst path);

The member function find_override_by name shall return the proxy to the object that would be created given the
arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf name of the
object to be created.

7555 print

virtual void print(int all types =1);

The member function print shall print the state of the uvm_factory, including registered types, instance overrides,
and type overrides.

UVM-SystemC Language Reference Manual —- DRAFT Page 84

When argument all_types is set to zero, only type and instance overrides are displayed. When all_types is set to 1
(default), all registered user-defined types are printed as well, provided they have names associated with them.
When all_types is set to 2, the UVM types (prefixed with uvm_) are included in the list of registered types.

Page 85 UVM-SystemC Language Reference Manual — DRAFT

8. Component hierarchy classes

The UVM components form the foundation of the UVM. They are used to assemble the actual verification
environment in a hierarchical and modular fashion, offering a basic set of building blocks such as sequencers,
drivers, monitors, scoreboards, and other components. The UVM class library provides a set of predefined
component types, all derived directly or indirectly from class uvm_component. The following classes are defined:

e uvm_component
e uvm_agent

e uvm_driver

e uvm_monitor

e uvm_env

e uvm_scoreboard
e uvm_subscriber
e uvm_test

e uvm_sequencer (see section 9)

8.1 uvm_component
The class uvm_component is the root base class for all structural elements. It provides interfaces for:
e Hierarchy
e Phasing: Pre-run phases, run phase, and post-run phases
e Factory: convenience interface to uvm_factory
e Process control: to suspend and resume processes
e Objection: to handle raised and dropped objections
e Reporting: hierarchical reporting of messages

e Recording: transaction recording

8.1.1 Class definition

namespace uvm {

class uvm_component : public sc_core::sc_module,
public uvm_report object
{
public:
// Group: Construction

explicit uvm_component (uvm component_ name name) ;

UVM-SystemC Language Reference Manual —- DRAFT Page 86

// Group: Hierarchy Interface

virtual uvm_component* get parent() const;

virtual const std::string get full name () const;

void get_children(std::vector<uvm_component*>& children) const;
uvm_component* get child(const std::string& name) const;

int get_next_child(std::string& name) const;

int get_first child(std::string& name) const;

int get num children() const;

bool has_child(const std::string& name) const;

uvm_component* lookup (const std::string& name) const;

unsigned int get depth() const;

// Group: Phasing Interface

virtual void build phase(uvm_phase& phase);

virtual void connect phase(uvm phase& phase);
virtual void end of elaboration phase(uvm phase& phase);
virtual void start of simulation phase(uvm_phase& phase);
virtual void run_phase(uvm_phase& phase);

virtual void pre_reset_phase (uvm_phase& phase);
virtual void reset phase(uvm_phase& phase);

virtual void post_ reset phase(uvm_phase& phase);
virtual void pre_configure phase(uvm _phase& phase);
virtual void configure_phase (uvm_phase& phase);
virtual void post configure phase(uvm _phase& phase);
virtual void pre_main_phase (uvm phase& phase);
virtual void main_phase (uvm_phase& phase);

virtual void post main phase(uvm phase& phase);
virtual void pre_shutdown phase(uvm phase& phase);
virtual void shutdown_phase (uvm phase& phase);
virtual void post shutdown phase(uvm phase& phase);
virtual void extract phase(uvm phase& phase);
virtual void check phase(uvm phase& phase);

virtual void report phase(uvm phase& phase);

virtual void final phase(uvm phase& phase);

virtual void phase started(uvm phase& phase);
virtual void phase ready to end(uvm phase& phase);

virtual void phase ended(uvm phase& phase);

Page 87 UVM-SystemC Language Reference Manual — DRAFT

void set domain(uvm domain* domain, int hier = 1);
uvm domain* get_domain () const;
void define domain(uvm_domain* domain);

void set phase imp(uvm phase* phase, uvm phase* imp, int hier = 1);

// Group: Process control interface
virtual bool suspend();

virtual bool resume () ;

// Group: Configuration Interface
void print config(bool recurse = false, bool audit = false) const;
void print config with_audit(bool recurse = false) const;

void print config matches(bool enable = true);

// Group: Objection Interface

virtual void raised(uvm_objection* objection,
uvm_object* source obj,
const std::string& description,

int count);

virtual void dropped(uvm objection* objection,
uvm_object* source obj,
const std::string& description,

int count);

virtual void all_dropped(uvm_objection* objection,
uvm_object* source obj,
const std::string& description,

int count);
// Group: Factory Interface
uvm_component* create component(const std::string& requested type name,

const std::string& name);

uvm_object* create object(const std::string& requested type name,

const std::string& name);

static void set_type_ override by type(uvm object_wrapper* original type,

UVM-SystemC Language Reference Manual —- DRAFT Page 88

uvm_object wrapper* override type,

bool replace = true);

void set inst override by type(const std::string& relative inst path,
uvm_object wrapper* original type,

uvm_object wrapper* override type);

static void set_type_override (const std::stringé& original type name,
const std::string& override type name,

bool replace = true);

void set_inst override(const std::string& relative inst path,
const std::string& original type name,

const std::string& override type name);

void print override info(const std::string& requested type name =

nn
’

const std::string& name =)

// Group: Hierarchical reporting interface
void set_report_id verbosity hier(const std::string& id,

int verbosity);

void set_report_severity id verbosity hier(uvm_severity severity,
const std::string& id,

int verbosity);

void set_report_ severity action hier(uvm_severity severity,

uvm_action action);

void set_report_id action hier(const std::string& id,

uvm_action action);
void set_report_severity id action_hier (uvm severity severity,
const std::stringé& 1id,

uvm_action action);

void set report default file hier(UVM FILE file);

void set report severity file hier (uvm severity severity,

Page 89 UVM-SystemC Language Reference Manual — DRAFT

UVM FILE file);

void set_report_id file hier(const std::string& id,

UVM FILE file);

void set_report_severity id file hier(uvm_severity severity,
const std::string& id,

UVM FILE file);

void set report verbosity level hier(int verbosity);

virtual void pre abort();
}; // class uvm _component

} // namespace uvm

8.1.2 Construction interface

When creating a new UVM component, an application must always provide a local leaf name. The parent is traced
from the current uvm_component at top of the hierarchy stack. The uvm_component hierarchy stack is built
during module construction, in the pre-run phases build_phase and connect_phase. If the parent component is not
derived from uvm_component, the leaf object becomes part of the object uvm_root. The full hierarchical name
must be unique; if it is not unique, a warning message is generated, and a number is appended at the end of the
hierarchical name to make it unique.

Compatible with SystemC, it is illegal to create a component after the before_end_of_elaboration phase or UVM
pre-run phases build_phase and connect_phase. The constructor for uvm_component spawns off the member
function run_phase of that component.

8.1.2.1 Constructor

explicit uvm _component(uvm component name name) ;
The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.1.3 Hierarchy interface

The following member functions provide user access to information about the component hierarchy, for example,
topology.

8.1.3.1 get_parent

virtual uvm_component* get parent() const;

The member function get_parent shall return a pointer to the component’s parent, or NULL if it has no parent.

UVM-SystemC Language Reference Manual —- DRAFT Page 90

8.1.3.2 get_full_name

virtual const std::string get_full name() const;

The member function get_full_name shall return the full hierarchical name of the component. It shall concatenate
the hierarchical name of the parent, if any, with the leaf name of the component, as returned by member function
uvm_object::get_name (see 5.2.3.2).

8.1.3.3 get_children
void get_children(std::vector<uvm_component*>& children) const;

The member function get_children shall return a vector of type std::vector containing a pointer to every instance of
the component’s children of class uvm_component.

8.1.3.4 get_child
uvm_component* get child(const std::string& name) const;

The member function get_child shall return a pointer to the component’s child which matches the argument string
name.

8.1.3.5 get_first_child
int get_first child(std::string& name) const;

The member function get_first_child shall pass the name of the first child of a component to the argument name.
The member function returns true of the first child has been found; otherwise it shall return false.

8.1.3.6 get_next_child
int get_next_child(std::string& name) const;

The member function get_next_child shall pass the name of the next child of a component, followed after a call to
member function get_first_child, to the argument name. The member function returns true of the next child has
been found; otherwise it shall return false.

8.1.3.7 get_num_children

int get_num children () const;
The member function get_num_children shall return the number of the component’s children.
8.1.3.8 has_child

bool has child(const std::string& name) const;

The member function has_child shall return true if this component has a child with the given name; otherwise it
shall return false;

Page 91 UVM-SystemC Language Reference Manual — DRAFT

8.1.3.9 lookup

uvm_component* lookup (const std::stringé& name) const;

The member function lookup shall return a pointer to a component with the passed hierarchical name name relative
to the component. If the argument name is preceded with a .” (dot), then the search shall begin relative to the top
level (absolute lookup). The member function shall return NULL if no component has been found. The argument
name shall not contain wildcards.

8.1.3.10 get_depth

unsigned int get depth() const;

The member function get_depth shall return the component’s depth from the root level. uvm_top has a depth of 0.
The test and any other top level components have a depth of 1, and so on.

8.1.4 Phasing interface

UVM components execute their behavior in strictly ordered, pre-defined phases. Each phase is defined by its own
member function, which derived components can override to incorporate component-specific behavior. During
simulation, the phases are executed one by one, where one phase must complete before the next phase begins.

The phases can be grouped in three main categories:
e Pre-run phases
e Run-time phases

e Post-run phases

8.1.4.1 Pre-run phases

The pre-run phases are responsible for the construction, connection and elaboration of the structural composition. In
the pre-run phases, there is neither notion nor progress of time. It consists of the following phases:

e build_phase: The component constructs its children in this phase. It may use the static member function
uvm_config_db::get to obtain any configuration for itself, the member function uvm_config_db::set to
define any configuration for its own children, and the factory interface for actually creating the children and
other objects it might need. An application shall declare child objects derived from uvm_component as
pointers, instead of member fields of a component, such that they can be created via the factory in this
phase.

e connect_phase: After creating the children in the build_phase, the component makes connections (binding
of (TLM) ports and exports) from child-to-child or from child-to-self (that is, to promote a child or export
up the hierarchy for external access).

o end_of elaboration_phase: At this point, the entire testbench environment has been built and connected.
No new components and connections shall be created from this point forward. Components do final checks
for proper connectivity.

e start_of simulation_phase: The simulation is about to begin, and this phase is used to perform any pre-
run activity such as displaying banners, printing final testbench topology and configuration information.

UVM-SystemC Language Reference Manual —- DRAFT Page 92

As UVM components are derived from class sc_module, the inherited callbacks before _end_of elaboration,
end_of elaboration, and start_of simulation are available. It is recommended not to use these member functions
for the construction of testbenches, but to use the UVM pre-run phases. Main reason is to support maximum
reusability and flexibility for building, configuration and connecting various verification components using the same
construction mechanism.

8.1.4.2 Run-time phases

The run-time phases are used to perform the actual verification. These phases are exclusively designed only for
objects derived from class uvm_component. Run-time phases consume time.

A component's primary function is implemented in the member function run_phase. The component should not
declare ‘run_phase’ as a thread process. The UVM-SystemC library spawns run_phase as a thread process. Other
processes may be spawned from the run phase, if desired. When a component returns from executing its member
function run_phase, it does not signify completion of its run phase. Any processes that it may have spawned still
continue to run.

The run phase executes along with the other processes in the SystemC language: no special status is provided to the
run_phase processes; for example, there is no guarantee that the run_phase processes is the first on the runable
queue at time 0s, and hence there is no guarantee that the run_phase processes execute ahead of the other SystemC
processes.

Concurrently to the execution of the run_phase, UVM defines a pre-defined schedule which consists of four groups
of phases which are executed sequentially.

e Reset phases: Phases to apply reset signals for the DUT. Consists of three phases called pre_reset_phase,
reset_phase, and post_reset_phase.

e Configure phases: Phases which can be used for the configuration of the DUT. Consists of three phases
called pre_configure_phase, configure_phase, and post_configure_phase.

e Main phases: Phases which are used to apply the primary test stimulus to DUT. Consists of three phases
called pre_main_phase, main_phase, and post_main_phase.

e Shutdown phase: Phases to wait for all data to be drained out of the DUT and to disable DUT. Consists of
three phases called pre_shutdown_phase, shutdown_phase, and post_shutdown_phase.

8.1.4.3 Post-run phases
The post-run phases are:

e extract_phase: This phase occurs after the run phase is over. This phase is specific to objects derived from
class uvm_component and does not apply to objects derived from class sc_module. It is used to extract
simulation results from coverage collectors and scoreboards, collect status/error counts, statistics, and other
information from components in bottom-up order. Being a separate phase, the extract phase ensures all
relevant data from potentially independent sources (that is, other components) are collected before being
checked in the next phase.

e check _phase: This phase is specific to objects derived from class uvm_component and does not apply to
objects derived from class sc_module. Having extracted vital simulation results in the previous phase, the
check phase is used to validate such data and determine the overall simulation outcome. It executes bottom-

up.

Page 93 UVM-SystemC Language Reference Manual — DRAFT

e report_phase: Finally, the report phase is used to output results to files and/or the screen. This phase is
also be specific to objects derived from class uvm_component and does not apply to objects derived from
class sc_module.

o final_phase: This phase is called as soon as all tests have been executed and completed. This phase is used
to close created or used files before the simulation exits.

8.1.4.4 build_phase

virtual void build phase(uvm phase& phase);

The member function build_phase shall provide a context to implement functionality as part of the build phase. The
application shall not call this member function directly.

8.1.4.5 connect_phase

virtual void connect phase(uvm phase& phase);

The member function connect_phase shall provide a context to implement functionality as part of the connect
phase. The application shall not call this member function directly.

8.1.4.6 end_of elaboration_phase

virtual void end of elaboration phase(uvm_phase& phase);

The member function end_of_elaboration_phase shall provide a context to implement functionality as part of the
end of elaboration phase. The application shall not call this member function directly.

8.1.4.7 start_of simulation_phase

virtual void start of simulation phase(uvm phase& phase);

The member function start_of _simulation_phase shall provide a context to implement functionality as part of the
start of simulation phase. The application shall not call this member function directly.

8.1.4.8 run_phase

virtual void run_phase(uvm_phase& phase);

The member function run_phase shall provide a context to implement functionality as part of the run phase. An
objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist. Once all
components have dropped their respective objection using phase.drop_objection, or if no components raise an
objection, the phase shall be ended. Any processes spawned by this member function continue to run after the
member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

8.1.4.9 pre_reset_phase

virtual void pre reset phase(uvm phase& phase);

UVM-SystemC Language Reference Manual —- DRAFT Page 94

The member function pre_reset_phase shall provide a context to implement functionality as part of the pre-reset
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.
Once all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after
the member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

8.1.4.10 reset_phase

virtual void reset phase(uvm_phase& phase);

The member function reset_phase shall provide a context to implement functionality as part of the reset phase. An
objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist. Once all
components have dropped their respective objection using phase.drop_objection, or if no components raise an
objection, the phase shall be ended. Any processes spawned by this member function continue to run after the
member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

8.1.4.11 post_reset_phase

virtual void post reset phase(uvm phase& phase);

The member function post_reset_phase shall provide a context to implement functionality as part of the post-reset
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.
Once all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after
the member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

8.1.4.12 pre_configuration_phase

virtual void pre_configuration_phase (uvm_phase& phase);

The member function pre_configuration_phase shall provide a context to implement functionality as part of the
pre-configuration phase. An objection shall be raised, using the member function phase.raise_objection, to cause
the phase to persist. Once all components have dropped their respective objection using phase.drop_objection, or if
no components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application shall
not call this member function directly.

8.1.4.13 configuration_phase
virtual void configuration phase(uvm phase& phase);

The member function configuration_phase shall provide a context to implement functionality as part of the
configuration phase. An objection shall be raised, using the member function phase.raise_objection, to cause the
phase to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function continue

Page 95 UVM-SystemC Language Reference Manual — DRAFT

to run after the member function returns, but they shall be killed once the phase ends. The application shall not call
this member function directly.

8.1.4.14 post_configuration_phase

virtual void post configuration phase(uvm _phase& phase);

The member function post_configuration_phase shall provide a context to implement functionality as part of the
post-configuration phase. An objection shall be raised, using the member function phase.raise_objection, to cause
the phase to persist. Once all components have dropped their respective objection using phase.drop_objection, or if
no components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application shall
not call this member function directly.

8.1.4.15 pre_main_phase

virtual void pre main phase(uvm _phase& phase);

The member function pre_main_phase shall provide a context to implement functionality as part of the pre-main
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.
Once all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after
the member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

8.1.4.16 main_phase

virtual void main_phase (uvm_phase& phase);

The member function main_phase shall provide a context to implement functionality as part of the main phase. An
objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist. Once all
components have dropped their respective objection using phase.drop_objection, or if no components raise an
objection, the phase shall be ended. Any processes spawned by this member function continue to run after the
member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

8.1.4.17 post_main_phase

virtual void post main phase(uvm phase& phase);

The member function post_main_phase shall provide a context to implement functionality as part of the post-main
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.
Once all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after
the member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

UVM-SystemC Language Reference Manual —- DRAFT Page 96

8.1.4.18 pre_shutdown_phase

virtual void pre_shutdown phase(uvm phase& phase);

The member function pre_shutdown_phase shall provide a context to implement functionality as part of the pre-
shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function continue
to run after the member function returns, but they shall be killed once the phase ends. The application shall not call
this member function directly.

8.1.4.19 shutdown_phase

virtual void shutdown phase (uvm phase& phase);

The member function shutdown_phase shall provide a context to implement functionality as part of the shutdown
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.
Once all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after
the member function returns, but they shall be killed once the phase ends. The application shall not call this member
function directly.

8.1.4.20 post_shutdown_phase

virtual void post_shutdown phase(uvm phase& phase);

The member function post_shutdown_phase shall provide a context to implement functionality as part of the post-
shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function continue
to run after the member function returns, but they shall be killed once the phase ends. The application shall not call
this member function directly.

8.1.4.21 extract_phase
virtual void extract phase(uvm phase& phase);

The member function extract_phase shall provide a context to implement functionality as part of the extract phase.
The application shall not call this member function directly.

8.1.4.22 check_phase

virtual void check phase(uvm phase& phase);

The member function check phase shall provide a context to implement functionality as part of the check phase.
The application shall not call this member function directly.

8.1.4.23 report_phase

virtual void report phase(uvm phase& phase);

Page 97 UVM-SystemC Language Reference Manual — DRAFT

The member function report_phase shall provide a context to implement functionality as part of the report phase.
The application shall not call this member function directly.

8.1.4.24 final_phase

virtual void final phase(uvm_phase& phase);

The member function final_phase shall provide a context to implement functionality as part of the final phase. The
application shall not call this member function directly.

8.1.4.25 phase_started

virtual void phase started(uvm phase& phase);

The member function phase_started shall provide a context to implement functionality as part of the start of each
phase. The argument phase specifies the phase being started. Any threads spawned in this callback are not affected
when the phase ends.

8.1.4.26 phase_ready to_end

virtual void phase ready to_end(uvm phase& phase);

The member function phase_ready_to_end shall provide a context to implement functionality as part of the ending
of each phase. The argument phase specifies the phase being ended. The member function shall be invoked when all
objections to ending the given phase have been dropped, thus indicating that phase is ready to end. All this
component’s threads spawned for the given phase will be killed upon return from this member function.
Components needing to consume delta cycles or advance time to perform a clean exit from the phase may raise the
phase’s objection.

8.1.4.27 phase_ended

virtual void phase ended(uvm_phase& phase);

The member function phase_ended shall provide a context to implement functionality at the end of each phase. The
argument phase specifies the phase that has ended. Any threads spawned in this callback are not affected when the
phase ends.

8.1.4.28 set_domain

void set domain(uvm domain* domain, int hier = 1);

The member function set_domain shall set the phase domain to this component and, if hier is set, recursively to all
its children.

8.1.4.29 get_domain

uvm_domain* get_domain () const;

The member function get_domain shall return a pointer to the phase domain set on this component.

UVM-SystemC Language Reference Manual —- DRAFT Page 98

8.1.4.30 define_domain

void define domain(uvm_domain* domain);

The member function define_domain shall build a custom phase schedules into the provided domain passed as
pointer.

8.1.4.31 set_phase_imp

void set phase imp(uvm phase* phase, uvm phase* imp, int hier = 1);

The member function set_phase_imp shall provide a context for an application-specific phase implementation,
which shall be created as a singleton object extending the default one and implementing required behavior for the
member functions execute and traverse.

The optional argument hier specifies whether to apply the custom functor to the whole tree or just this component.

8.1.5 Process control interface

The class uvm_component has the following member functions to support process control constructs on the run
process handle:

e suspend
e resume

The default implementation of these member functions is to invoke the corresponding process control construct on
the component’s run process handle, if the run process is active (that is, not already terminated), for those simulators
that support process control constructs. Each of these member functions return true if the simulator supports process
control constructs. For those simulators that do not support process control constructs, these member functions do
nothing and return false.

NOTE-Process control extensions are only supported when using the Accellera Systems Initiative SystemC 2.3.0 release of the
proof-of-concept library.

8.1.5.1 suspend

virtual bool suspend();

The member function suspend shall suspend operation of this component. It shall return true if suspending
succeeds; otherwise it shall return false.

NOTE-This member function shall be implemented by the application to suspend the component according to the protocol and
functionality it implements. A suspended component can be subsequently resumed by calling the member function resume.

8.1.5.2 resume
virtual bool resume();

The member function resume shall resume operation of this component. It shall return true if resuming succeeds;
otherwise it shall return false.

NOTE-This member function shall be implemented by the application to resume a component that was previously suspended
using member function suspend. Some components may start in the suspended state and may need to be explicitly resumed.

Page 99 UVM-SystemC Language Reference Manual — DRAFT

8.1.6 Configuration interface

The configuration interface accommodates additional printing and debug facilities for user-defined configurations
using the configuration database uvm_config_db.

8.1.6.1 print_config

void print config(bool recurse = false, bool audit = false) const;

The member function print_config shall print all configuration information for this component, as set by previous
calls to uvm_config_db<T>::set and exports to the resources pool. The settings are printing in the order of their
precedence. If argument recurse is set, then configuration information for all children and below are printed as well.
If argument audit is set, then the audit trail for each resource is printed along with the resource name and value
8.1.6.2 print_config_with_audit

void print config with audit(bool recurse = false) const;

The member function print_config_with_audit shall print all configuration information for this component, as set
by previous calls to uvm_config_db<T>::set and exports to the resources pool. The settings are printing in the order
of their precedence, and without the audit trail. If argument recurse is set, then configuration information for all
children and below are printed as well.
8.1.6.3 print_config_matches

void print_config matches(bool enable = true);

The member function print_config_matches shall print all information about the matching configuration settings as
they are being applied for each call of uvm_config_db<T>::get. By default, this information is not printed.
8.1.7 Objection interface

These member functions provide object level access into the uvm_objection mechanism.

8.1.7.1 raised

virtual void raised(uvm objection* objection,
uvm_object* source obj,
const std::string& description,

int count);

The member function raised shall be called when this or a descendant of this component instance raises the
specified objection. The argument source_obj is the object that originally raised the objection. The argument
description is optionally provided by the source_obj to give a reason for raising the objection. The argument count
indicates the number of objections raised by the source_obj.

8.1.7.2 dropped

virtual void dropped(uvm objection* objection,

UVM-SystemC Language Reference Manual —- DRAFT Page 100

uvm_object* source obj,
const std::string& description,

int count);

The member function dropped shall be called when this or a descendant of this component instance drops the
specified objection. The argument source_obj is the object that originally dropped the objection. The argument
description is optionally provided by the source_obj to give a reason for dropping the objection. The argument count
indicates the number of objections dropped by the source_obj.

8.1.7.3 all_dropped

virtual void all_dropped(uvm_objection* objection,
uvm_object* source obj,
const std::string& description,

int count);

The member function all_dropped shall be called when all objections have been dropped by this component and all
its descendants. The argument source_obj is the object that dropped the last objection. The argument description is
optionally provided by the source_obj to give a reason for raising the objection. The argument count indicates the
number of objections dropped by the source_obj.

8.1.8 Factory interface

The factory interface provides components with convenient access to the UVM's central uvm_factory object. The
member functions defined in this section shall call the corresponding member functions in uvm_factory, passing
whatever arguments it can to reduce the number of arguments required of the user.

8.1.8.1 create_component

uvm_component* create_component(const std::string& requested type name,

const std::string& name);

The member function create_component shall provide a convenience layer to the member function
uvm_factory::create_component_by _name, which calls upon the factory to create a new child component whose
type corresponds to the preregistered type name, requested_type_name, and instance name, name (see 7.5.4.4).

8.1.8.2 create_object

uvm_object* create object(const std::string& requested type name,

const std::string& name);

The member function create object shall provide a convenience layer to the member function
uvm_factory::create_object_by name, which calls upon the factory to create a new object whose type corresponds
to the preregistered type name, requested_type _name, and instance name, name (see 7.5.4.2).

Page 101 UVM-SystemC Language Reference Manual — DRAFT

8.1.8.3 set_type_override_by type

static void set_ type override by type(uvm object wrapper* original type,
uvm_object wrapper* override type,

bool replace = true);

The member function set_type_override_by type shall provide a convenience layer to the member function
uvm_factory::set_type override_by type, which registers a factory override for components and objects created
at this level of hierarchy or below (see 7.5.3.3).

The argument original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object by type or uvm_factory::create_component_by type, if the argument
requested_type matches the original_type and the instance paths match, the factory will produce the override_type.

8.1.8.4 set_inst_override_ by type

void set inst override by type(const std::string& relative inst path,
uvm_object wrapper* original type,

uvm_object wrapper* override type);

The member function set_inst_override_by type shall provide a convenience layer to the member function
uvm_factory::set_inst_override_by type, which registers a factory override for components and objects created at
this level of hierarchy or below (see 7.5.3.1).

The argument relative_inst_path is relative to this component and may include wildcards. The argument
original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create_object by type or uvm_factory::.create_component by type, if the requested_type
matches the original_type and the instance paths match, the factory will produce the override_type.

8.1.8.5 set type override

static void set_ type override(const std::string& original type name,
const std::stringé& override type name,

bool replace = true);

The member function set_type override shall provide a convenience layer to the member function
uvm_factory::set_type override_by name, which configures the factory to create an object of type
override_type name whenever the factory is asked to produce a type represented by original _type name (see
7.5.3.4).

The argument original_type_name typically refers to a preregistered type in the factory. It may, however, be any
arbitrary string. Subsequent calls to create_component or create_object with the same string and matching
instance path will produce the type represented by override_type name. The argument override_type_name must
refer to a preregistered type in the factory.

8.1.8.6 set_inst_override

void set_inst override(const std::stringé& relative inst path,

UVM-SystemC Language Reference Manual —- DRAFT Page 102

const std::string& original type name,

const std::string& override type name) ;

The member function set_inst_override shall provide a convenience layer to the member function
uvm_factory::set_inst_override_by name, which registers a factory override for components created at this level
of hierarchy or below (see 7.5.3.2).

The argument relative_inst_path is relative to this component and may include wildcards. The argument
original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary string.
Subsequent calls to create_component or create_object with the same string and matching instance path will
produce the type represented by override_type _name. The override_type _name must refer to a preregistered type in
the factory.

8.1.8.7 print_override_info
void print override info(const std::string& requested type name = "",

const std::string& name = "");

The member function print_override_info shall provide the same lookup process as create object and
create_component, but instead of creating an object, it prints information about what type of object would be
created given the provided arguments.

8.1.9 Hierarchical reporting interface

This interface provides versions of the member function set_report_* in the base class uvm_report_object that are
applied recursively to this component and all its children. When a report is issued and its associated action
UVM_LOG is set, the report will be sent to its associated file descriptor.

8.1.9.1 set _report_id_verbosity hier
void set_report_id verbosity hier(const std::stringé& id,

int verbosity);

The member function set_report_id_verbosity_hier shall recursively associate the specified verbosity with reports
of the given id. A verbosity associated with a particular severity-id pair, using member function
set_report_severity id_verbosity hier, shall take precedence over a verbosity associated by this member function.

8.1.9.2 set_report_severity id_verbosity hier

void set report severity id verbosity hier (uvm severity severity,
const std::stringé& 1id,

int verbosity);

The member function set_report_severity id_verbosity hier shall recursively associate the specified verbosity
with reports of the given severity with id pair. An verbosity associated with a particular severity-id pair takes
precedence over an verbosity associated with id, which takes precedence over a verbosity associated with a severity.

Page 103 UVM-SystemC Language Reference Manual — DRAFT

8.1.9.3 set_report_severity_action_hier

void set_report severity action hier(uvm_severity severity,

uvm_action action);

The member function set_report_severity _action_hier shall recursively associate the specified action with reports
of the given severity. An action associated with a particular severity-id pair shall take precedence over an action
associated with id, which shall take precedence over an action associated with a severity as defined in this member
function.

8.1.9.4 set_report_id_action_hier

void set_report_id action hier(const std::string& id,

uvm_action action);

The member function set_report_id_action_hier shall recursively associate the specified action with reports of the
given id. An action associated with a particular severity-id pair shall take precedence over an action associated with
id as defined in this member function.

8.1.9.5 set _report_severity id_action_hier

void set report severity id action_hier (uvm severity severity,
const std::stringé& id,

uvm_action action);

The member function set_report_severity id_action_hier shall recursively associate the specified action with
reports of the given severity with id pair. An action associated with a particular severity-id pair shall take precedence
over an action associated with id, which shall take precedence over an action associated with a severity.

8.1.9.6 set_report_default file_hier

void set_report_default file hier(UVM FILE file);

The member function set report_default file_hier shall recursively associate the report to the default file
descriptor. A file associated with a particular severity-id pair shall take precedence over a file associated with id,
which shall take precedence over a file associated with a severity, which shall take precedence over the default file
descriptor as defined in this member function.

8.1.9.7 set_report_severity file_hier

void set report severity file hier (uvm severity severity,

UVM_FILE file);

The member function set_report_severity file_hier shall recursively associate the specified file descriptor with
reports of the given severity. A file associated with a particular severity-id pair shall take precedence over a file
associated with id, which shall take precedence over a file associated with a severity as defined in this member
function.

UVM-SystemC Language Reference Manual —- DRAFT Page 104

8.1.9.8 set_report_id_file_hier

void set_report_id file hier(const std::string& id,

UVM FILE file);

The member function set_report_id_file_hier shall recursively associate the specified file descriptor with reports of
the given id. A file associated with a particular severity-id pair shall take precedence over a file associated with id as
defined in this member function.

8.1.9.9 set_report_severity id_file_hier

void set report severity id file hier (uvm _severity severity,
const std::strings& id,

UVM_FILE file);

The member function set_report_severity_id_file_hier shall recursively associate the specified file descriptor with
reports of the given severity and id pair. A file associated with a particular severity-id pair shall take precedence
over a file associated with id, which shall take precedence over a file associated with a severity, which shall take
precedence over the default file descriptor.

8.1.9.10 set_report_verbosity_level_hier

void set_report_verbosity level hier(int verbosity);

The member function set_report_verbosity level_hier shall recursively set the maximum verbosity level for
reports for this component and all those below it. Any report from this component sub-tree whose verbosity exceeds
this maximum will be ignored.

8.1.9.11 pre_abort

virtual void pre_abort();

The member function pre_abort shall be executed when the message system is executing a UVM_EXIT action.
The exit action causes an immediate termination of the simulation, but the pre_abort callback hook gives
components an opportunity to provide additional information to the application before the termination happens. For
example, a test may want to execute the report function of a particular component even when an error condition has
happened to force a premature termination. The member function pre_abort shall be called for all UVM
components in the hierarchy in a bottom-up fashion.

8.1.10 Macros

UVM-SystemC defines the following macros for class uvm_component:

e Utility macro UVYM_COMPONENT_UTILS(classname) to be used inside the Class definition, that
expands to:

o The declaration of the member function get_type_name, which returns the type of the class as
string

Page 105 UVM-SystemC Language Reference Manual — DRAFT

o The declaration of the member function get_type, which returns a factory proxy object for the
type
o The class uvm_component_registry<classname> used by the factory.

Template classes shall use the macro UVM_COMPONENT_PARAM_UTILS, to guarantee correct registration of
one or more parameters passed to the class template. Note that template classes are not evaluated at compile-time,
and thus not registered with the factory. Due to this, name-based lookup with the factory for template classes is not
possible. Instead, an application shall use the member function get_type for factory overrides.

8.2 uvm_driver

The class uvm_driver is the base class for drivers that initiate requests for new transactions. The ports are typically
connected to the exports of an appropriate sequencer component of class uvm_sequencer.

8.2.1 Class definition

namespace uvm {

template <typename REQ = uvm_sequence_item, typename RSP = REQ>
class uvm _driver : public uvm_component
{
public:
uvm_seq_item pull port<REQ, RSP> seq item port;

uvm_analysis port<RSP> rsp port;

explicit uvm _driver(uvm_component name name) ;
virtual const std::string get_type name () const;

}: // class uvm driver

} // namespace uvm

8.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.These object
types must be a derivative of class uvm_sequence_item.

8.2.3 Ports

8.2.3.1 seq_item_port

uvm_seq_item pull port<REQ, RSP> seqg_item port;

The port seq_item_port of type uvm_seq_item_pull_port shall be defined to connect (bind) the driver to the
corresponding export in the sequencer.

UVM-SystemC Language Reference Manual —- DRAFT Page 106

NOTE-In line with the UVM-SystemVerilog syntax, the member function connect can be used to establish the binding between
the driver and the sequencer. The UVM-SystemC implementation also supports the SystemC syntax using the member function
bind or using operator() to perform the binding.

8.2.3.2 rsp_port
uvm_analysis port<RSP> rsp_port;

The port rsp_port shall provide a way of sending responses back to the connected sequencer.
8.2.4 Member functions

8.2.4.1 Constructor

explicit uvm driver(uvm_component name name) ;

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.2.4.2 get type_name

virtual const std::string get type name () const;

The member function get_type_name shall return the type name of the object derived from this class as an object of
type std::string.

8.3 uvm_monitor

The class uvm_monitor is the base class for monitors. Deriving from uvm_monitor allows an application to
distinguish monitors from generic component types inheriting from uvm_component. Such monitors will
automatically inherit features that may be added to uvm_monitor in the future.

8.3.1 Class definition

namespace uvm {

class uvm monitor : public uvm component

{

public:
explicit uvm monitor(uvm_component name name);
virtual const std::string get type name () const;

}: // class uvm monitor

} // namespace uvm

Page 107 UVM-SystemC Language Reference Manual — DRAFT

8.3.2 Member functions

8.3.2.1 Constructor

explicit uvm monitor(uvm component name name) ;

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.3.2.2 get_type_name

virtual const std::string get_type name () const;

The member function get_type_name shall return the type name of the object derived from this class as an object of
type std::string.
8.4 uvm_agent

The class uvm_agent is the base class for the creation of agents. Deriving from uvm_agent will allow an
application to distinguish agents from other component types also using its inheritance. Such agents will
automatically inherit features that may be added to uvm_agent in the future.

While an agent’s build function, inherited from uvm_component, can be implemented to define any agent topology,
an agent typically contains three subcomponents: a driver, sequencer, and monitor. If the agent is active, subtypes
should contain all three subcomponents. If the agent is passive, subtypes should contain only the monitor.

8.4.1 Class definition

namespace uvm {

class uvm_agent : public uvm_component

{

public:
explicit uvm_agent(uvm_component name name) ;
virtual const std::string get type name () const;
uvm_active passive enum get is active() const;

}: // class uvm agent

} // namespace uvm

8.4.2 Member functions

8.4.2.1 Constructor

explicit uvm_agent(uvm_component name name) ;

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

UVM-SystemC Language Reference Manual —- DRAFT Page 108

8.4.2.2 get_type_name

virtual const std::string get_type name () const;

The member function get_type _name shall return the type name of the object derived from this class as an object of
type std::string.

8.4.2.3 get_is_active
uvm_active passive enum get is active();

The member function get_is_active shall return UVM_ACTIVE if the agent is acting as an active agent and
UVM_PASSIVE if it is acting as a passive agent (see 16.3.4). An application may override this behavior if a more
complex algorithm is needed to determine the active/passive nature of the agent.

8.5 uvm_env

The class uvm_env is the base class for the creation of a self-containing verification environment, such as a
verification component which contains multiple agents.

8.5.1 Class definition

namespace uvm {

class uvm_env : public uvm_component

{

public:
explicit uvm_env(uvm_component name name);
virtual const std::string get_type name () const;

}; // class uvm env

} // namespace uvm

8.5.2 Member functions
8.5.2.1 Constructor
explicit uvm_env(uvm_component_name name);
The constructor shall create and initialize an instance of the class with the name name passed as an argument.
8.5.2.2 get _type name
virtual const std::string get type name () const;

The member function get_type _name shall return the type name of the object derived from this class as an object of
type std::string.

Page 109 UVM-SystemC Language Reference Manual — DRAFT

8.6 uvm_test

The class uvm_test is the base class for the test environment.

8.6.1 Class definition

namespace uvm {

class uvm_test : public uvm_component

{

public:
explicit uvm_test(uvm_component name name);
virtual const std::string get type name () const;

}; // class uvm test

} // namespace uvm

8.6.2 Member functions

8.6.2.1 Constructor

explicit uvm_test(uvm_component name name);
The constructor shall create and initialize an instance of the class with the name name passed as an argument.
8.6.2.2 get type_name

virtual const std::string get_type name () const;

The member function get_type_name shall return the type name of the object derived from this class as an object of
type std::string.

8.7 uvm_scoreboard

The class uvm_scoreboard is the base class for the creation of a scoreboard. Deriving from uvm_scoreboard will
allow an application to distinguish scoreboards from other component types inheriting directly from
uvm_component. Such scoreboards will automatically inherit and benefit from features that may be added to
uvm_scoreboard in the future.

8.7.1 Class definition

namespace uvm {

class uvm_scoreboard : public uvm component

{

UVM-SystemC Language Reference Manual —- DRAFT Page 110

public:
explicit uvm_scoreboard(uvm component name name) ;
virtual const std::string get_type name () const;

}i // class uvm scoreboard

} // namespace uvm

8.7.2 Member functions

8.7.2.1 Constructor

explicit uvm_scoreboard(uvm _component name name) ;

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.7.2.2 get_type name

virtual const std::string get_type name () const;

The member function get_type_name shall return the type name of the component derived from this class as an
object of type std::string.

8.8 uvm_subscriber

The class uvm_subscriber is the base class for the creation of a subscriber. It provides an analysis export for
receiving transactions from a connected analysis export. Making such a connection “subscribes” this component to
any transactions emitted by the connected analysis port.

Subtypes of this class must define the member function write to process the incoming transactions. This class is
particularly useful when designing a coverage collector that attaches to a monitor.

8.8.1 Class definition

namespace uvm {

template <typename T = int>

class uvm_subscriber : public uvm component
{

public:

uvm_analysis export<T> analysis_export;
explicit uvm_subscriber(uvm component name name) ;

virtual const std::string get type name () const;

}: // class uvm subscriber

Page 111 UVM-SystemC Language Reference Manual — DRAFT

} // namespace uvm

8.8.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis export.

8.8.3 Export

8.8.3.1 analysis_export

uvm_analysis export<T> analysis_export;

The export analysis_export shall provide access to the member function write method, which derived subscribers
shall implement.

8.8.4 Member functions

8.8.4.1 Constructor

explicit uvm_subscriber (uvm_component name name) ;
The constructor shall create and initialize an instance of the class with the name name passed as an argument.
8.8.4.2 get type_name

virtual const std::string get_type name () const;

The member function get_type_name shall return the type name of the component derived from this class as an
object of type std::string.

UVM-SystemC Language Reference Manual —- DRAFT Page 112

9. Sequencer classes

The sequencer classes offer the interface between the stimuli generators (by means of sequences) and the structural
composition of the test infrastructure using verification components. The sequencer is integral part of a verification
component, which can be enabled in case the verification component is marked as ‘active’ (driving) element.

The sequencer processes the transactions, defined as objects derived from class uvm_sequence_item or class
uvm_sequence and passes these transactions to the driver (object derived from class uvm_driver).

The following sequencer classes are defined:
e uvm_sequencer_base
e uvm_sequencer_param_base
e uvm_sequencer

NOTE-The UVM-SystemC sequencer classes only partially implement the standardized UVM sequencer capabilities.
However, these definitions are sufficient to build a functional sequencer.

9.1 uvm_sequencer_base

The class uvm_sequencer_base is the root base class for all sequencer classes.

9.1.1 Class definition

namespace uvm {

class uvm_sequencer_base : public uvm_component
{
public:
explicit uvm_sequencer base(uvm_component name name);

bool is child (uvm_sequence_base* parent, const uvm_sequence_base* child) const;

virtual int user priority arbitration(
std::vector< uvm_sequence_request* > avail sequences);
virtual void execute item(uvm_sequence item* item);

virtual void start phase sequence(uvm phase& phase);
virtual void wait_ for_ grant(uvm_sequence_base* sequence ptr,
int item priority = -1,

bool lock request = false);

virtual void wait for_ item done(uvm_sequence base* sequence ptr,

int transaction id = -1);

Page 113 UVM-SystemC Language Reference Manual — DRAFT

bool is blocked(const uvm_sequence base* sequence ptr) const;
bool has_lock(uvm_sequence_base* sequence ptr);
virtual void lock(uvm_sequence base* sequence ptr);
virtual void grab(uvm_ sequence base* sequence ptr);
virtual void unlock(uvm_sequence base* sequence ptr);
virtual void ungrab(uvm_sequence base* sequence ptr);
virtual void stop_sequences () ;

virtual bool is_grabbed() const;

virtual uvm_sequence base* current grabber () const;
virtual bool has_do_available();

void set arbitration(SEQ ARB TYPE mode);
SEQ ARB TYPE get arbitration() const;

virtual void wait for_ sequences();

virtual void send request(uvm_sequence base* sequence ptr,
uvm_sequence_item* seq item,

bool rerandomize = false);

}: // class uvm sequencer base

} // namespace uvm

9.1.2 Constructor

explicit uvm_sequencer_ base(uvm_component name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
9.1.3 Member functions
9.1.3.1 is_child

bool is child (uvm_sequence_base* parent, const uvm sequence_base* child) const;

The member function is_child shall return true if the child sequence is a child of the parent sequence and false
otherwise.

9.1.3.2 user_priority_arbitration

virtual int user priority arbitration(std::vector< uvm sequence request* > avail sequences);

The member function user_priority_arbitration shall be called by an application when the sequencer arbitration
mode is set to SEQ_ARB_USER (via the member function set_arbitration) each time that it needs to arbitrate

UVM-SystemC Language Reference Manual —- DRAFT Page 114

among sequences. Derived sequencers may override this member function to perform a custom arbitration policy.
The override shall return one of the entries from the avail_sequences queue, which are indexes into an internal
queue of type std::vector< uvm_sequence_request* >. The default implementation shall behave similar as
SEQ_ARB_FIFO, which returns the first entry of avail_sequences.

9.1.3.3 execute_item

virtual void execute item(uvm_sequence item* item);

The member function execute_item shall execute the given transaction item given as argument directly on this
sequencer. A temporary parent sequence is automatically created for the item. There is no capability to retrieve
responses. If the driver returns responses, they will accumulate in the sequencer, eventually causing response
overflow unless member function uvm_sequence_base::set_response_queue_error_report_disabled is called.

9.1.3.4 start_phase_sequence

virtual void start phase sequence(uvm phase phase);

The member function start_phase_sequence shall start the default sequence for the phase given as argument. The
default sequence is configured via resources using either a sequence instance or sequence type (object wrapper). If
both are used, the sequence instance takes precedence. When attempting to override a previous default sequence
setting, an application shall override both the instance and type (wrapper) resources, else the override may not take
effect.

9.1.3.5 wait_for_grant

virtual void wait_for grant(uvm_sequence_base* sequence ptr,
int item priority = -1,

bool lock request = false);

The member function wait_for_grant shall issue a request for the specified sequence. If item_priority is not
specified, then the current sequence priority shall be used by the arbiter. If a lock_request is made, then the
sequencer shall issue a lock immediately before granting the sequence. The lock may be granted without the
sequence being granted if the member function is_relevant of the sequence instance is not asserted.

When this member function returns, the sequencer has granted the sequence, and the sequence must call
send_request without inserting any simulation delay other than delta cycles. The driver is currently waiting for the
next item to be sent via the send_request call.

9.1.3.6 wait_for_item_done

virtual void wait for item done(uvm_sequence base* sequence ptr,

int transaction id = -1);

The member function wait_for_item_done shall block the sequence until the driver calls item_done or put on a
transaction issued by the specified sequence. If no transaction_id parameter is specified, then the call will return the
next time that the driver calls item_done or put. If a specific transaction_id is specified, then the call will only
return when the driver indicates that it has completed that specific item.

Page 115 UVM-SystemC Language Reference Manual — DRAFT

9.1.3.7 is_blocked

bool is blocked(const uvm_sequence_base* sequence ptr) const;

The member function is_blocked shall return true if the sequence referred to by sequence_ptr is currently locked out
of the sequencer. It shall return false if the sequence is currently allowed to issue operations.

Even when a sequence is not blocked, it is possible for another sequence to issue a lock before this sequence is able
to issue a request or lock.

9.1.3.8 has_lock

bool has_lock(uvm_sequence base* sequence ptr);

The member function has_lock shall return true if the sequence referred to in the parameter currently has a lock on
the sequencer; otherwise it shall return false. Even if this sequence has a lock, a child sequence may also have a
lock, in which case the sequence is still blocked from issuing operations on the sequencer.

9.1.3.9 lock
virtual void lock(uvm_sequence base* sequence ptr);

The member function lock shall request a lock for the sequence specified by the specified argument sequence_ptr. A
lock request will be arbitrated the same as any other request. A lock is granted after all earlier requests are
completed and no other locks or grabs are blocking this sequence. The lock call shall return when the lock has been
granted.

9.1.3.10 grab

virtual void grab(uvm_sequence base* sequence ptr);

The member function grab shall request a grab for the sequence specified by the specified argument sequence_ptr.
A grab request is put in front of the arbitration queue. It will be arbitrated before any other requests. A grab is
granted when no other grabs or locks are blocking this sequence. The grab call shall return when the grab has been
granted.

9.1.3.11 unlock

virtual void unlock(uvm_sequence base* sequence ptr);

The member function unlock shall remove any locks and grabs obtained by the specified argument sequence_ptr.

9.1.3.12 ungrab

virtual void ungrab(uvm_sequence base* sequence ptr);

The member function ungrab shall remove any locks and grabs obtained by the specified argument sequence_ptr.

9.1.3.13 stop_sequences

virtual void stop_ sequences () ;

UVM-SystemC Language Reference Manual —- DRAFT Page 116

The member function stop_sequences shall inform the the sequencer to kill all sequences and child sequences
currently operating on the sequencer, and remove all requests, locks and responses that are currently queued. This

essentially resets the sequencer to an idle state.

9.1.3.14 is_grabbed

virtual bool is_grabbed() const;

The member function is_grabbed shall return true if any sequence currently has a lock or grab on this sequencer;
otherwise it shall return false.

9.1.3.15 current_grabber

virtual uvm_sequence_base* current grabber () const;

The member function current_grabber shall return a pointer to the sequence that currently has a lock or grab on the
sequence. If multiple hierarchical sequences have a lock, it returns the child that is currently allowed to perform
operations on the sequencer.

9.1.3.16 has_do_available

virtual bool has_do_available();

The member function has_do_available shall return true if any sequence running on this sequencer is ready to
supply a transaction, otherwise it shall return false.

9.1.3.17 set_arbitration

void set_arbitration(SEQ ARB TYPE mode) ;

The member function set_arbitration shall set the arbitration mode for the sequencer. The argument mode shall be
of type SEQ_ARB_TYPE and set to

e SEQ_ARB_FIFO: Requests are granted in FIFO order (default).

e SEQ_ARB_WEIGHTED: Requests are granted randomly by weight.

e SEQ_ARB_RANDOM: Requests are granted randomly.

e SEQ _ARB_STRICT_FIFO: Requests at highest priority granted in FIFO order.

e SEQ_ARB_STRICT_RANDOM: Requests at highest priority granted in randomly.

e SEQ_ARB_USER: Arbitration is delegated to the user-defined member function;
user_priority_arbitration. That member function will specify the next sequence to grant.

The default arbitration mechanism shall be set to SEQ_ARB_FIFO.

9.1.3.18 get_arbitration

SEQ ARB TYPE get arbitration() const;

The member function get_arbitration shall return the current arbitration mode set for the sequencer (see 9.1.3.17).

Page 117 UVM-SystemC Language Reference Manual — DRAFT

9.1.3.19 wait_for_sequences

virtual void wait for sequences();

The member function wait_for_sequences shall wait for a sequence to have a new item available.

9.1.3.20 send_request

virtual void send request(uvm_sequence base* sequence ptr,
uvm_sequence_item* seq item,

bool rerandomize

false);

Derived classes shall implement the member function send_request to send a request item to the sequencer, which
shall forward it to the driver. (See 9.2.2).

This function shall only be called after a wait_for_grant call.

NOTE-Rerandomize capabilities are not yet implemented for UVM-SystemC.

9.2 uvm_sequencer_param_base

The class uvm_sequencer_param_base extends the base class uvm_sequencer_base for specific request (REQ)
and response (RSP) types, which are specified as template arguments.

9.2.1 Class definition

namespace uvm {

template <typename REQ = uvm_sequence_item, typename RSP = REQ>
class uvm_sequencer_param base : public uvm_sequencer_base

{

public:

explicit uvm_sequencer_ param base(uvm_component name name);
// Group: Requests
void send_request(uvm_sequence base* sequence ptr,
uvm_sequence_item* seqg item,
bool rerandomize = false);
REQ get current item() const;

}; // class uvm sequencer param base

} // namespace uvm

UVM-SystemC Language Reference Manual —- DRAFT Page 118

9.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object
types must be a derivative of class uvm_sequence_item.

9.2.3 Constructor

explicit uvm_sequencer param base(uvm _component name name) ;

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
9.2.4 Requests

9.2.4.1 send_request

virtual void send request(uvm_sequence base* sequence ptr,
uvm_sequence_item* seq item,

bool rerandomize = false);

The member function send_request sends a request item pointed to by seq_item to the sequencer pointed to by
sequence_ptr. The sequencer shall forward it to the driver. This member function shall only be called after a call to
member function wait_for_grant.

NOTE-Rerandomize capabilities are not yet implemented.

9.2.4.2 get _current_item

REQ get current item() const;

The member function get _current_item shall return the requested item of type REQ, which is currently being
executed by the sequencer. If the sequencer is not currently executing an item, this member function shall return
NULL.

The sequencer is executing an item from the time that get_next_item or peek is called by the driver until the time
that member function get or item_done is called by the driver. In case a driver calls member function get, the
current item cannot be shown, since the item is completed at the same time as it is requested.

9.3 uvm_sequencer

The class uvm_sequencer defines the interface for the TLM communication of sequences or sequence-items by
providing access via an export object of class sc_export.

9.3.1 Class definition

namespace uvm {

template <typename REQ = uvm_sequence_item, typename RSP = REQ>

class uvm_sequencer : public uvm_sequencer param base<REQ,RSP>,

Page 119 UVM-SystemC Language Reference Manual — DRAFT

public uvm_sqr if base<REQ, RSP>

public:

explicit uvm_sequencer(uvm_component name name) ;

// Group: Exports

uvm_seq_item pull imp<REQ, RSP, this> seqg_item export;

// Group: Sequencer interface

virtual REQ get next item(tlm::tlm tag<REQ>* req = NULL);
virtual bool try next item(REQ& req);

virtual void item done(const RSP& item, bool use item = true);
virtual void item done () ;

virtual REQ get(tlm::tlm tag<REQ>* req = NULL);

virtual void get(REQ& req);

virtual REQ peek(tlm::tlm tag<REQ>* req = NULL);

virtual void put(const RSP& rsp);

virtual void stop_sequences () ;
}; // class uvm sequencer

} // namespace uvm

9.3.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object
types must be a derivative of class uvm_sequence_item.

9.3.3 Constructor

explicit uvm_sequencer (uvm component_name name) ;

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

9.3.4 Exports

9.3.4.1 seq_item_export

uvm_seq_item pull imp<REQ, RSP, this > seq item export;

The export seq_item_export shall provide access to the sequencer’s implementation uvm_seq_item_pull_imp via
the sequencer interface uvm_sqr_if _base <REQ, RSP> (see 15.13).

UVM-SystemC Language Reference Manual —- DRAFT Page 120

9.3.5 Sequencer interface
9.3.5.1 get next_item
virtual REQ get next item(tlm::tlm tag<REQ>* req = NULL);
The member function get_next_item shall retrieve the next available item from a sequence (see also 15.13.3.1).
9.3.5.2 try _next_item
virtual bool try next item(REQ& reqg);

The member function try_next_item shall retrieve the next available item from a sequence if one is available (see
also 15.13.3.2).

9.3.5.3 item_done

virtual void item done(const RSP& item, bool use item = true);

virtual void item done();
The member function item_done shall indicate that the request is completed (see also 15.13.3.3).

9.3.54 get

virtual REQ get(tlm::tlm tag<REQ>* reqg = NULL);

virtual void get(REQ& reqg);
The member function get shall retrieve the next available item from a sequence (see also 15.13.3.4).
9.3.5.5 peek

virtual REQ peek(tlm::tlm tag<REQ>* req = NULL);
The member function peek shall return the current request item if one is in the FIFO (see also 15.13.3.5).
9.35.6 put

virtual void put(const RSP& rsp);
The member function put shall send a response back to the sequence that issued the request (see also 15.13.3.6).
9.3.5.7 stop_sequences

virtual void stop_sequences () ;

The member function stop_sequences shall tell the sequencer to kill all sequences and child sequences currently
operating on the sequencer, and remove all requests, locks and responses that are currently queued. This essentially
resets the sequencer to an idle state.

Page 121 UVM-SystemC Language Reference Manual — DRAFT

9.3.6 Macros

9.3.6.1 UVM_DECLARE_P_SEQUENCER

UVM_DECLARE_P_SEQUENCER (SEQUENCER)

The macro UVM_DECLARE_P_SEQUENCER shall declare a variable p_sequencer whose type is specified by
the argument SEQUENCER.

UVM-SystemC Language Reference Manual —- DRAFT Page 122

10.Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsulated as a
sequence or sequence item. As the sequences and sequence items only describe stimuli, they are independent and
thus not part of the structural hierarchy of a UVM agent (in which sequencer, driver and monitor resides). Instead,
they are included at a higher functional layer defined within the UVM environment (e.g. encapsulated within a
verification component derived from class uvm_env) or as part of a UVM test environment (component derived
from class uvm_test).

The following sequence classes are defined:
e uvm_transaction
e uvm_sequence_item
e uvm_sequence_base
e uvm_sequence

When sequences are executed parallel, the sequencer will arbitrate among the parallel sequences. By default,
requests are granted in a first-in-first-out (FIFO) order (see 9.1.3.17).

10.1 uvm_transaction

The class uvm_transaction is the root base class for all UVM transactions. As such, the class uvm_sequence_item
will be derived from this class. The main purpose of this class is to provide timestamp properties, notification
events, and transaction recording.

10.1.1 Class definition

namespace uvm {
class uvm_transaction : public uvm object
{
public:
uvm_transaction () ;

explicit uvm_transaction(const std::string& name);

void set_transaction_id(int id);

int get_transaction_id() const;
}; // class uvm transaction

} // namespace uvm

Page 123 UVM-SystemC Language Reference Manual — DRAFT

10.1.2 Constructors

uvm_transaction () ;

explicit uvm_transaction(const std::string& name);

The constructor shall create and initialize an instance of the class, which is derived from class uvm_object, with the
name name passed as an argument.

10.1.3 Constraints on usage

An application shall not create transactions based on this base class. Instead, it shall use the class
uvm_sequence_item or class uvm_sequence.

10.1.4 Member functions

10.1.4.1 set_transaction_id

void set transaction_id(int id);

The member function set_transaction_id shall set the transaction’s numeric identifier (ID), passed as argument id.
If the transaction ID is not set via this member function, the transaction ID defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the sequence ID to route responses
in sequencers and to correlate responses to requests.

10.1.4.2 get_transaction_id

int get_transaction_id() const;

The member function get_transaction_id shall return the transaction’s numeric identifier (ID), which is -1 if not set
explicitly by set_transaction_id.

When using an object derived from class uvm_sequence <REQ, RSP> to generate stimulus, the transaction ID is
used along with the sequence ID to route responses in sequencers and to correlate responses to requests.
10.2 uvm_sequence_item

The class uvm_sequence_item is the base class for application-defined sequence items and also serves as the base
class for class uvm_sequence. The class uvm_sequence_item provides basic functionality for transactional objects,
both sequence items and sequences, to operate in the sequence mechanism.

10.2.1 Class definition

namespace uvm {
class uvm_sequence_item : public uvm_transaction

{

public:

UVM-SystemC Language Reference Manual —- DRAFT Page 124

uvm_sequence_item();

explicit uvm_sequence item(const std::string& name);

void set use sequence_ info(bool value);

bool get_use sequence_info() const;

void set_id info(uvm_sequence_ items& item);

virtual void set sequencer (uvm_sequencer_ base* sequencer);
uvm_sequencer base* get sequencer () const;

void set_parent_sequence(uvm_sequence base* parent);
uvm_sequence base* get parent sequence () const;

void set depth(int value);

int get_depth() const;

virtual bool is_item() const;

const std::string get_root_sequence_name () const;
const uvm_sequence base* get_ root sequence() const;

const std::string get_sequence path() const;
}; // class uvm sequence item

} // namespace uvm

10.2.2 Constructors

uvm_sequence item();

explicit uvm_sequence item(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
10.2.3 Member functions

10.2.3.1 set_use_sequence_info

void set_use sequence_info(bool value);

The member function set_use_sequence_info shall enable or disable printing, copying, or recording of sequence
information (sequencer, parent_sequence, sequence_id, etc.). When the argument of this member function is set to
false, then the usage of sequence information shall be disabled. When the argument of this member function is set to
true, the printing and copying of sequence information shall be enabled.

10.2.3.2 get_use_sequence_info

bool get use sequence info() const;

Page 125 UVM-SystemC Language Reference Manual — DRAFT

The member function get use_sequence_info shall return true if the usage of sequence information, such as
printing and copying of sequence information, has been enabled. The member function shall return false if the usage
of sequence information has been disabled.

10.2.3.3 set_id_info

void set id info(uvm_sequence items item);

The member function set_id_info shall copy the sequence ID and transaction ID from the referenced item into the
calling item. This routine should always be used by drivers to initialize responses for future compatibility.

10.2.3.4 set_sequencer

virtual void set_sequencer (uvm_sequencer_ base* sequencer);

The member function set_sequencer shall set the default sequencer, passed as argument, to be used for the sequence
or sequence item for which this member function is called. It shall take effect immediately, so it should not be called
while the sequence is actively communicating with the sequencer.

10.2.3.5 get_sequencer
uvm_sequencer_ base* get sequencer () const;

The member function get sequencer shall return a pointer to the default sequencer used by the sequence or
sequence item for which this member function is called.

10.2.3.6 set_parent_sequence
void set_parent_sequence(uvm_sequence base* parent);

The member function set_parent_sequence shall set the parent sequence, passed as an argument, of the sequence or
sequence item.

10.2.3.7 get_parent_sequence
uvm_sequence base* get parent sequence () const;

The member function get_parent_sequence shall return a pointer to the parent sequence of any sequence for which
this member function was called. If this is a parent sequence, the member function shall return NULL.

10.2.3.8 set_depth
void set depth(int value);

The member function set_depth shall set the depth of a particular sequence. If this member function is not called,
the depth of any sequence shall be calculated automatically. When called, the member function shall override the
automatically calculated depth, even if it is incorrect.

UVM-SystemC Language Reference Manual —- DRAFT Page 126

10.2.3.9 get_depth

int get_depth() const;

The member function get_depth shall return the depth of sequence from its parent. A parent sequence will have a
depth of 1, its child will have a depth of 2, and its grandchild will have a depth of 3.

10.2.3.10 is_item
virtual bool is_item() const;

The member function is_item shall return true when the object for which the member function is called is derived
from uvm_sequence_item. It shall return false if the object is derived from class uvm_sequence.

10.2.3.11 get_root_sequence_name

const std::string get_root_sequence_name () const;

The member function get_root_sequence_name shall provide the name of the root sequence (the top-most parent
sequence).

10.2.3.12 get_root_sequence
const uvm_sequence_base* get root sequence() const;

The member function get_root_sequence shall provide a reference to the root sequence (the top-most parent
sequence).

10.2.3.13 get_sequence_path
const std::string get_sequence path() const;

The member function get_sequence_path shall provide a string of names of each sequence in the full hierarchical
path. The dot character .’ is used as the separator between each sequence.

10.3 uvm_sequence_base

The class uvm_sequence_base defines the primary interface member functions to create, control and execute the
sequences.

10.3.1 Class definition

namespace uvm {

class uvm_sequence_base : public uvm_sequence_item

{
public:

explicit uvm_sequence base(const std::string& name);

Page 127 UVM-SystemC Language Reference Manual — DRAFT

// Group: Sequence state
uvm_sequence state enum get_ sequence_state () const;

void wait for sequence state(unsigned int state mask);

// Group: Sequence execution

virtual void start(uvm_sequencer base* sgr,
uvm_sequence base* parent sequence = NULL,
int this priority = -1,

bool call pre post = true);

virtual void pre_start();

virtual void pre body () ;

virtual void pre do(bool is item);

virtual void mid _do(uvm_sequence item* this item);
virtual void body () ;

virtual void post do(uvm_sequence item* this item);
virtual void post body () ;

virtual void post_start();

// Group: Sequence control

void set_priority(int value);

int get priority() const;

virtual bool is_relevant() const;

virtual void wait_for_ relevant() const;

void lock (uvm_sequencer base* sequencer = NULL);
void grab(uvm_sequencer base* sequencer = NULL) ;
void unlock (uvm_sequencer base* sequencer = NULL);

void ungrab(uvm_sequencer_ base* sequencer = NULL);

bool is blocked () const;
bool has lock () ;
void kill () ;

virtual void do_kill () ;

// Group: Sequence item execution
uvm_sequence item* create item(uvm_object_ wrapper* type var,
uvm_sequencer_base* | sequencer,

const std::string& name);

UVM-SystemC Language Reference Manual —- DRAFT Page 128

virtual void start item(uvm_sequence item* item,
int set priority = -1,

uvm_sequencer_base* sequencer = NULL);

virtual void finish item(uvm_sequence item* item,

int set priority = -1);

Il
|
=

~

virtual void wait for grant(int item priority

bool lock request = false);

virtual void send request(uvm_sequence_ item* request,

bool rerandomize = false);

virtual void wait_ for_ item done(int transaction id = -1);

// Group: Response interface

void use_response handler (bool enable);

bool get_use response_handler() const;

virtual void response_handler(const uvm_sequence_item* response);
void set_response queue_error report disabled(bool value);

bool get_response queue_ error_ report disabled() const;

void set_response_queue_depth(int value);

int get_response queue depth() const;

virtual void clear_response_queue () ;

// Data members

uvm_phase* starting phase;

}: // class uvm sequence base

} // namespace uvm

10.3.2 Constructor

explicit uvm_sequence base(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

Page 129 UVM-SystemC Language Reference Manual — DRAFT

10.3.3 Sequence state

10.3.3.1 get_sequence_state

uvm_sequence_state enum get_sequence_state() const;

The member function get_sequence_state shall return the sequence state as an enumerated value of type
uvm_sequence_state_enum (see 16.3.5). This member function can be used to wait on the sequence reaching or
changing from one or more states.

10.3.3.2 wait_for_sequence_state

void wait_for sequence_state(unsigned int state mask);

The member function wait_for_sequence_state shall wait until the sequence reaches one of the given states. If the
sequence is already in one of these states, the member function shall return immediately.

10.3.4 Sequence execution

10.3.4.1 start

virtual void start(uvm_sequencer_ base* sequencer,
uvm_sequence base* parent sequence = NULL,
int this priority = -1,

bool call pre post = true);

The member function start shall execute the sequence. The argument sequencer specifies the sequencer on which to
run this sequence. The sequencer must be compatible with the sequence, that is, the sequencer shall recognize the
communicated request and response types.

If parent_sequence is not passed as argument or set to NULL, then the sequence is treated as a root sequence,
otherwise it is a child of a parent sequence. In the latter case, the parent sequence’s member functions pre_do,
mid_do, and post_do shall be called during the execution of this sequence.

If this_priority is not passed as argument or set to -1, the priority of a sequence is set to priority of its parent
sequence. If it is a root (parent) sequence, its default priority is 100. A different priority greater than zero may be
specified using this argument. Higher numbers indicate higher priority.

If argument call_pre_post is not passed or set to true, then the member functions pre_body and post_body will be
called before and after calling the member function body of the sequence.

10.3.4.2 pre_start

virtual void pre_start();

The member function pre_start shall be provided as a callback for the application that is called before the optional
execution of member function pre_body. The application shall not call this member function.

UVM-SystemC Language Reference Manual —- DRAFT Page 130

10.3.4.3 pre_body

virtual void pre body () ;

The member function pre_body shall be provided as a callback for the application that is called before the execution
of member function body, but only when the sequence is started by using member function start. If start is called
with argument call_pre_post set to false, the member function pre_body shall not be called. The application shall
not call this member function.

10.3.4.4 pre_do

virtual void pre do(bool is item);

The member function pre_do shall be provided as a callback for the application that is called on the parent
sequence, if the sequence has issued a wait_for_grant call and after the sequencer has selected this sequence, and
before the item is randomized. The application shall not call this member function.

10.3.4.5 mid_do

virtual void mid _do(uvm_sequence item* this item);

The member function mid_do shall be provided as a callback for the application that is called after the sequence
item has been randomized, and just before the item is sent to the driver. The application shall not call this member
function.

10.3.4.6 body

virtual void body () ;

The member function body shall be provided as a callback for the application that is called before the optional
execution of member function post_body. The application shall not call this member function.

NOTE-In an application, the implementation of the sequence resides in this member function.
10.3.4.7 post_do
virtual void post do(uvm sequence item* this item);

The member function post_do shall be provided as a callback for the application that is called after the driver has
indicated that it has completed the sequence item, calling either the member function item_done or put. The
application shall not call this member function.

10.3.4.8 post_body
virtual void post body () ;

The member function post_body shall be provided as a callback for the application that is called before the
execution of member function post_start, but only when the sequence is started by using member function start. If
start is called with argument call_pre_post set to false, the member function post_body shall not be called. The
application shall not call this member function.

Page 131 UVM-SystemC Language Reference Manual — DRAFT

10.3.4.9 post_start

virtual void post_start();

The member function post_start shall be provided as a callback for the application that is called after the optional
execution of member function post_body. The application shall not call this member function.

10.3.5 Sequence control

10.3.5.1 set_priority

void set priority(int value);

The member function set_priority shall set the priority of a sequence. The default priority value for a sequence is
100. Higher values result in higher priorities. When the priority of a sequence is changed, the new priority will be
used by the sequencer the next time that it arbitrates between sequences.

10.3.5.2 get_priority

int get_priority () const;

The member function get_priority shall return the current priority of the sequence.

10.3.5.3 is_relevant

virtual bool is_relevant() const;

The member function is_relevant shall mark a sequence as being relevant or not. By default, the member function
is_relevant shall return true, indicating that the sequence is always relevant.

An application may choose to overload this member function to indicate to the sequencer that the sequence is not
currently relevant after a request has been made. Any sequence that implements the member function is_relevant
shall also implement wait_for_relevant, to enable a sequencer to wait for a sequence to become relevant.

When the sequencer arbitrates, it shall call the member function is_relevant on each requesting, unblocked sequence
to see if it is relevant. If this member function returns false, then the sequence will not be chosen.

If all requesting sequences are not relevant, then the sequencer shall call wait_for_relevant on all sequences and re-

arbitrate upon its return.

10.3.5.4 wait_for_relevant

virtual void wait for relevant() const;

The member function shall be called by the sequencer when all available sequences are not relevant. When
wait_for_relevant returns, the sequencer attempts to re-arbitrate.

Returning from this call does not guarantee that a sequence is relevant, although that would be the ideal. This
member function shall provide some delay to prevent an infinite loop.

If a sequence defines is_relevant so that it is not always relevant (by default, a sequence is always relevant), then
the sequence must also implement the member function wait_for_relevant.

UVM-SystemC Language Reference Manual —- DRAFT Page 132

10.3.5.5 lock

void lock (uvm_sequencer base* sequencer = NULL) ;

The member function lock shall request a lock on the specified sequencer. If sequencer is NULL, the lock will be
requested on the current default sequencer. A lock request will be arbitrated the same as any other request. A lock is
granted after all earlier requests are completed and no other locks or grabs are blocking this sequence. The lock call
shall return when the lock has been granted.

10.3.5.6 grab

void grab(uvm_sequencer_ base* sequencer = NULL);

The member function grab shall request a lock on the specified sequencer. If sequencer is NULL, the grab will be
requested on the current default sequencer. A grab request is put in front of the arbitration queue. It will be arbitrated
before any other requests. A grab is granted when no other grabs or locks are blocking this sequence. The grab call
shall return when the grab has been granted.

10.3.5.7 unlock
void unlock (uvm_sequencer_ base* sequencer = NULL);

The member function unlock shall remove any locks or grabs obtained by this sequence on the specified sequencer.
If the sequencer is NULL, then the unlock will be done on the current default sequencer.

10.3.5.8 ungrab
void ungrab(uvm_sequencer_ base* sequencer = NULL);

The member function ungrab shall remove any locks or grabs obtained by this sequence on the specified sequencer.
If the sequencer is NULL, then the ungrab will be done on the current default sequencer.

10.3.5.9 is_blocked
bool is blocked() const;

The member function is_blocked shall return a Boolean type indicating whether this sequence is currently prevented
from running due to another lock or grab. A true is returned if the sequence is currently blocked. A false is returned
if no lock or grab prevents this sequence from executing. Even if a sequence is not blocked, it is possible for another
sequence to issue a lock or grab before this sequence can issue a request.

10.3.5.10 has_lock
bool has_lock();

The member function has_lock shall return true if this sequence has a lock; otherwise it shall return false. Even if
this sequence has a lock, a child sequence may also have a lock, in which case the sequence is still blocked from
issuing operations on the sequencer.

Page 133 UVM-SystemC Language Reference Manual — DRAFT

10.3.5.11 Kkill

void kill();

The member function Kill shall shall kill the sequence, and cause all current locks and requests in the sequence’s
default sequencer to be removed. The sequence state shall be changed to STOPPED and the callback functions
post_body and post_start are not being executed.

10.3.5.12 do_kill

virtual void do_kill();

The member function do_Kkill shall provide a callback for an application that is called whenever a sequence is
terminated by using either Kill or stop_sequences.

10.3.6 Sequence item execution

10.3.6.1 create_item

uvm_sequence_item* create item(uvm object wrapper* type var,
uvm_sequencer_base* 1 sequencer,

const std::string& name);

The member function create_item shall create and initialize a sequence item of class uvm_sequence_item or
sequence of class uvm_sequence using the factory. The type of the created object, being a sequence item or
sequence, is defined by the first argument type_var, which shall be of type uvm_sequence_item or uvm_sequence
only. The sequence item or sequence will be initialized to communicate with the specified sequencer |_sequencer
passed as second argument. The name of the created item shall be passed as third argument.

10.3.6.2 start_item

virtual void start item(uvm_sequence item* item,
int set priority = -1,

uvm_sequencer_base* sequencer = NULL);

The member function start_item shall initiate execution of a sequence item specified as argument item. If the item
has not already been initialized using member function create_item, then it will be initialized here by using the
sequencer specified by argument sequencer. If argument sequencer is not specified or set to NULL, the default
sequencer will be used (see also 10.2.3.4). The argument set_priority can be used to specify the priority for the
execution. If argument set_priority is not specified or set to -1, the default priority shall be 100. Randomization, or
other member functions, may be done between start_item and finish_item to ensure late generation.

10.3.6.3 finish_item

virtual void finish item(uvm sequence item* item,

int set priority = -1);

UVM-SystemC Language Reference Manual —- DRAFT Page 134

The member function finish_item shall finalize execution of execution of a sequence item specified as argument
item. The member function shall be called after start_item with no delays or delta-cycles. The argument set_priority
can be used to specify the priority for the execution. If argument set_priority is not specified or set to -1, the default
priority shall be 100. Randomization, or other member functions, may be called between start_item and
finish_item.

10.3.6.4 wait_for_grant

virtual void wait for grant(int item priority = -1,

bool lock request = false);

The member function wait_for_grant shall issue a request to the current sequencer. If argument item_priority is not
specified or set to -1, then the current sequence priority will be used by the arbiter. If the argument lock_request is
set to true, then the sequencer will issue a lock immediately before granting the sequence.

NOTE-The lock may be granted without the sequence being granted if member function is_relevant is not asserted.

10.3.6.5 send_request

virtual void send request(uvm_sequence_ item* request,

bool rerandomize = false);

The member function send_request shall send the request item, passed as an argument, to the sequencer, which
shall forward it to the driver. If argument rerandomize is set to true, the item will be randomized before being sent to
the driver.

NOTE-In an application, the member function send_request shall only be called after a call to wait_for_grant.

10.3.6.6 wait_for_item_done

virtual void wait_for_ item done(int transaction id = -1);

The member function wait_for_item_done shall block until the driver calls item_done or put. If no transaction_id
argument is specified, then the call will return the next time that the driver calls item_done or put. If a specific
transaction_id is specified, then the call will return when the driver indicates completion of that specific item.

NOTE-If a specific transaction_id has been specified, and the driver has already issued an item_done or put for that transaction,
then the call will hang, having missed the earlier notification.

10.3.7 Response interface

10.3.7.1 use_response_handler

void use_response_handler(bool enable);

The member function use_response_handler shall send responses to the response handler when argument enable is
set to true. By default, responses from the driver are retrieved in the sequence by calling member function
get_response.

Page 135 UVM-SystemC Language Reference Manual — DRAFT

10.3.7.2 get_use_response_handler

bool get_use response_handler() const;

The member function get use_response_handler shall return the state set by use_response_handler. If this
member function returns false, the response handler is disabled.

10.3.7.3 response_handler
virtual void response handler (const uvm_sequence item* response);

The member function response_handler shall be provided to enable the sequencer, in case returns true, to call this
member function for each response that arrives for this sequence.

10.3.7.4 set_response_queue_error_report_disabled

void set response queue error_ report disabled(bool value);

The member function set_response_queue_error_report_disabled shall enable error reporting of overflows of the
reponse queue. The response queue will overflow if more responses are sent to this sequence from the driver than
calls to member function get_response are made. If argument value is set to false, error reporting is disabled. If
argument value is set to true, error reporting is enabled. By default, if the response queue overflows, an error is
reported.

10.3.7.5 get_response_queue_error_report_disabled
bool get_response_queue_error_report disabled() const;

The member function get_response_queue_error_report_disabled shall return the reporting status of an overflow
of the response queue. It returns false when error reports are generated and returns true if no such error reports are
generated.

10.3.7.6 set_response_queue_depth
void set_response queue_depth(int value);

The member function set_response_queue_depth shall set the depth of the reponse queue. The default maximum
depth of the response queue is 8. An argument value of -1 defines an unbound response queue.

10.3.7.7 get_response_queue_depth
int get_response_queue_depth () const;

The member function get response_queue_depth shall return the current depth for the response queue. An
unbound response queue returns the value -1.

10.3.7.8 clear_response_queue

virtual void clear response_queue () ;

The member function clear_response_queue shall empty the response queue for the sequence.

UVM-SystemC Language Reference Manual —- DRAFT Page 136

10.3.8 Data members

10.3.8.1 starting_phase

uvm_phase* starting phase;

The data member starting_phase shall specify the phase in which this sequence was started. The starting_phase
shall be set when the sequence is started as the default sequence (see 9.1.3.3).

10.4 uvm_sequence

The class uvm_sequence extends the base class uvm_sequence_base for specific request (REQ) and response
(RSP) types, which are specified as template arguments.

10.4.1 Class definition

namespace uvm {

template <typename REQ = uvm_sequence_item, typename RSP = REQ>
class uvm_sequence : public uvm_sequence base

{
public:

explicit uvm_sequence(const std::string& name);

void send_request(uvm_sequence item* request,

bool rerandomize = false);
REQ get current item() const;

virtual void get_response(RSP*& response,

int transaction id = -1);
}: // class uvm sequence

} // namespace uvm

10.4.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object
types must be a derivative of class uvm_sequence_item.

Page 137 UVM-SystemC Language Reference Manual — DRAFT

10.4.3 Constructor

explicit uvm_sequence(const std::string& name) ;

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

10.4.4 Member functions

10.4.4.1 send_request

void send request(uvm_ sequence item* request,

bool rerandomize = false);

The member function send_request shall send the request item, passed as an argument, to the sequencer, which
shall forward it to the driver. If argument rerandomize is set to true, the item will be randomized before being sent to
the driver.

NOTE-In an application, the member function send_request shall only be called after a call to wait_for_grant.

10.4.4.2 get_current_item

REQ get current item() const;

The member function get_current_item shall return the request item currently being executed by the sequencer. If
the sequencer is not currently executing an item, this method will return NULL. The sequencer is executing an item
from the time that get_next_item or peek is called until the time that get or item_done is called.

NOTE-A driver that only calls get will never show a current item, since the item is completed at the same time as it is requested.

10.4.4.3 get_response

virtual void get_response(RSP*& response,

int transaction id = -1);
The member function get_response shall retrieve a response via the response queue. If no response is available in
the response queue, the member function will block until a response is received.

If no transaction_id is passed as an argument, this member function will return the next response sent to this
sequence. If a transaction_id is specified, the member function will block until a response with that transaction ID is
received in the response queue.

UVM-SystemC Language Reference Manual —- DRAFT Page 138

11.Configuration and resource classes

The configuration and resource classes provide access to a centralized database where type specific information can
be stored and retrieved. A configuration or resource item may be associated with a specific hierarchical scope of an
object derived from class uvm_component or it may be visible to all components regardless of their hierarchical
position.

The following configuration and resource classes are defined:
e uvm_config_db
e uvm_resource_db
e uvm_resource_db_options
e uvm_resource_options
e uvm_resource_base
e uvm_resource_pool
e uUvm_resource

e uvm_resource_types

11.1 uvm_config_db

The class uvm_config_db provides a typed interface for object-centric configuration. It is consistent with the
configuration mechanism as defined for the class uvm_component. Information can be read from or written to the
database at any time during simulation.

11.1.1 Class definition

namespace uvm {

template <class T>
class uvm_config db
{
public:
uvm_config_db();
static void set(uvm_component* cntxt,
const std::stringé& inst name,
const std::string& field name,

const T& value);
static bool get(uvm_component* cntxt,

const std::string& inst name,

const std::string& field name,

Page 139 UVM-SystemC Language Reference Manual — DRAFT

T& value);

static bool exists(uvm_component* cntxt,
const std::string& inst name,
const std::strings& field name,

bool spell chk = false);

static void wait_modified(uvm_component* cntxt,
const std::string& inst name,

const std::string& field name);
}: // class uvm config db

} // namespace uvm

11.1.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the configuration
database.

11.1.3 Constraints on usage

To remain compatible with UVM-SystemVerilog, all of the member functions in class uvm_config_db are static, so
they must be called using the operator::.

11.1.4 Member functions

11.1.4.1 set

static void set(uvm_component* cntxt,
const std::string& instname,
const std::string& fieldname,

const T& value);

The member function set shall create a new or update an existing configuration setting using target field field_name
in instance with name inst_name from the context cntxt in which it is defined. If argument cntxt is set to NULL, then
inst_name defines the complete scope for the configuration setting; otherwise, the full name of the component
referenced to by cntxt shall be added to the instance name. An application may define inst_name and field_name to
be glob-style or regular expression style expressions.

11.1.4.2 get

static bool get(uvm_component* cntxt,

UVM-SystemC Language Reference Manual —- DRAFT Page 140

const std::string& instname,
const std::string& fieldname,

T& value);

The member function get shall retrieve a configuration setting via arguments inst_name and field_name, using a
component pointer cntxt as the starting search point. The argument inst_name shall be an explicit instance name
relative to cntxt and may be an empty string if the cntxt is the instance that the configuration object applies to. The
argument field_name is the specific field in the scope that is being searched for.

The member function returns true if the value is being found; otherwise, false is returned.

11.1.4.3 exists

static bool exists(uvm_component* cntxt,
const std::stringé& inst name,
const std::strings& field name,

bool spell chk = false);

The member function exists shall check if a value for field_name is available in inst_name, using component cntxt
as the starting search point. inst_name is an explicit instance name relative to cntxt and may be an empty string if the
cntxt is the instance that the configuration object applies to. field_name is the specific field in the scope that is being
searched for. The argument spell_chk can be set to true to turn spell checking on if it is expected that the field should
exist in the database. The function returns true if a config parameter exists and false if it does not exist.

11.1.4.4 wait_modified

static void wait modified(uvm_component* cntxt,
const std::stringé& inst name,

const std::string& field name);

The member function wait_modified shall wait for a configuration setting to be set for field_name in cntxt and
inst_name. The member function blocks until a new configuration setting is applied that effects the specified field.

11.2 uvm_resource_db

The class uvm_resource_db provides a convenience interface for the resources facility. In many cases basic
operations such as creating and setting a resource or getting a resource could take multiple lines of code using the
interfaces in class uvm_resource_base or class uvm_resource. The convenience layer in class uvm_resource_db
reduces many of those operations to a single line of code.

11.2.1 Class definition

namespace uvm {

template < typename T uvm_object* >

class uvm_resource_ db

Page 141 UVM-SystemC Language Reference Manual — DRAFT

public:

static uvm_resource<T>* get by type(const std::string& scope);

static uvm_resource<T>* get by name(const std::string& scope,
const std::string& name,

bool rpterr = true);

static uvm_resource<T>* set default(const std::string& scope,

const std::string& name);

static void set(const std::string& scope,
const std::string& name,
const T& val,

uvm_object* accessor = NULL) ;

static void set_anonymous(const std::stringé& scope,
const T& val,

uvm_object* accessor = NULL) ;

static bool read by name(const std::string& scope,
const std::string& name,
T val,

uvm_object* accessor = NULL) ;

static bool read by type(const std::stringé& scope,
T val,

uvm_object* accessor = NULL);

static bool write by name(const std::stringé& scope,
const std::string& name,
const T& val,

uvm_object* accessor = NULL) ;

static bool write by type(const std::string& scope,

const T& val,

uvm_object* accessor = NULL);

UVM-SystemC Language Reference Manual —- DRAFT Page 142

static void dump () ;

private:
// disabled

uvm_resource db () ;
}i // class uvm config db

} // namespace uvm

11.2.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the resource
database.

11.2.3 Constraints on usage

To remain compatible with UVM-SystemVerilog, all of the member functions in class uvm_resource_db are static,
so they must be called using the operator::. An application shall not instantiate this class, but shall call the static
member functions directly.

11.2.4 Member functions

11.2.4.1 get_by type

static uvm_resource<T>* get by type(const std::string& scope);

The member function get_by_type shall return the resource by type. The type is specified in the database class
parameter so the only argument to this member function is the scope.

11.2.4.2 get_by name

static uvm_resource<T>* get_ by name(const std::string& scope,
const std::string& name,

bool rpterr = true);

The member function get_by_name shall return the resource by name. The first argument is the current scope and
the second argument is the name of the resource to be retrieved. If the argument rpterr is set to true, a warning shall
be generated if no matching resource is found.

11.2.4.3 set_default

static uvm_resource<T>* set_default(const std::string& scope,

const std::string& name);

Page 143 UVM-SystemC Language Reference Manual — DRAFT

The member function set_default shall create a new resource with a default value and add it to the resource database
using arguments name and scope as the lookup parameters.

11.2.4.4 set

static void set(const std::string& scope,
const std::string& name,
const T& val,

uvm_object* accessor = NULL) ;

The member function set shall create a new resource, write a value val to it, and add it to the resource database using
arguments name and scope as the lookup parameters. The argument accessor is used for auditing

11.2.4.5 set_anonymous

static void set_anonymous(const std::string& scope,
const T& val,

uvm_object* accessor = NULL);

The member function set_anonymous shall create a new resource, write a value val to it, and add it to the resource
database. As the resource has no argument name, it will not be entered into the name map. But is does have an
argument scope for lookup purposes. The argument accessor is used for auditing.

11.2.4.6 read_by name

static bool read by name(const std::string& scope,
const std::string& name,
T val,

uvm_object* accessor = NULL) ;

The member function read_by_name shall locate a resource by arguments name and scope and returns the value
through argument val. The member function shall return true if the read was successful; otherwise it shall return
false. The argument accessor is used for auditing.

11.2.4.7 read_by type

static bool read by type(const std::string& scope,
T val,

uvm_object* accessor = NULL) ;

The member function read_by_type shall read a value by type. The value is returned through the argument val. The
argument scope is used for the lookup. The member function shall return true if the read was successful; otherwise it
shall return false. The argument accessor is used for auditing.

11.2.4.8 write_by name

static bool write by name (const std::stringé& scope,

UVM-SystemC Language Reference Manual —- DRAFT Page 144

const std::string& name,
const T& val,

uvm_object* accessor = NULL) ;

The member function write_by name shall write the argument val into the resources database. First, look up the
resource by using arguments name and scope. If it is not located then add a new resource to the database and then
write its value.

11.2.4.9 write_by type

static bool write by type(const std::string& scope,
const T& val,

uvm_object* accessor = NULL) ;

The member function write_by type shall write the argument val into the resources database. First, look up the
resource by type. If it is not located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and consequently may target other
scopes beyond the scope argument. Care must be taken with this function. If a get_by name match is found for
name and scope then val will be written to that matching resource and thus may impact other scopes which also
match the resource.

11.3 uvm_resource_db_options

The class uvm_resource_db_options shall provide a namespace for managing options for the resources database
facility. The class shall define static member functions for manipulating and retrieving the value of the data
members. The static data members represent options and settings that control the behavior of the resources database
facility.

11.3.1 Class definition

namespace uvm {

class uvm_resource db options

{

public:
static void turn_on_tracing() ;
static void turn_off tracing();

static bool is_tracing();
private:

// Disabled

uvm_resource db options();

Page 145 UVM-SystemC Language Reference Manual — DRAFT

}; // class uvm resource db options

} // namespace uvm

11.3.2 Member functions

11.3.2.1 turn_on_tracing

static void turn_on_tracing();

The member function turn_on_tracing shall enable tracing for the resource database. This causes all reads and
writes to the database to display information about the accesses.

11.3.2.2 turn_off tracing

static void turn_off tracing();

The member function turn_off_tracing shall disable tracing for the resource database.

11.3.2.3 is_tracing

static bool is_tracing();

The member function is_tracing shall return true if the tracing facility is enabled; otherwise it shall return false.

11.4 uvm_resource_options

The class uvm_resource_options shall provide a namespace for managing options for the resources facility. The
class shall only provide static member functions for manipulating and retrieving the value of its data members.

11.4.1 Class definition

namespace uvm {

class uvm_resource_options

{

public:
static void turn_on_auditing() ;
static void turn_off auditing();

static bool is_auditing();
private:

// Disabled

uvm_resource options () ;

UVM-SystemC Language Reference Manual —- DRAFT Page 146

}; // class uvm resource options

} // namespace uvm

11.4.2 Member functions

11.4.2.1 turn_on_auditing

static void turn_on_auditing();

The member function turn_on_auditing shall enable auditing for the resource database. This causes all reads and
writes to the database to store information about the accesses. Auditing is enabled by default.

11.4.2.2 turn_off_auditing
static void turn_off auditing();

The member function turn_off_auditing shall disable auditing for the resource database. If auditing is disabled, it is
not possible to get extra information about resource database accesses.

11.4.2.3 is_auditing
static bool is_auditing();

The member function is_auditing shall return true if auditing is enabled; otherwise it shall return false.

11.5 uvm_resource_base

The class uvm_resource_base shall provide a non-parameterized base class for resources. It supports interfaces for
scope matching and virtual member functions for printing the resource and accessors list.

11.5.1 Class definition

namespace uvm {

class uvm_resource base : public uvm object

{
public:

uvm_resource base(const std::string& name =

nn
’

const std::string& scope = "*");

// Group: Resource database interface

virtual uvm_resource base* get type handle() const = 0;

// Group: Read-only interface

Page 147 UVM-SystemC Language Reference Manual — DRAFT

void set read only();

bool is read only() const;

// Group: Notification

void wait_modified();

// Group: Scope interface
void set scope(const std::string* scope);
std::string get scope() const;

bool match scope(const std::string& scope);

// Group: Priority

virtual void set priority(uvm resource types::priority e pri) = 0;

// Group: Utility functions

void do_print(const uvm printers printer) const;

// Group: Audit trail

void record read access(uvm object* accessor = NULL);
void record write_ access(uvm _object* accessor = NULL) ;
virtual void print accessors() const;

void init_access_record(uvm_resource types::access_t access record);

// Data members: Precedence
unsigned int precedence;

static int unsigned default precedence;

}; // class uvm resource base

} // namespace uvm

11.5.2 Constructor

uvm_resource base(const std::string& name = "",

const std::string& scope = "*");

The constructor takes two arguments, the name of the resource name and a regular expression scope which
represents the set of scopes over which this resource is visible.

UVM-SystemC Language Reference Manual —- DRAFT Page 148

11.5.3 Resource database interface
11.5.3.1 get_type_handle
virtual uvm_resource base* get type handle() const = 0;

The member function get_type_handle shall return the type handle of the resource container.
11.5.4 Read-only interface
11.5.4.1 set_read_only

void set read only();

The member function set_read_only shall define the resource as a read-only resource. An attempt to call
uvm_resource<T>::write on the resource will cause an error.

11.5.4.2 is_read_only
bool is_read only() const;

The member function is_read_only shall return true if this resource has been set to read-only; otherwise it shall
return false.

11.5.5 Notification

11.5.5.1 wait_modified

void wait_modified();

The member function wait_modified shall block execution until the resource has been modified, that is, it waits till
a uvm_resource<T>::write operation has been performed.

11.5.6 Scope interface
11.5.6.1 set_scope

void set_scope(const std::string& scope);

The member function set_scope shall set the value of the regular expression that identifies the set of scopes over
which this resource is visible. If the supplied argument is a glob it will be converted to a regular expression before it
is stored.

11.5.6.2 get_scope

std::string get scope() const;

The member function get_scope shall retrieve the regular expression string that identifies the set of scopes over
which this resource is visible.

Page 149 UVM-SystemC Language Reference Manual — DRAFT

11.5.6.3 match_scope

bool match_scope(const std::stringé& scope);

The member function match_scope shall return true if this resource is visible in a scope. The scope is specified as
argument and may use regular expressions.

11.5.7 Priority

11.5.7.1 set_priority

virtual void set priority(uvm resource types::priority e pri) = 0;

The member function set_priority shall change the search priority of the resource based on the value of the priority
enumeration given as argument.

11.5.8 Utility functions

11.5.8.1 do_print

void do_print(const uvm printers printer) const;

The member function do_print shall be called by member function print. It allows an application to implement
application-specific printing routines.

11.5.9 Audit trail

11.5.9.1 record_read_access

void record read access(uvm _object* accessor = NULL);

The member function record_read_access shall record the read access for this resource.

11.5.9.2 record_write_access

void record write access(uvm object* accessor = NULL);
The member function record_write_access shall record the write access for this resource.
11.5.9.3 print_accessors

virtual void print accessors() const;
The member function print_accessors shall print the access records for this resource.
11.5.9.4 init_access_record

void init_access_record(uvm_resource_ types::access_t access record) ;

The member function init_access_record shall initialize a new access record.

UVM-SystemC Language Reference Manual —- DRAFT Page 150

11.6 uvm_resource_pool

The class uvm_resource_pool shall provide the centralized resource pool to store each resource both by primary

name and by type handle.

11.6.1 Class definition

namespace uvm {

class uvm_resource pool
{
public:

static uvm_resource_pool* get();

bool spell check(const std::string& s) const;

// Group: Set interface

void set(uvm_resource_ base* rsrc, int override = 0);

void set override(uvm_resource base* rsrc);

void set name override(uvm_resource base*

void set_type override(uvm_resource_ base*

// Group: Lookup

uvm_resource_ types::rsrc _q t* lookup_ name (

rsrc);

rsrc);

const std::stringé&
const std::stringé&

uvm_resource base*

scope,
name,

type handle,

uvm_resource base* get_highest precedence (

bool rpterr = true) const;

static void sort_by precedence(uvm_resource_types

uvm_resource base* get by name(const std::string&

const std::stringé&
uvm_resource base*

bool rpterr = true

uvm_resource types::rsrc q t* g) const;

iirsrc_q t* q);

scope,
name,
type handle,

)i

uvm_resource types::rsrc q t* lookup_type(const std::string& scope,

Page 151

uvm_resource base* type handle) const;

UVM-SystemC Language Reference Manual — DRAFT

uvm_resource base* get by type(const std::string& scope,

uvm_resource base* type handle);

uvm_resource_ types::rsrc_q t* lookup regex names(const std::string& scope,
const std::string& name,

uvm_resource base* type handle = NULL);

uvm_resource_ types::rsrc_q t* lookup regex(const std::string& re,

const std::string& scope);
uvm_resource_ types::rsrc_q t* lookup scope(const std::string& scope);

// Group: Set Priority
void set priority type(uvm resource base* rsrc,

uvm_resource types::priority e pri);

void set priority name(uvm_ resource base* rsrc,

uvm_resource_ types::priority e pri);

void set_priority(uvm_resource base* rsrc,

uvm_resource types::priority e pri);

// Group: Debug
uvm_resource_ types::rsrc q t* find unused resources() const;
void print_resources(uvm_resource_types::rsrc_q t rqg, bool audit = false) const;

void dump (bool audit = false) const;
}; // class uvm resource pool

} // namespace uvm

11.6.2 get

static uvm_resource_pool* get ();

The member function get shall return the singleton handle to the resource pool.

11.6.3 spell_check

bool spell check(const std::string& s) const;

UVM-SystemC Language Reference Manual —- DRAFT Page 152

The member function spell_check shall invoke the spell checker for the string s passed as argument. The universe of
correctly spelled strings—i.e. the dictionary—is the name map.

11.6.4 Set interface

11.6.4.1 set

void set(uvm _resource_base* rsrc, int override = 0);

The member function set shall add a new resource to the resource pool. The resource is inserted into both the name
map and type map so it can be located by either.

An object creates a resource and sets it into the resource pool. Later, other objects that want to access the resource
must get it from the pool.

Overrides can be specified using this interface. Either a name override, a type override or both can be specified. If an
override is specified, then the resource is entered at the front of the queue instead of at the back.

It is not recommended that an application specify the override parameter directly. Instead, an application should use
the member functions set_override, set_name_override, or set_type_override.

11.6.4.2 set_override
void set override(uvm_resource base* rsrc);

The member function set_override shall override the resource, provided as an argument, in the resource pool both
by name and type.

11.6.4.3 set_name_override
void set_name override(uvm_resource base* rsrc);

The member function set_name_override shall override the resource, provided as argument rsrc, in the resource
pool using normal precedence in the type map and will override the name.

11.6.4.4 set_type_override
void set type override(uvm resource base* rsrc);

The member function set_type_override shall override the resource, provided as argument rsrc, in the resource pool
using normal precedence in the name map and will override the type.

11.6.5 Lookup

11.6.5.1 lookup_name

uvm_resource types::rsrc q t* lookup name (const std::stringé& scope,
const std::string& name,
uvm_resource base* type handle,

bool rpterr = true);

Page 153 UVM-SystemC Language Reference Manual — DRAFT

The member function lookup_name shall return a queue of resources that match the name, scope, and type_handle,
which are passed as arguments. If no resources match the queue is returned empty. If rpterr is set, then a warning is
issued if no matches are found, and the spell checker is invoked on name. If type_handle is NULL, then a type check
is not made and resources are returned that match only name and scope.

11.6.5.2 get_highest_precedence

uvm_resource base* get_highest precedence(uvm resource_types::rsrc_q t* g) const;

The member function get_highest_precedence shall traverse the queue passes as argument, q, of resources and
return the one with the highest precedence. In the case where there exists more than one resource with the highest
precedence value, the first one that has that precedence will be the one that is returned.

11.6.5.3 sort_by precedence

static void sort by precedence(uvm resource_types::rsrc_q t* g);

The member function sort_by precedence shall sort the resources, passed as argument as a list of resources, in
precedence order. The highest precedence resource will be first in the list and the lowest precedence will be last.
Resources that have the same precedence and the same name will be ordered by most recently set first.

11.6.5.4 get_by name

uvm_resource base* get_by name(const std::stringé& scope,
const std::string& name,
uvm_resource base* type handle,

bool rpterr = true);

The member function get_by name shall return the resource by using the arguments name, scope, and type_handle.
Whether the get succeeds or fails, save a record of the get attempt. If the argument rpterr is true, the member
function shall report potential errors.

11.6.5.5 lookup_type

uvm_resource types::rsrc _q t* lookup_type(const std::string& scope,

uvm_resource base* type handle) const;

The member function lookup_type shall return a queue of resources that match the argument type handle and
argument scope. If no resources match, then the returned queue is empty.

11.6.5.6 get_by type

uvm_resource base* get_by type(const std::stringé& scope,

uvm_resource base* type handle) const;

The member function get_by type shall return the resources that match the argument type_handle and argument
scope. It shall insert a record into the get history list whether or not the get succeeded.

UVM-SystemC Language Reference Manual —- DRAFT Page 154

11.6.5.7 lookup_regex_names

uvm_resource types::rsrc q t* lookup regex names(const std::string& scope,
const std::string& name,

uvm_resource base* type handle = NULL);

The member function lookup_regex_names shall return a queue of resources that match the arguments name,
scope, and type_handle, where name and scope may be expressed as a regular expression.

11.6.5.8 lookup_regex

uvm_resource_types::rsrc_q t* lookup regex(const std::string& re,

const std::string& scope);

The member function lookup_regex shall return a queue of resources that whose name matches the regular
expression argument re and whose scope matches the specified argument scope.

11.6.5.9 lookup_scope

uvm_resource_ types::rsrc_gq t* lookup scope(const std::string& scope);

The member function lookup_scope shall return a queue of resources that are visible to a particular scope.

NOTE-This member function could be quite computation expensive, as it has to traverse all of the resources in the resource
database.

11.6.6 Set priority

11.6.6.1 set_priority_type

void set_priority type(uvm_resource_base* rsrc,

uvm_resource_ types::priority e pri);

The member function set_priority_type shall change the priority of the resource rsrc in the resource type map only,
based on the value of priority enumeration argument pri. The priority in the resource name map remains unchanged.

11.6.6.2 set_priority_name

void set_priority name (uvm_ resource_ base* rsrc,

uvm_resource_ types::priority e pri);

The member function set_priority_name shall change the priority of the resource rsrc in the resource name map
only, based on the value of priority enumeration argument pri. The priority in the resource type map remains
unchanged.

11.6.6.3 set_priority

void set priority(uvm resource base* rsrc,

uvm_resource types::priority e pri);

Page 155 UVM-SystemC Language Reference Manual — DRAFT

The member function set_priority shall change the priority of the resource rsrc in the resource name map and type
map, based on the value of priority enumeration argument pri.

11.6.7 Debug

11.6.7.1 find_unused_resources

uvm_resource_ types::rsrc q t* find unused resources () const;

The member function find_unused_resources shall return a queue of resources that have at least one write and no
reads.

11.6.7.2 print_resources

void print resources(uvm resource types::rsrc_q t rg, bool audit = false) const;

The member function print_resources shall print the queue of resources passed as argument rq. If the argument
audit is true, the audit trail is printed for each resource along with the name, value, and scope regular expression.

11.6.7.3 dump

void dump (bool audit = false) const;

The member function dump shall print the entire resource pool. The member function print_resources shall be
used to initiate the printing. If the argument audit is true, the audit trail is printed for each resource along with the
name, value, and scope regular expression.

11.7 uvm_resource

The class uvm_resource shall provide the interface to read and write to the resource database.

11.7.1 Class definition

namespace uvm {

template <typename T = int>
class uvm_resource : public uvm resource base
{

public:
// Group: Type Interface
static uvm_resource<T>* get_type () ;

uvm_resource base* get type handle() const;

// Group: Set/Get Interface

void set();

UVM-SystemC Language Reference Manual —- DRAFT Page 156

void set override(uvm resource types::override t override =
uvm_resource_types: :BOTH_OVERRIDE) ;

static uvm_resource<T>* get by name(const std::stringé& scope,
const std::string& name,

bool rpterr = true);

static uvm_resource<T>* get by type(const std::stringé& scope,

uvm_resource base* type handle);

// Group: Read/Write Interface
T read(uvm_object*& accessor);

void write(const T& t, uvm object*s& accessor);

// Group: Priority
void set_priority(uvm_resource types::priority e pri);

static uvm_resource<T>* get_highest precedence (uvm_resource_types::rsrc_q t* g);
}: // class uvm resource

} // namespace uvm

11.7.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the resource
database.

11.7.3 Type interface
11.7.3.1 get_type
static uvm_resource<T>* get_type ()’

The member function get_type shall return the static type handle. The return type is the type of the parameterized
class.

11.7.3.2 get_type_handle
uvm_resource base* get_type handle () const;

The member function get_type_handle shall return the static type handle of this resource in a polymorphic fashion.
The return type of get_type_handle is uvm_resource_base.

NOTE-As the member function is not static, it can only be used by instances of a parameterized resource.

Page 157 UVM-SystemC Language Reference Manual — DRAFT

11.7.4 Set/Get interface

11.7.4.1 set

void set () ;

The member function set shall put the resource into the global resource pool.

11.7.4.2 set_override

void set_override(uvm_resource types::override t override =

uvm_resource_types::BOTH OVERRIDE) ;

The member function set_override shall put the resource into the global resource pool as an override. This means it
gets put at the head of the list and is searched before other existing resources that occupy the same position in the
name map or the type map. The default is to override both the name and type maps. However, using the override
argument you can specify that either the name map or type map is overridden.

11.7.4.3 get_by name

static uvm_resource<T>* get by name(const std::string& scope,
const std::string& name,

bool rpterr = true);

The member function get_by _name shall look up a resource by name in the name map. The first resource with the
specified name, whose type is the current type, and is visible in the specified scope is returned, if one exists. The
rpterr flag indicates whether or not an error should be reported if the search fails. If rpterr is set to one then a failure
message is issued, including suggested spelling alternatives, based on resource names that exist in the database,
gathered by the spell checker.

11.7.4.4 get_by type

static uvm_resource<T>* get by type(const std::string& scope,

uvm_resource base* type handle);

The member function get_by_type shall look up a resource by type_handle in the type map. The first resource with
the specified type_handle that is visible in the specified scope is returned, if one exists. The member function shall
return NULL if there is no resource matching the specifications.

11.7.5 Read/Write interface

11.7.5.1 read

T read(uvm object*& accessor);

The member function read shall return the object stored in the resource container. If an accessor object is supplied
then also update the accessor record for this resource.

UVM-SystemC Language Reference Manual —- DRAFT Page 158

11.7.5.2 write

void write(const T& t, uvm object*s& accessor);

The member function write shall modify the object stored in this resource container. If the resource is read-only
then issue an error message and return without modifying the object in the container. If the resource is not read-only
and an accessor object has been supplied then also update the accessor record. Lastly, replace the object value in the
container with the wvalue supplied as the argument, t, and release any processes blocked on
uvm_resource_base::wait_modified.

11.7.6 Priority

11.7.6.1 set_priority

void set_priority(uvm_resource types::priority e pri);

The member function set_priority shall change the search priority of the resource based on the value of the priority
enum argument, pri.

11.7.6.2 get_highest_precedence

static uvm_resource<T>* get_highest precedence (uvm_resource_types::rsrc_q t* g);

The member function get_highest_precedence shall locate the first resource, in a queue of resources, with the
highest precedence whose type is T.

11.8 uvm_resource_types

The class uvm_resource_types shall provide typedefs and enums used throughout the resources facility. This class
shall not contain any member function or data members, only typedefs. It’s used in lieu of package-scope types.

11.8.1 Class definition

namespace uvm {

class uvm_resource_types

{

public:
typedef std::queue<uvm resource base* > rsrc g t;
typedef enum { TYPE OVERRIDE, NAME OVERRIDE, BOTH_OVERRIDE } override_t;
typedef enum { PRI_HIGH, PRI_LOW } priority e;

}; // class uvm_resource_types

} // namespace uvm

Page 159 UVM-SystemC Language Reference Manual — DRAFT

11.8.2 Type definitions (typedefs)

11.8.2.1 rsrc_qg_t
The typedef rsrc_g_t shall define a queue of handles of type uvm_resource_base.

NOTE-UVM-SystemC does not define uvm_queue, since std::queue can be used.

11.8.2.2 override_t

The typedef override_t shall define an enumeration to override enumepriority of a resource. Valid values are:
o TYPE_OVERRIDE: Override a resource in the resource pool both by type.
o NAME_OVERRIDE: Override a resource in the resource pool both by name.

e BOTH_OVERRIDE: Override a resource in the resource pool both by name and type.

11.8.2.3 priority e
The typedef priority_e shall define an enumeration for the priority of a resource. Valid values are:
e PRI_HIGH: High priority, which places the resource at the front of the queue.

e PRI_LOW: Low priority, which places the resource at the back of the queue.

UVM-SystemC Language Reference Manual —- DRAFT Page 160

12.Phasing and synchronization classes

The phasing and synchronization concept in UVM defines standardized stages called phases which are executed in a
well defined order. Each UVM component offers dedicated callbacks for each of these phases to implement
application-specific behavior. Phases are executed sequentially, but each phase may consist of multiple function
calls (of components contributing to that phase) in parallel. Besides standardized common and UVM run-time
phases, user-defined phases can be added.

In order to support synchronization during the execution of the run-time phases, which run as concurrent processes,
additional methods are available to coordinate the execution of or status of these processes between all UVM
components or objects.

The following phasing and synchronization classes are defined:
e uvm_phase: The base class for defining a phase’s behavior, state, context.
e uvm_domain: Phasing schedule node representing an independent branch of the schedule.
e uvm_bottomup_phase: A phase implementation for bottom up function phases.
e uvm_topdown_phase: A phase implementation for top-down function phases.

e uvm_process_phase®: A phase implementation for phases which are launched as spawned processes. In
UVM-SystemVerilog, this class was called uvm_task_phase’.

e uvm_objection: Mechanism to synchronize phases based on passing execution status information between
running processes.
12.1 uvm_phase

The class uvm_phase shall provide the base class for the UVM phasing mechanism.

12.1.1 Class definition

namespace uvm {

class uvm _phase : public uvm object

{
public:
// Group: Construction
explicit uvm_phase(const std::string& name,
uvm_phase type phase type = UVM PHASE SCHEDULE,

uvm_phase* parent = NULL);
uvm_phase type get phase type () const;

// Group: State

uvm_phase_state get_state() const;

Page 161 UVM-SystemC Language Reference Manual — DRAFT

int get_run count() const;

uvm_phase* find by name(const std::string& name, bool stay in scope = true) const;
uvm_phase* find(const uvm phase* phase, bool stay in scope = true) const;

bool is(const uvm _phase* phase) const;

bool is before(const uvm phase* phase) const;

bool is_after(const uvm phase* phase) const;

// Group: Callbacks

virtual void exec_func(uvm_component* comp, uvm phase* phase);

virtual void exec_processo(uvm_component* comp, uvm _phase* phase);

// Group: Schedule

void add(uvm _phase* phase,
uvm_phase* with phase = NULL,
uvm_phase* after phase = NULL,

uvm_phase* before phase = NULL) ;

uvm_phase* get parent() const;

virtual const std::string get_full name() const;
uvm_phase* get_schedule(bool hier = false) const;
std::string get schedule name(bool hier = false) const;
uvm_domain* get_domain () const;

std::string get domain name () const;

uvm_phase* get imp() const;

// Group: Synchronization
uvm_objection* get objection() const;
virtual void raise objection(uvm object* obj,
const std::string& description = "",

int count =1);

virtual void drop_objection(uvm object* obj,
const std::string& description = "",
int count =1);

void sync(uvm domain* target,

uvm_phase* phase = NULL,

UVM-SystemC Language Reference Manual —- DRAFT Page 162

uvm_phase* with phase = NULL);

void unsync(uvm_domain* target,
uvm_phase* phase = NULL,

uvm_phase* with phase = NULL) ;
void wait for state(uvm phase state state, uvm wait op op = UVM EQ);

// Group: Jumping
void jump (const uvm phase* phase);
uvm_phase* get jump target() const;

}; // class uvm phase

} // namespace uvm

12.1.2 Construction

12.1.2.1 Constructor

explicit uvm_phase(const std::string& name,
uvm_phase_type phase type = UVM PHASE SCHEDULE,

uvm_phase* parent = NULL);

The constructor shall create a new phase node, using the arguments name, the type name of type type_name and
optionally the pointer to the parent phase parent, as argument.

12.1.2.2 get_phase_type

uvm_phase_type get phase type() const;

The member function get_phase_type shall return the phase type as defined by uvm_phase_type (see 16.3.6).

12.1.3 State

12.1.3.1 get_state

uvm_phase_state get state() const;

The member function get_state shall return the current state of this phase.

12.1.3.2 get_run_count

int get_run count() const;

The member function get_run_count shall return the integer number of times this phase has executed.

Page 163 UVM-SystemC Language Reference Manual — DRAFT

12.1.3.3 find_by name

uvm_phase* find by name(const std::string& name, bool stay in scope = true);

The member function find_by name shall locate a phase node with the specified name and return its handle. If
argument stay_in_scope is true, it searches only within this phase’s schedule or domain.

12.1.3.4 find
uvm_phase* find(const uvm phase* phase, bool stay in scope = true);

The member function find shall locate the phase node with the specified phase implementation and return its handle.
If argument stay_in_scope is true, it searches only within this phase’s schedule or domain.

12.1.35is
bool is(const uvm phase* phase) const;

The member function is shall return true if the containing uvm_phase refers to the same phase as the phase
argument; otherwise it shall return false.

12.1.3.6 is_before

bool is before(const uvm phase* phase) const;

The member function is_before shall return true if the containing uvm_phase refers to a phase that is earlier than
the phase argument; otherwise it shall return false.

12.1.3.7 is_after

bool is_after(const uvm _phase* phase) const;

The member function is_after shall return true if the containing uvm_phase refers to a phase that is later than the
phase argument; otherwise it shall return false.

12.1.4 Callbacks

12.1.4.1 exec_func

virtual void exec func(uvm_component* comp, uvm_phase* phase);

The member function exec_func shall implement the functor/delegate functionality for a function phase type comp -
the component to execute the functionality upon phase - the phase schedule that originated this phase call.

12.1.4.2 exec_process® (exec_task’)

virtual void exec_process(uvm_component* comp, uvm phase* phase);

The member function exec_process® shall implement the functor/delegate functionality for a task phase type comp -
the component to execute the functionality upon phase - the phase schedule that originated this phase call.

UVM-SystemC Language Reference Manual —- DRAFT Page 164

NOTE-The member function was called exec_task in UVM in SystemVerilog, but has been renamed in line with SystemC
processes.

12.1.5 Schedule

12.1.5.1 add

void add(uvm phase* phase,
uvm_phase* with phase = NULL,
uvm_phase* after phase = NULL,

uvm_phase* before phase = NULL) ;

The member function add shall build a schedule structure, inserting phase by phase, specifying linkage. Phases can
be added anywhere, in series or parallel with existing nodes. The argument phase is the handle of a singleton derived
phase implementation containing actual functor. By default the new phase shall be appended to the schedule. When
argument with_phase is passed, the new phase shall be added in parallel to the actual phase. When argument
after_phase is passed, the new phase shall be added as successor to the actual phase. When the argument
before_phase is passed, the new phase shall be added as predecessor to the actual phase.

12.1.5.2 get_parent

uvm_phase* get parent() const;
The member function get_parent shall return the parent schedule node, if any, for hierarchical graph traversal.
12.1.5.3 get_full_name

virtual const std::string get_full name() const;

The member function get_full_name shall return the full path from the enclosing domain down to this node. The
singleton phase implementations have no hierarchy.

12.1.5.4 get_schedule
uvm_phase* get_schedule(bool hier = false) const;

The member function get_schedule shall return the topmost parent schedule node, if any, for hierarchical graph
traversal.

12.1.5.5 get_schedule_name

std::string get_schedule name (bool hier = false) const;
The member function get_schedule_name shall return the schedule name associated with this phase node.
12.1.5.6 get_domain

uvm_domain* get_domain () const;

The member function get_domain shall return the enclosing domain.

Page 165 UVM-SystemC Language Reference Manual — DRAFT

12.1.5.7 get_domain_name

std::string get domain name () const;

The member function get_domain_name shall returns the domain name associated with this phase node.

12.1.5.8 get_imp

uvm_phase* get imp () const;

The member function get_imp shall return the phase implementation for this node. It shall return NULL if this
phase type is nota UVM_PHASE_LEAF_NODE.

12.1.6 Synchronization

12.1.6.1 get_objection

uvm_objection* get objection() const;

The member function get_objection shall return the object of class uvm_objection that gates the termination of the
phase.

12.1.6.2 raise_objection

virtual void raise_ objection(uvm _object* obj,
const std::string& description = "",

int count =1);

The member function raise_objection shall return the object of class uvm_objection that gates the termination of
the phase.
12.1.6.3 drop_objection

virtual void drop_objection(uvm object* obj,
const std::string& description = "",

int count =1);

The member function drop_objection shall drop an objection to ending a phase. The drop is expected to be matched
with an earlier raise.

12.1.6.4 sync

void sync(uvm_domain* target,
uvm_phase* phase = NULL,

uvm_phase* with phase = NULL);

The member function sync shall synchronize two domains, fully or partially. The argument target is a handle of the
target domain to synchronize this one to. The optional argument phase is the phase in this domain to synchronize

UVM-SystemC Language Reference Manual —- DRAFT Page 166

with; otherwise synchronize to all. The optional argument with_phase is the target-domain phase to synchronize
with; otherwise use phase in the target domain.

12.1.6.5 unsync

void unsync(uvm_domain* target,
uvm_phase* phase = NULL,

uvm_phase* with phase = NULL);

The member function unsync shall remove the synchronization between two domains, fully or partially. The
argument target is a handle of the target domain to remove synchronize from. The optional argument phase is the
phase in this domain to un-synchronize with; otherwise un-synchronize to all. The optional argument with_phase is
the target-domain phase to un-synchronize with; otherwise use phase in the target domain.

12.1.6.6 wait_for_state

void wait for_ state(uvm phase state state, uvm wait op op = UVM EQ);

The member function wait_for_state shall wait until this phase compares with the given state and op operand. For
UVM_EQ and UVM_NE operands, several uvm_phase_states can be supplied by their enum constants, in which
case the caller will wait until the phase state is any of UVM_EQ or none of UVM_NE the provided states.

12.1.7 Jumping
12.1.7.1 jump
void jump (const uvm_phase* phase);
The member function jump shall jump to a specified phase. If the destination phase is within the current phase

schedule, a simple local jump takes place. If the jump-to phase is outside of the current schedule then the jump
affects other schedules which share the phase.

12.1.7.2 get_jump_target

uvm_phase* get jump target() const;

The member function get_jump_target shall return the handle to the target phase of the current jump, or NULL if
no jump is in progress. This member function shall only be used during the phase_ended callback.

12.2 uvm_domain

The class uvm_domain shall provide a phasing schedule node representing an independent branch of the schedule.

12.2.1 Class definition

namespace uvm {

class uvm _domain : public uvm phase

Page 167 UVM-SystemC Language Reference Manual — DRAFT

{
public:
explicit uvm _domain(const std::string& name);
static std::map< std::string, uvm domain* > get_domains();
static uvm phase* get uvm_schedule();
static uvm domain* get common domain () ;
static void add_uvm phases(uvm_phase* schedule);

static uvm_domain* get_uvm domain () ;
}; // class uvm domain

} // namespace uvm

12.2.2 Constructor

explicit uvm domain(const std::string& name) ;

The constructor shall create a new instance of a phase domain with the name passed as argument.
12.2.3 Member functions

12.2.3.1 get_domains

static std::map< std::string, uvm _domain* > get domains();
The member function get_domains shall provide a list of all domains in the provided domains argument.
12.2.3.2 get_uvm_schedule

static uvm phase* get uvm_schedule() ;

The member function get_uvm_schedule shall return the “UVM?” schedule, which consists of the run-time phases
that all components execute when participating in the “UVM” domain.

12.2.3.3 get_common_domain
static uvm domain* get common domain () ;

The member function get_common_domain shall return the “common” domain, which consists of the common
phases that all components execute in sync with each other. Phases in the “common” domain are build, connect,
end_of _elaboration, start_of_simulation, run, extract, check, report, and final.

12.2.3.4 get_uvm_phases

static void add uvm phases(uvm phase* schedule);

UVM-SystemC Language Reference Manual —- DRAFT Page 168

The member function add_uvm_phases shall append to the given schedule the built-in UVM phases.
12.2.3.5 get_uvm_domain
static uvm_domain* get_uvm domain () ;

The member function get_uvm_domain shall return the handle to the singleton uvm domain.

12.3 uvm_bottomup_phase

The class uvm_bottomup_phase shall provide the base class for function phases that operate bottom-up. The
member function execute is called for each component. This is the default traversal so is included only for naming.
The bottom-up phase completes when the member function execute has been called and returned on all applicable
components in the hierarchy.

12.3.1 Class definition

namespace uvm {

class uvm _bottomup phase : public uvm_phase

{
public:

explicit uvm bottomup phase(const std::string& name);
virtual void traverse(uvm_component* comp,
uvm_phase* phase,

uvm_phase state state);

virtual void execute(uvm_component* comp,

uvm_phase* phase) ;
}: // class uvm bottomup phase

} // namespace uvm

12.3.2 Constructor

explicit uvm bottomup phase(const std::string& name);

The constructor shall create a new instance of a bottom-up phase using the name passed as argument.

Page 169 UVM-SystemC Language Reference Manual — DRAFT

12.3.3 Member functions

12.3.3.1 traverse

virtual void traverse(uvm_component* comp,
uvm_phase* phase,

uvm_phase state state);

The member function traverse shall traverse the component tree in bottom-up order, calling member function
execute for each component.

12.3.3.2 execute

virtual void execute(uvm_component* comp,

uvm_phase* phase);

The member function execute shall execute the bottom-up phase phase for the component comp.

12.4 uvm_topdown_phase

The class uvm_topdown_phase shall provide the base class for function phases that operate top-down. The member
function execute is called for each component. This is the default traversal so is included only for naming. The top-
down phase completes when the member function execute has been called and returned on all applicable
components in the hierarchy.

12.4.1 Class definition

namespace uvm {

class uvm_topdown phase : public uvm phase

{
public:

explicit uvm_topdown phase(const std::string& name);
virtual void traverse (uvm_component* comp,
uvm_phase* phase,

uvm_phase_state state);

virtual void execute(uvm_component* comp,

uvm_phase* phase) ;

}; // class uvm topdown phase

UVM-SystemC Language Reference Manual —- DRAFT Page 170

} // namespace uvm

12.4.2 Constructor

explicit uvm_topdown phase(const std::string& name);

The constructor shall create a new instance of a top-down phase using the name name passed as argument.
12.4.3 Member functions

12.4.3.1 traverse

virtual void traverse(uvm_component* comp,
uvm_phase* phase,

uvm_phase state state);

The member function traverse shall traverse the component tree in top-down order, calling member function
execute for each component.

12.4.3.2 execute

virtual void execute(uvm_component* comp,

uvm_phase* phase) ;

The member function execute shall execute the top-down phase phase for the component comp.

12.5 uvm_process_phase® (uvm_task_phase’)

The class uvm_process_phase® shall provide the base class for all process-oriented phases. It is responsible to
create spawned processes as part of the execution of the callback uvm_phase::exec_process for each component in
the hierarchy. The completion of the execution of this callback does not imply, nor is it required for, the end of
phase. Once the phase completes, any remaining spawned processes caused by executing
uvm_phase::exec_process are forcibly and immediately killed. By default, the way for a process phase to extend
over time is if there is at least one component that raises an objection.

12.5.1 Class definition

namespace uvm {

class uvm_process_phaseO : public uvm phase

{

public:

explicit uvm_process_phaseo(const std::string& name);

virtual void traverse(uvm_component* comp,

Page 171 UVM-SystemC Language Reference Manual — DRAFT

uvm_phase* phase,

uvm_phase state state);

virtual void execute(uvm_component* comp,

uvm_phase* phase);
}; // class uvm process_phase

} // namespace uvm

12.5.2 Member functions

12.5.2.1 traverse

virtual void traverse(uvm_component* comp,
uvm_phase* phase,

uvm_phase state state);

The member function traverse shall traverse the component tree in bottom-up order, calling member function
execute for each component.

NOTE-The actual order for process-based phases does not really matter, as each component process is executed in a separate
process whose starting order is not deterministic.

12.5.2.2 execute

virtual void execute(uvm_component* comp,

uvm_phase* phase);

The member function execute shall spawn a process of phase phase for the component comp.

12.6 uvm_objection

The class uvm_objection shall provide a facility for coordinating status information between two or more
participating components, objects, and even module-based IP.

12.6.1 Class definition

namespace uvm {

class uvm_objection : public uvm object

{
public:

// Constructors

UVM-SystemC Language Reference Manual —- DRAFT Page 172

uvm_objection () ;

uvm_objection(const std::stringé& name);

// Group: Objection control
virtual void clear(uvm_object* obj = NULL);

bool trace mode(int mode = -1);

virtual void raise objection(uvm _object* obj,
const std::string& description = "",

int count =1);

virtual void drop_objection(uvm object* obj,
const std::string& description = "",

int count =1);

void set_drain time(uvm_object* obj = NULL,

const sc_core::sc_time& drain = sc_core::SC_ZERO TIME) ;

// Group: Callback hooks
virtual void raised(uvm_object* obj,
uvm_object* source obj,
const std::string& description,

int count);

virtual void dropped(uvm _object* obj,
uvm_object* source obj,
const std::string& description,

int count);
virtual void all_dropped(uvm_object* obj,
uvm_object* source obj,
const std::string& description,

int count);

// Group: Objection status

void get_objectors(std::vector<uvm object*>& objlist) const;

void wait for (uvm objection event objt event,

Page 173 UVM-SystemC Language Reference Manual — DRAFT

uvm_object* obj = NULL);

int get_objection_count(uvm _object* obj = NULL) const;

int get_objection_total (uvm_object* obj = NULL) const;
const sc_core::sc_time get_drain_time(uvm _object* obj = NULL) const;

void display objections(uvm object* obj = NULL,

bool show header = true) const;
}; // class uvm objection

} // namespace uvm

12.6.2 Constructor

uvm_objection () ;

uvm_objection(const std::string& name);

The constructor shall create a new objection instance with name name, if specified.
12.6.3 Objection control

12.6.3.1 clear

virtual void clear(uvm_object* obj = NULL);

The member function clear shall clear the objection state immediately. All counts are cleared and any processes that
called wait_for(UVM_ALL_DROPPED, uvm_top) are released An application should pass ‘this’ to the obj
argument for record keeping. Any configured drain times are not affected.

12.6.3.2 trace_mode
bool trace mode(int mode = -1);

The member function trace_mode shall set or get the trace mode for the objection object. If no argument is
specified (or an argument other than 0 or 1) the current trace mode is unaffected. A trace_mode of 0 turns tracing
off. A trace mode of 1 turns tracing on. The return value is the mode prior to being reset.

12.6.3.3 raise_objection

virtual void raise objection(uvm object* obj,
const std::string& description = "",

int count =1);

UVM-SystemC Language Reference Manual —- DRAFT Page 174

The member function raise_objection shall increase the number of objections for the source object by count, which
defaults to 1. The object is usually the current (‘this’) handle of the caller. If an object is not specified or NULL, the
implicit top-level component, uvm_root, is chosen.

Raising an objection shall cause the following.
e The source and total objection counts for object are increased by count.

e The member function raised is called, which calls the member function uvm_component::raised for all of
the components up the hierarchy.

The description is a string that marks a specific objection and is used in tracing or debug.

12.6.3.4 drop_objection

virtual void drop_objection(uvm object* obj,
const std::string& description = "",

int count =1);

The member function drop_objection shall decrease the number of objections for the source object by count, which
defaults to 1. The object is usually the current handle (‘this’) of the caller. If object is not specified or NULL, the
implicit top-level component, uvm_root, is chosen.

Dropping an objection shall cause the following:

e The source and total objection counts for object are decreased by count. It shall be an error to drop the
objection count for object below zero.

e The member function dropped is called, which calls the member function uvm_component::dropped for
all of the components up the hierarchy.

If the total objection count has not reached zero for the object, then the drop is propagated up the object hierarchy as
with raise_objection. Then, each object in the hierarchy will have updated their source counts--objections that they
originated--and total counts--the total number of objections by them and all their descendants.

If the total objection count reaches zero, propagation up the hierarchy is deferred until a configurable drain-time has
passed and the uvm_component::all_dropped callback for the current hierarchy level has returned.

For each instance up the hierarchy from the source caller, a process is forked in a non-blocking fashion, allowing the
drop call to return. The forked process then does the following:

e Ifadrain time was set for the given object, the process waits for that amount of time.

e The objection’s virtual member function all_dropped is called, which calls the
uvm_component::all_dropped method (if object is a component).

e The process then waits for the all_dropped callback to complete.

e After the drain time has elapsed and the all_dropped callback has completed, propagation of the dropped
objection to the parent proceeds as described in raise_objection, except as described below.

If a new objection for this object or any of its descendents is raised during the drain time or during execution of the
all_dropped callback at any point, the hierarchical chain described above is terminated and the dropped callback
does not go up the hierarchy. The raised objection will propagate up the hierarchy, but the number of raised
propagated up is reduced by the number of drops that were pending waiting for the all_dropped/drain time

Page 175 UVM-SystemC Language Reference Manual — DRAFT

completion. Thus, if exactly one objection caused the count to go to zero, and during the drain exactly one new
objection comes in, no raises or drops are propagated up the hierarchy,

As an optimization, if the object has no drain-time set and no registered callbacks, the forked process can be skipped
and propagation proceeds immediately to the parent as described.

12.6.3.5 set_drain_time

void set_drain time(uvm_object* obj = NULL,

const sc_core::sc_time& drain = sc_core::SC_ZERO TIME) ;

The member function set_drain_time shall set the drain time on the given object to drain. The drain time is the
amount of time to wait once all objections have been dropped before calling the all_dropped callback and
propagating the objection to the parent. If a new objection for this object or any of its descendents is raised during
the drain time or during execution of the all_dropped callbacks, the drain_time/all_dropped execution is terminated.

12.6.4 Callback hooks

12.6.4.1 raised

virtual void raised(uvm_object* obj,
uvm_object* source obj,
const std::string& description,

int count);

The member function raised shall be called when a raise_objection has reached obj. The default implementation
shall call uvm_component::raised (see 8.1.7.1).

12.6.4.2 dropped

virtual void dropped(uvm _object* obj,
uvm_object* source obj,
const std::string& description,

int count);

The member function dropped shall be called when a drop_objection has reached obj. The default implementation
shall call uvm_component::dropped (see 8.1.7.2).

12.6.4.3 all_dropped

virtual void all_dropped(uvm object* obj,
uvm_object* source obj,
const std::string& description,

int count);

UVM-SystemC Language Reference Manual —- DRAFT Page 176

The member function all_dropped shall be called when a drop_objection has reached obj, and the total count for
obj goes to zero. This callback is executed after the drain time associated with obj. The default implementation shall
call uvm_component::all_dropped (see 8.1.7.3).

12.6.5 Objections status

12.6.5.1 get_objectors

void get_objectors(std::vector<uvm object*>& objlist) const;

The member function get_objectors shall return the current list of objecting objects (objects that raised an objection
but have not dropped it).

12.6.5.2 wait_for

void wait_for (uvm _objection_event objt event,

uvm_object* obj = NULL);

The member function wait_for shall wait for the raised, dropped, or all_dropped event to occur in the given object
obj. The member function returns after all corresponding callbacks for that event have been executed.

12.6.5.3 get_objection_count
int get_objection_count(uvm _object* obj = NULL) const;

The member function get_objection_count shall return the current number of objections raised by the given object
obj.

12.6.5.4 get_objection_total
int get_objection_total(uvm _object* obj = NULL) const;

The member function get_objection_total shall return the current number of objections raised by the given object
obj and all descendants.

12.6.5.5 get_drain_time

const sc_core::sc_time get_drain_time(uvm object* obj = NULL) const;

The member function get_drain_time shall return the current drain time set for the given object obj. The default
drain time shall be set to sc_core::SC_ZERO_TIME.

12.6.5.6 display_objections

void display objections(uvm_object* obj = NULL,

bool show header = true) const;

The member function display_objections shall display objection information about the given object obj. If object is
not specified or NULL, the implicit top-level component, uvm_root, is chosen. The argument show_header allows
control of whether a header is output.

Page 177 UVM-SystemC Language Reference Manual — DRAFT

12.7 uvm_callback

The class uvm_callback shall provide the base class for user-defined callback classes. Typically, the component
developer defines an application-specific callback class that extends from this class. In it, he defines one or more
virtual member functions, called a callback interface, that represent the hooks available for user override.

The member functions intended for optional override should not be declared pure virtual. Usually, all the callback
member functions are defined with empty implementations so users have the option of overriding any or all of them.
The prototypes for each hook member function are completely application specific with no restrictions.

12.7.1 Class definition

namespace uvm {

class uvm_callback : public uvm object

{

public:
uvm_callback(const std::string& name = "uvm callback");
bool callback mode(int on = -1);

bool is_enabled();

virtual const std::string get type name () const;

}i; // class uvm callback

} // namespace uvm

12.7.1.1 Constructor

uvm_callback(const std::string& name = "uvm_callback");

The constructor shall create a new object of type uvm_callback, giving it an optional name.
12.7.2 Member functions

12.7.2.1 callback_mode

bool callback mode(int on = -1);

The member function callback_mode shall enable or disable callbacks. If argument on is set 1, callbacks are
enabled. If argument on is set 0, callbacks are disabled.

12.7.2.2 is_enabled

bool is enabled() ;

The member function is_enabled shall return 1 if the callback is enabled, otherwise it shall return 0.

UVM-SystemC Language Reference Manual —- DRAFT Page 178

12.7.2.3 get_type_name

virtual const std::string get_type name () const;

The member function get_type_name shall return the type name of this callback object.

12.8 uvm_callback _iter

The class uvm_callback _iter is an iterator class for iterating over callback queues of a specific callback type.

12.8.1 Class definition

namespace uvm {

template < typename T = uvm_object, typename CB = uvm_callback>
class uvm_callback iter
{
public:
uvm_callback iter(T* obj);
CB* first();
CB* last();
CB* next();
CB* prev();

CB* get cb();
}: // class uvm callback

} // namespace uvm

12.8.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB will be registered. This
object must be a derivative of class uvm_object.

12.8.3 Template parameter CB

The template parameter T specifies the base callback type that will be managed by this callback class. The template
parameter CB is optional. If not specified, the parameter is assigned the type uvm_callback.

12.8.4 Constructor

uvm_callback iter(T* obj);

The constructor shall create a new callback iterator object. It is required that the object context be provided.

Page 179 UVM-SystemC Language Reference Manual — DRAFT

12.8.5 Member functions

12.8.5.1 first

CB* first();

The member function first shall return the first valid (enabled) callback of the callback type (or a derivative) that is
in the queue of the context object. If the queue is empty, then NULL is returned.

12.8.5.2 last

CB* last();

The member function last shall return the last valid (enabled) callback of the callback type (or a derivative) that is in
the queue of the context object. If the queue is empty, then NULL is returned.

12.8.5.3 next

CB* next();

The member function next shall return the next valid (enabled) callback of the callback type (or a derivative) that is
in the queue of the context object. If there are no more valid callbacks in the queue, then NULL is returned.

12.8.5.4 prev

CB* prev();

The member function prev shall return the previous valid (enabled) callback of the callback type (or a derivative)
that is in the queue of the context object. If there are no more valid callbacks in the queue, then NULL is returned.

12.8.5.5 get_cb

CB* get cb();

The member function get_cb shall return the last callback accessed via the call first or next.

12.9 uvm_callbacks

The class uvm_callbacks shall provide a base class for implementing callbacks, which are typically used to modify
or augment component behavior without changing the component class. To work effectively, the developer of the
component class defines a set of “hook” methods that enable users to customize certain behaviors of the component
in a manner that is controlled by the component developer. The integrity of the component’s overall behavior is
intact, while still allowing certain customizable actions by the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined callback interface
implementation as well as the object type associated with the callback. The object type-callback type pair are
associated together using the macro UVM_REGISTER_CB to define a valid pairing; valid pairings are checked
when a user attempts to add a callback to an object (see 14.4.2).

To provide the most flexibility for end-user customization and reuse, it is recommended that the component
developer also define a corresponding set of virtual method hooks in the component itself. This affords users the

UVM-SystemC Language Reference Manual —- DRAFT Page 180

ability to customize via inheritance/factory overrides as well as callback object registration. The implementation of
each virtual method would provide the default traversal algorithm for the particular callback being called. Being
virtual, an application can define subtypes that override the default algorithm, perform tasks before and/or after
calling the base class to execute any registered callbacks, or to not call the base implementation, effectively
disabling that particular hook.

12.9.1 Class definition

namespace uvm {

template <typename T = uvm_object, typename CB = uvm_callback>
class uvm_callbacks : public uvm_typed callbacks<T>

{

public:

uvm_callbacks () ;

// Group: Add/delete inteface

static void add(T* obj, uvm_callback* cb, uvm_apprepend ordering = UVM _APPEND) ;

static void add by name(const std::string& name,
uvm_callback* cb,
uvm_component* root,

uvm_apprepend ordering = UVM_APPEND) ;

static void do_deleteo(T* obj, uvm_callback* cb);

static void delete_ by name (const std::string& name,
uvm_callback* cb,

uvm_component* root);

// Group: Iterator Interface

static CB* get_first(inte& itr, T* obj);
static CB* get last(int& itr, T* obj);
static CB* get_next(inte& itr, T* obj);

static CB* get_prev(ints& itr, T* obj);

// Group: Debug

static void display(T* obj = NULL);

Page 181 UVM-SystemC Language Reference Manual — DRAFT

}i // class uvm callbacks

} // namespace uvm

12.9.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB will be registered. This
object must be a derivative of class uvm_object.

12.9.3 Template parameter CB

The template parameter CB specifies the base callback type that will be managed by this callback class. The template
parameter CB is optional. If not specified, the parameter is assigned the type uvm_callback.

12.9.4 Constructor

uvm_callbacks () ;

The constructor shall create a new object of type uvm_callbacks<T, CB>.

12.9.5 Add/delete interface

12.9.5.1 add

static void add(T* obj, uvm_callback* cb, uvm_apprepend ordering = UVM_APPEND) ;

The member function add shall register the given callback object, cb, with the given handle obj. The object handle
can be NULL, which allows registration of callbacks without an object context. If ordering is UVM_APPEND
(default), the callback will be executed after previously added callbacks, else the callback will be executed ahead of
previously added callbacks. The argument cb is the callback handle; it must be non-NULL, and if the callback has
already been added to the object instance then a warning shall be issued.

12.9.5.2 add_by name

static void add by name(const std::string& name,
uvm_callback* cb,
uvm_component* root,

uvm_apprepend ordering = UVM_APPEND) ;

The member function add_by_name shall register the given callback object, cb, with one or more components of
type uvm_component. The components must already exist and must be type T or a derivative. As with add the CB
parameter is optional. Argument root specifies the location in the component hierarchy to start the search for name.
See uvm_root::find_all (see 5.3.3.2) for more details on searching by name.

12.9.5.3 do_delete® (delete”)

static void do_deleteo(T* obj, uvm_callback* cb);

UVM-SystemC Language Reference Manual —- DRAFT Page 182

The member function do_delete® shall delete the given callback object, cb, from the queue associated with the given
object handle obj. The object handle can be NULL, which allows de-registration of callbacks without an object
context. The argument cb is the callback handle; it must be non-NULL, and if the callback has already been
removed from the object instance then a warning is issued.

12.9.5.4 delete_by name

static void delete_by name(const std::string& name,
uvm_callback* cb,

uvm_component* root);

The member function delete_by name shall remove the given callback object, cb, associated with one or more
uvm_component callback queues. Argument root specifies the location in the component hierarchy to start the
search for name. See uvm_root::find_all for more details on searching by name (see 5.3.3.2).

12.9.6 Iterator interfaces

This set of member functions shall provide an iterator interface for callback queues. A facade class,
uvm_callback _iter is also available, and is the generally preferred way to iterate over callback queues. (See 12.8).

12.9.6.1 get_first

static CB* get first(int& itr, T* obj);

The member function get_first shall return the first enabled callback of type CB which resides in the queue for
object obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator; it will be
updated with a value that can be supplied to get_next to get the next callback object. If the queue is empty, then
NULL is returned. The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator interface.

12.9.6.2 get_last

static CB* get last(ints& itr, T* obj);

The member function get_last shall return the last enabled callback of type CB which resides in the queue for object
obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator; it will be updated
with a value that can be supplied to get_prev to get the previous callback object. If the queue is empty then NULL is
returned. The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator interface.

12.9.6.3 get_next

static CB* get next(inté& itr, T* obj);

The member function get_next shall return the next enabled callback of type CB which resides in the queue for
object obj, using iterator itr as the starting point. If object obj is NULL, then the typewide queue for T is searched.

The iterator will be updated with a value that can be supplied to get_next to get the next callback object. If no more
callbacks exist in the queue, then NULL is returned. The member function get_next will continue to return NULL in
this case until member function get first or get last has been used to reset the iterator. The iterator class
uvm_callback_iter may be used as an alternative, simplified, iterator interface.

Page 183 UVM-SystemC Language Reference Manual — DRAFT

12.9.6.4 get_prev

static CB* get prev(int& itr, T* obj);

The member function get_prev shall return the previous enabled callback of type CB which resides in the queue for
object obj, using iterator itr as the starting point. If object obj is NULL, then the typewide queue for T is searched.
The iterator will be updated with a value that can be supplied to member function get_prev to get the previous
callback object. If no more callbacks exist in the queue, then NULL is returned. The member function get_prev will
continue to return NULL in this case until member function get_first or get_last has been used to reset the iterator.
The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator interface.

12.9.7 Debug

12.9.7.1 display

static void display(T* obj = NULL);

The member function display shall display callback information for object obj. If object obj is NULL, then it
displays callback information for all objects of type T, including typewide callbacks.

UVM-SystemC Language Reference Manual —- DRAFT Page 184

13.Reporting classes

The UVM-SystemC reporting classes provide an additional facility for issuing reports with consistent formatting.
Users can configure what actions to take and what files to send output to based on report severity, ID, or both
severity and ID. Users can also filter messages based on their verbosity settings. It supports a component-level
reporting mechanism by setting the severity level on a per-instance basis. In addition, some convenience macros are
available for the reporting of information, warnings, errors, or fatal errors.

SystemC has already an extensive and highly configurable message-reporting mechanism using the
sc_core::sc_report_handler class and sc_core::sc_report objects. An application may also use this native SystemC
global-level reporting mechanism where appropriate.

The following reporting classes are defined:
e uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.

e uvm_report_handler: The class which acting as implementation for the member functions defined in the
class uvm_report_object.

e uvm_report_server: The class acting as global server that processes all of the reports generated by the
class uvm_report_handler.

e uvm_report_catcher: The class which captures and counts all reports issued by the class
uvm_report_server.

The primary interface to the UVM reporting facility is the class uvm_report_object from which class
uvm_component is derived. The class uvm_report object delegates most tasks to its internal
uvm_report_handler. If the report handler determines the report is not filtered based the configured verbosity
setting, it sends the report to the central uvm_report_server for formatting and processing.

13.1 uvm_report_object

The class uvm_report_object shall provide the primary interface to the UVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. An application can configure what
actions are taken and what file(s) are output for individual messages from a particular component or for all messages
from all components in the environment. Defaults are applied where there is no explicit configuration.

A report consists of an id string, severity, verbosity level, and the textual message itself. They may optionally
include the filename and line number from which the message came. If the verbosity level of a report is greater than
the configured maximum verbosity level of its report object, it is ignored. If a report passes the verbosity filter in
effect, the report’s action is determined. If the action includes output to a file, the configured file descriptor(s) are
determined.

e Actions can be set for (in increasing priority) severity, id, and (severity, id) pair. They include output to the
screen (UVM_DISPLAY), whether the message counters should be incremented (UVM_COUNT),
whether a simulation should be finished (UVM_EXIT).

Actions are of type uvm_action and can take the value UVM_NO_ACTION, or it can be a bitwise OR of
any combination of UVM_DISPLAY, UVM_LOG, UVM_COUNT, UVM_STOP, UVM_EXIT,
UVM_CALL_HOOK and UVM_RM_RECORD (see 16.3.1).

o Default actions: The following provides the default actions assigned to each severity. These can be
overridden by any of the member function set_report_id_action.

Page 185 UVM-SystemC Language Reference Manual — DRAFT

Severity Default action(s)

UVM_INFO UVM_DISPLAY
UVM_WARNING UVM_DISPLAY, UVM_COUNT
UVM_ERROR UVM_DISPLAY, UVM_COUNT
UVM_FATAL UVM_DISPLAY, UVM_EXIT

o File descriptors: These can be set by (in increasing priority) default, severity level, an id, or (severity, id)
pair. File descriptors are of type UVM_FILE. They may refer to more than one file. It is the application’s
responsibility to open and close the files.

o Default file handle: The default file handle is 0, which means that reports are not sent to a file even if a
UVM_LOG attribute is set in the action associated with the report. This can be overridden by the member
function set_report_default_file, set_report_severity_file, set_report_id_file or
set_report_severity id_file. As soon as the file descriptor is set and the action UVM_LOG is set, the
report will be sent to its associated file descriptor.

13.1.1 Class definition

namespace uvm {

class uvm_report object : public uvm object
{

public:

// Constructors

uvm_report object();

explicit uvm_report object(const std::string& name);

// Group: Reporting
uvm_report object* uvm_get report object() const;
bool uvm_report_enabled(int verbosity,
uvm_severity type severity = UVM_INFO,

const std::string& id = "") const;

virtual void uvm report(uvm severity severity,
const std::stringé& id,
const std::string& message,
int verbosity = -1
const std::string& filename = "",
int line = 0,

const std::string& context name = "",

UVM-SystemC Language Reference Manual —- DRAFT Page 186

bool report enabled checked = false);

virtual void uvm_report info(const std::string& id,
const std::string& message,

int verbosity = UVM_MEDIUM,

const std::string& filename = "",

int line = 0,

const std::string& context name = "",

bool report enabled checked = false) const;

virtual void uvm_report warning(const std::stringé& id,
const std::string& message,

int verbosity = UVM MEDIUM,

const std::string& filename = "",
int line = O,
const std::string& context name = "",

bool report enabled checked = false) const;

virtual void uvm_report error(const std::string& id,
const std::string& message,
int verbosity = UVM_LOW,
const std::string& filename = "",
int Iine = 0,
const std::stringé& context name =

nn
’

bool report enabled checked = false) const;

virtual void uvm_report fatal(const std::string& id,
const std::string& message,
int verbosity = UVM_NONE,

const std::string& filename =

nn
’

int Iine = 0,
const std::string& context name = "",
bool report enabled checked = false) const;

void uvm process report message(uvm report message report message) const;

// Group: Verbosilty Configuration

int get_report_verbosity level (uvm_severity type severity = UVM_INFO,

Page 187 UVM-SystemC Language Reference Manual — DRAFT

const std::string& id = "") const;
int get_report max verbosity level () const;
void set_report_verbosity level(int verbosity level);
void set report id verbosity(const std::string& id, int verbosity);
void set_report_severity id verbosity(uvm_severity severity,
const std::strings& id,

int verbosity);

// Group: Action configuration
int get_report_action(uvm_severity severity,
const std::string& id) const;
void set_report_severity action(uvm_severity severity,
uvm_action action);
void set report id action(const std::string& id,
uvm_action action);
void set_report_severity id action(uvm_severity severity,
const std::string& id,

uvm_action action);

// Group: File configuration
UVM _FILE get report file handle(uvm_severity severity,
const std::string& id) const;
void set_report_default file(UVM FILE file);
void set_report_id file(const std::string& id, UVM FILE file);
void set_report_severity file(uvm_severity severity, UVM FILE file);
void set_report_severity id file(uvm_severity severity,
const std::string& id,

UVM_FILE file);
// Group: Override Configuration
void set report severity override(uvm severity cur severity,
uvm_severity new severity);
void set report severity id override(uvm severity cur severity,
const std::stringé& 1id,

uvm_severity new severity);

// Group: Report Handler Configuration

UVM-SystemC Language Reference Manual —- DRAFT Page 188

void set_report handler (uvm report handler* handler);

uvm_report handler* get report handler () const;

void reset report handler();

bi

// class uvm_report_object

} // namespace uvm

13.1.2 Constructors

uvm_report object();

explicit uvm_report object(const std::string& name);

The constructors shall create a new report object with the given name. This member function shall also create a new
uvm_report_handler object to which most tasks are delegated.

13.1.3 Reporting

The member functions uvm_report_info, uvm_report_warning and uvm_report_fatal are the primary reporting
methods in UVM. They ensure a consistent output and central control over where output is directed and any actions
that result. All reporting member functions have the same arguments, although each has a different default
verbosity:

Page 189

id: a unique id of type std::string for the report or report group that can be used for identification and
therefore targeted filtering. An application can configure an individual report’s actions and output file(s)
using this id.

message: the message body, preformatted to a single string of type std::string.

verbosity: the verbosity of the message, indicating its relative importance. The verbosity shall be specified
as an enumeration of type uvm_verbosity. If the equivalent verbosity value is less than or equal to the
effective verbosity level (see set_report_verbosity_level), then the report is issued, subject to the
configured action and file descriptor settings. Verbosity is ignored for warnings, errors, and fatals.
However, if a warning, error or fatal is demoted to an info message using the uvm_report_catcher, then
the verbosity is taken into account.

The predefined uvm_verbosity values are UVM_NONE, UVM_LOW, UVM_MEDIUM, UVM_HIGH,
and UVM_FULL.

filename (optional): The file from which the report was issued. An application can use the predefined
macros __ FILE__and __ LINE__. If specified, it is displayed in the output.

line (optional): The location from which the report was issued. An application can use the predefined macro

__LINE__. If specified, it is displayed in the output.

context_name (optional): The string context from where the message is originating. This can be the name
of a module, a specific member function, etc.

UVM-SystemC Language Reference Manual — DRAFT

e report_enabled_checked (optional): This flag indicates whether the currently provided message has been
checked as to whether the message should be processed. If it hasn’t been checked, it will be checked inside
the member function uvm_report.

13.1.3.1 uvm_get_report_object

uvm_report object* uvm get report object() const;

The member function uvm_get report_object shall return the nearest uvm_report_object when called. From
inside a UVM component of class uvm_component, this member function shall returns this.

13.1.3.2 uvm_report_enabled

bool uvm_report_enabled(int verbosity,

uvm_severity type severity

UVM_INFO,

const std::strings id = "");

The member function uvm_report_enabled shall return true if the configured verbosity for this severity/id is
greater than or equal to the given argument verbosity; otherwise it shall return false.

13.1.3.3 uvm_report

virtual void uvm_report(uvm severity severity,
const std::string& id,
const std::string& message,
int verbosity = -1
const std::string& filename = "",
int Iine = O,
const std::stringé& context name = "",

bool report enabled checked = false);

The member function uvm_report acts has helper method to report info, error, warning and fatal messages. It shall
call the member function uvm_process_report_message to report the actual message (see 13.1.3.8).

13.1.3.4 uvm_report_info

virtual void uvm_report info(const std::string& id,
const std::string& message,

int verbosity = UVM _MEDIUM,

const std::string& filename = "",

int Iine = 0,

const std::string& context name = "",

bool report enabled checked = false) const;

The member function uvm_report_info shall issue an info message using the current messages report object.

UVM-SystemC Language Reference Manual —- DRAFT Page 190

13.1.3.5 uvm_report_warning

virtual void uvm_report warning(const std::string& id,
const std::string& message,

int verbosity = UVM _MEDIUM,

const std::string& filename = "",

int line = 0,

const std::string& context name = "",

bool report enabled checked = false) const;

The member function uvm_report_warning shall issue a warning message using the current messages report
object.

13.1.3.6 uvm_report_error

virtual void uvm_report error(const std::string& id,
const std::string& message,

int verbosity = UVM_LOW,

const std::string& filename = "",

int line = 0,

const std::string& context name = "",

bool report enabled checked = false) const;

The member function uvm_report_error shall issue an error message using the current messages report object.

13.1.3.7 uvm_report_fatal

virtual void uvm_report fatal(const std::string& id,
const std::string& message,

int verbosity = UVM_NONE,

const std::string& filename = "",

int line = 0,

const std::stringé& context name = "",

bool report enabled checked = false) const;

The member function uvm_report_fatal shall issue a fatal message using the current messages report object.
13.1.3.8 uvm_process_report_message
void uvm process report message(uvm report message report message) const;

The member function uvm_process_report_message shall process a preformed report_ message of type
uvm_report_message, populates it with the report object and passes it to the report handler for processing. It is
expected to be checked for verbosity and populated.

Page 191 UVM-SystemC Language Reference Manual — DRAFT

13.1.4 Verbosity configuration

13.1.4.1 get_report_verbosity_level
int get_report_verbosity level (uvm_severity type severity = UVM_INFO,

const std::strings& id = "") const;

The member function get_report_verbosity_level shall get the verbosity level in effect for this object. Reports
issued with verbosity greater than this will be filtered out. The severity and tag arguments check if the verbosity
level has been modified for specific severity/tag combinations.

13.1.4.2 get_report_max_verbosity level

int get_report_max verbosity level () const;

The member function get_report_max_verbosity_level shall get the maximum verbosity level in effect for this
report object. Any report from this component whose verbosity exceeds this maximum will be ignored.

13.1.4.3 set_report_verbosity_level

void set_report_verbosity level(int verbosity level);

The member function set_report_verbosity level shall set the maximum verbosity level for reports for this
component. Any report from this component whose verbosity exceeds this maximum will be ignored.

13.1.4.4 set_report_id_verbosity

void set_report_id verbosity(const std::stringé& id, int verbosity);

The member function set_report_id_verbosity shall associate the specified verbosity with reports of the given id. A
verbosity associated with a particular id takes precedence over a verbosity associated with a severity.

13.1.4.5 set_report_severity_id_verbosity

void set_report_severity id verbosity(uvm severity severity,
const std::stringé& 1id,

int verbosity);

The member function set_report_severity id_verbosity shall associate the specified verbosity threshold with
reports of the given severity-id pair. This threshold is compared with the verbosity originally assigned to the report
to decide whether it gets processed. A verbosity threshold associated with a particular severity-id pair takes
precedence over a verbosity threshold associated with id, which take precedence over a verbosity associated with a
severity.

The verbosity argument can be any integer, but is most commonly a predefined uvm_verbosity value,
UVM_NONE, UVM_LOW, UVM_MEDIUM, UVM_HIGH, or UVM_FULL.

UVM-SystemC Language Reference Manual —- DRAFT Page 192

13.1.5 Action configuration

13.1.5.1 get_report_action
int get_report_action(uvm_severity severity,

const std::string& id) const;

The member function get_report_action shall get the action associated with reports having the given severity and
id.
13.1.5.2 set_report_severity_action

void set_report_severity action(uvm_severity severity,

uvm_action action);

The member function set_report_severity_action shall associate the specified action or actions with the given
severity. An action associated with a particular severity-id pair or id, using the member functions
set_report_severity_id_action or set_report_id_action respectively, shall take precedence over the association set
by this member function.

13.1.5.3 set_report_id_action
void set_report_id action(const std::stringé& id,

uvm_action action);

The member function set_report_id_action shall associate the specified action or actions with the given id. An
action associated with a particular severity-id pair, using the member functions set_report_severity_id_action,
shall take precedence over the association set by this member function.

13.1.5.4 set_report_severity_id_action

void set_report_severity id action(uvm_severity severity,
const std::string& id,

uvm_action action);

The member function set_report_severity id_action shall associate the specified action or actions with the given
severity-id pair. An action associated with a particular severity-id pair shall take precedence over an action
associated with id, which takes precedence over an action associated with a severity.

13.1.6 File configuration

13.1.6.1 get_report_file_handle

UVM_FILE get_report_ file handle(uvm_severity severity,

const std::string& id) const;

The member function get_report_file_handle shall get the file descriptor associated with reports having the given
severity and id.

Page 193 UVM-SystemC Language Reference Manual — DRAFT

13.1.6.2 set_report_default_file

void set_report_default file(UVM FILE file);

The member function set_report_default_file shall configure the report handler to direct some or all of its output to
the default file descriptor of type UVM_FILE. A file associated with a particular severity-id pair shall take
precedence over a FILE associated with id, which shall take precedence over a file associated with a severity, which
shall takes precedence over the association set by this member function.

13.1.6.3 set_report_id_file

void set report id file(const std::string& id, UVM FILE file);

The member function set_report_id_file shall configure the report handler to direct reports of the given id to the file
descriptor of type UVM_FILE. A file associated with a particular severity-id shall take precedence over the
association set by this member function.

13.1.6.4 set_report_severity_file

void set_report_severity file(uvm_severity severity, UVM FILE file);

The member function set_report_severity file shall configure the report handler to direct reports of the given
severity to the file descriptor of type UVM_FILE. A file associated with a particular severity-id or associated with a
specific id, shall take precedence over the association set by this member function.

13.1.6.5 set_report_severity_id_file

void set_report_severity id file(uvm_severity severity,
const std::string& id,

UVM_FILE file);

The member function set_report_severity_id_file shall configure the report handler to direct reports of the given
severity-id pair to the given file descriptor of type UVM_FILE. A file associated with a particular severity-id pair
shall take precedence over a file associated with id, which shall take precedence over a file associated with a
severity, which takes precedence over the default file descriptor.

13.1.7 Override configuration

13.1.7.1 set_report_severity _override

void set_report_severity override(uvm severity cur severity,

uvm_severity new severity);

The member function set_report_severity override shall provide the ability to upgrade or downgrade a message in
terms of severity given severity. An upgrade or downgrade for a specific id, using member function
set_report_severity id_override, shall take precedence over an upgrade or downgrade set by this member
function.

UVM-SystemC Language Reference Manual —- DRAFT Page 194

13.1.7.2 set_report_severity_id_override

void set_report_severity id override(uvm_severity cur severity,
const std::string& id,

uvm_severity new severity);

The member function set_report_severity id_override shall provide the ability to upgrade or downgrade a
message in terms of severity given severity. An upgrade or downgrade for a specific id takes precedence over an
upgrade or downgrade associated with a severity.

13.1.8 Report handler configuration

13.1.8.1 set_report_handler

void set_report handler (uvm report handler* handler);

The member function set_report_handler shall set the report handler, overwriting the default instance. This allows
more than one component to share the same report handler.

13.1.8.2 get_report_handler

uvm_report handler* get report handler () const;

The member function get_report_handler shall return the underlying report handler to which most reporting tasks
are delegated.

13.1.8.3 reset_report_handler

void reset_report handler();

The member function reset_report_handler shall reset the underlying report handler to its default settings. This
clears any settings made with the member functions set_report_id_verbosity_hier,
set_report_severity_id_verbosity_hier, set_report_severity_action_hier, set_report_id_action_hier,
set_report_severity id_action_hier, set_report_default_file_hier, set_report_severity file_hier,
set_report_id_file_hier, set_report_severity id_file_hier and set_report_verbosity level_hier (see 8.1.9).

13.2 uvm_report_handler

The class uvm_report_handler is the class to which most methods in uvm_report_object delegate. It stores the
maximum verbosity, actions, and files that affect the way reports are handled.

The report handler is not intended for direct use. See uvm_report_object for information on the UVM reporting
mechanism.

The relationship between class uvm_report_object, which is a base class for uvm_component, and class
uvm_report_handler is typically one to one, but it can be many to one if several objects of type
uvm_report_object are configured to use the same uvm_report_handler.

See uvm_report_object::set_report_handler.

Page 195 UVM-SystemC Language Reference Manual — DRAFT

The relationship between an object of type uvm_report_handler and an object of type uvm_report_server is many
to one.

13.2.1 Class definition

namespace uvm {

class uvm_report_handler : public uvm object

{
public:

uvm_report handler (const std::string& name = "uvm_report_handler");

// Group: Message processing
void do_print(const uvm printers printer) const;

void process report message(uvm_report message* report message);

// Group: Convenience methods

std::string format_action(uvm_action action) const;

}: // class uvm report handler

} // namespace uvm

13.2.2 Constructor

uvm_report handler(const std::string& name = "uvm report handler");

The constructor shall create and initialize a new handler object.
13.2.3 Member functions

13.2.3.1 do_print

void do_print(const uvm printers& printer) const;

The member function do_print shall format the printer output according to the current configuration.

13.2.3.2 process_report_message

void process_report message(uvm report message* report message);

The member function process_report_mesage shall process the reporting message passed as argument.

UVM-SystemC Language Reference Manual —- DRAFT Page 196

13.2.3.3 format_action

std::string

format_action(uvm_action action) const;

The member function format_action shall return a string representation of the action, e.g., “DISPLAY”.

13.3 uvm_

The class uvm_report_server shall act as a global server that processes all of the reports generated by a

report_server

uvm_report_handler.

13.3.1 Class definition

namespace uvm {

class uvm_report server : public uvm object

{
public:
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual

void set_max quit count(int count, bool overridable = true) = 0;
int get_max quit_count() const = 0;

void set quit count(int quit count) = 0;

int get_quit_count() const = 0;

void set_severity count(uvm_severity severity, int count) = 0;
int get_severity count(uvm_severity severity) const = 0;

I
o
~

void set_id count(const std::string& id, int count) =
int get_id count(const std::string& id) const = 0;
void get_id set(std::vector<std::string>& g) const = 0;

void get_severity set(std::vector<uvm severity>& g) const = 0;
void set_message database(uvm_tr database* database) = 0;

uvm_tr database* get message_database() const = 0;

void do_copy(const uvm objects& rhs);

virtual

virtual

virtual

void process_report message(uvm report message* report message) = 0;
void execute report message(uvm _report message* report message,

const std::string& composed message) = 0;

std::string compose_report message (

uvm_report message* report message,

const

virtual

Page 197

std::string& report object name = "") const = 0;

void report summarize(UVM FILE file = 0) const = 0;

UVM-SystemC Language Reference Manual — DRAFT

static void set server(uvm_report server* server);

static uvm _report server* get server();

private:
// Disabled

uvm_report server(const std::string& name);
}; // class uvm report server

} // namespace uvm

13.3.2 Member functions

13.3.2.1 set_max_quit_count

virtual void set_max quit count(int count, bool overridable = true) = 0;

The member function set_max_quit_count shall set the maximum number of count actions that can be tolerated
before a UVM_EXIT action is taken. The default is 0, which specifies no maximum. When overridable is false, the
set quit count cannot be changed again.

13.3.2.2 get_max_quit_count
virtual int get_max quit count() const = 0;
The member function get_max_quit_count shall return the currently configured maximum quit count.
13.3.2.3 set_quit_count
virtual void set_quit_count(int quit count) = 0;
The member function set_quit_count shall set the current number of quit actions to the value quit_count.
13.3.2.4 get_quit_count
virtual int get quit count() const = 0;
The member function get_quit_count shall get the current number of quit actions.
13.3.2.5 set_severity_count
virtual void set severity count(uvm severity severity, int count) = 0;

The member function set_severity count shall set the counter for the given severity to counter value count.

UVM-SystemC Language Reference Manual —- DRAFT Page 198

13.3.2.6 get_severity_count

virtual int get_severity count(uvm_severity severity) const = 0;

The member function get_severity_count shall get the counter value for the given severity.

13.3.2.7 set_id_count

virtual void set id count(const std::string& id, int count) = 0;

The member function set_id_count shall set the counter value for the given id to counter value count.

13.3.2.8 get_id_count

virtual int get id count(const std::string& id) const = 0;
The member function get_id_count shall get the counter value for the given id.
13.3.2.9 get_id_set

virtual void get_id set(std::vector<std::string>& g) const = 0;
The member function get_id_set shall return the set of id’s already used by this uvm_report_server.
13.3.2.10 get_severity_set

virtual void get_severity set(std::vector<uvm severity>& g) const = 0;
The member function get_severity_set shall return the set of severities already used by this uvm_report_server.
13.3.2.11 set_message_database

virtual void set message database(uvm_tr database* database) = 0;
The member function set_message_database shall sets the database used for transaction recording.
13.3.2.12 get_message_database

virtual uvm_tr database* get_message database () const = 0;
The member function get_message_database shall return the database used for transaction recording.
13.3.2.13 do_copy

void do_copy(const uvm objects& rhs);

The member function do_copy shall copy all message statistic severity, id counts to the destination
uvm_report_server. The copy is cumulative; only items from the source are transferred, already existing entries are
not deleted, existing entries/counts are overridden when they exist in the source set.

Page 199 UVM-SystemC Language Reference Manual — DRAFT

13.3.2.14 process_report_message

virtual void process report message(uvm_report message* report message) const = 0;

The member function process_report_message shall process the provided report_message.

13.3.2.15 execute_report_message

virtual void execute report message(uvm report message* report message,

const std::string& composed message) const = 0;

The member function execute_report_message shall execute the provided report_message.

NOTE-An implementation can overload this member function to customize action processing.

13.3.2.16 compose_report_message

virtual std::string compose_report message (
uvm_report message* report message,

const std::string& report object name = "") const = 0;

The member function compose_report_message shall construct the actual string sent to the file or command line
from the severity, component name, report id, and the message itself.

NOTE-An implementation can overload this member function to customize action processing.

13.3.2.17 report_summarize

virtual void report summarize(UVM FILE file = 0) const = 0;

The member function report_summarize shall output statistical information issued by this central report server.
This information is sent to the standard output (stdout) if there is no argument specified or if the argument file is 0;
otherwise the information is send to a file using the argument file as file handle. The member function
uvm_root::run_test shall call this member function at the end of simulation.

13.3.2.18 set_server

static void set_server (uvm report_server* server);

The member function set_server shall set the global report server to use for reporting. The report server is
responsible for formatting messages.

13.3.2.19 get_server

static uvm_report server* get_server();

The member function get_server shall get the global report server. This member function will always return a valid
handle to a report server.

UVM-SystemC Language Reference Manual —- DRAFT Page 200

13.4 uvm_default_report_server

The class uvm_default_report_server shall act as the default implementation of the UVM report server.

13.4.1 Class definition

namespace uvm {

class uvm_default report_server : public uvm report server
{
public:
uvm_default report server(const std::stringé& name = "uvm_report_ server");

virtual void do_print(const uvm_printeré& printer);

// Group: Quit Count

void set max quit count(int count, bool overridable = true);
int get max quit count() const;

void set_quit count(int quit count);

int get_quit_count() const;

void iner_quit_count () ;

void reset_quit_count();

bool is quit count reached();

// Group: Severity Count

void set_severity count(uvm_severity severity, int count);
int get_severity count(uvm_severity severity) const;

void incr_severity count(uvm_severity severity);

void reset_severity counts();

// Group: id Count
void set id count(const std::string& id, int count);
int get_id count(const std::string& id) const;

void incr_id count(const std::string& id);

// Group: Message recording

virtual void get severity set(std::vector<uvm severity>& g) const;
virtual void get id set(std::vector<std::string>& g) const;
virtual void set_message database(uvm_ tr database* database);

virtual uvm_tr database* get message database() const;

Page 201 UVM-SystemC Language Reference Manual — DRAFT

// Group: Message processing
virtual void process report message(uvm_report message* report message);
virtual void execute report message(uvm report message* report message,
const std::string& composed message);
virtual std::string compose_report message(uvm report message* report message,
const std::string& report object name = "") const;
virtual void report summarize(UVM FILE file = 0) const;

}; // class uvm default report server

} // namespace uvm

13.4.2 Constructor

uvm_default report server(const std::strings name = "uvm_report_server");
The constructor shall create a uvm_default_report_server object.
13.4.3 Generic member functions
13.4.3.1 do_print

void do_print(const uvm _printers printer);

The member function do_print shall format the printer output according to the current configuration.
13.4.4 Quit count

13.4.4.1 set_max_quit_count

void set max quit count(int count, bool overridable = true);

The member function set_max_quit_count shall set the maximum number of count actions that can be tolerated
before a UVM_EXIT action is taken. The default is 0, which specifies no maximum. When overridable is false, the
set quit count cannot be changed again.

13.4.4.2 get_max_quit_count

int get max quit count() const;

The member function get_max_quit_count shall return the currently configured maximum quit count.

13.4.4.3 set_quit_count

void set_quit count(int quit count);

The member function set_quit_count shall set the current number of quit actions to the value quit_count.

UVM-SystemC Language Reference Manual —- DRAFT Page 202

13.4.4.4 get_quit_count

int get_quit_count() const;
The member function get_quit_count shall get the current number of quit actions.
13.4.4.5 incr_quit_count
void incr_quit count();
The member function incr_quit_count shall increase the quit count with one.
13.4.4.6 reset_quit_count
void reset quit count();
The member function reset_quit_count shall reset the quit count to 0.
13.4.4.7 is_quit_count_reached
bool is quit count reached();
The member function is_quit_count_reached shall return true when the quit counter has reached the maximum.
13.4.5 Severity count
13.4.5.1 set_severity_count
void set_severity count(uvm_severity severity, int count);
The member function set_severity_count shall set the counter for the given severity to counter value count.
13.4.5.2 get_severity_count
int get_severity count(uvm_severity severity) const;

The member function get_severity_count shall get the counter value for the given severity.

13.4.5.3 incr_severity_count

void incr_severity count(uvm_severity severity);

The member function incr_severity _count shall increase the counter value for the given severity with one.

13.4.5.4 reset_severity _counts

void reset_severity counts();

The member function reset_severity counts shall reset all severity counters to 0.

Page 203 UVM-SystemC Language Reference Manual — DRAFT

13.4.6 1d count

13.4.6.1 set_id_count

void set _id count(const std::string& id, int count);
The member function set_id_count shall set the counter value for the given id to counter value count.
13.4.6.2 get_id_count

int get_id count(const std::string& id) const;

The member function get_id_count shall get the counter value for the given id.

13.4.6.3 incr_id_count
void incr_id count(const std::string& id);
The member function incr_id_count shall increase the counter value for the given id with one.

13.4.7 Message recording

The uvm_default_report_server shall record messages into the message database, using one transaction per
message, and one stream per report object/handler pair.

13.4.7.1 get_id_set

virtual void get_id set(std::vector<std::string>& g) const;
The member function get_id_set shall return the set of id’s already used by this uvm_report_server.
13.4.7.2 get_severity_set

virtual void get_severity set(std::vector<uvm_severity>& g) const;
The member function get_severity_set shall return the set of severities already used by this uvm_report_server.
13.4.7.3 set_message_database

virtual void set message database(uvm_tr_ database* database);
The member function set_message_database shall sets the database used for transaction recording.
13.4.7.4 get_message_database

virtual uvm tr database* get message database () const;

The member function get_message _database shall return the database used for transaction recording.

UVM-SystemC Language Reference Manual —- DRAFT Page 204

13.4.8 Message processing

13.4.8.1 process_report_message

virtual void process report message(uvm report message* report message) const;

The member function process_report_message shall process the provided report_message.

13.4.8.2 execute_report_message

virtual void execute report message(uvm_report message* report message,

const std::string& composed message) const;

The member function execute_report_message shall execute the provided report_message.

NOTE-An implementation can overload this member function to customize action processing.

13.4.8.3 compose_report_message

virtual std::string compose report message (
uvm_report message* report message,

const std::string& report object name = "") const;

The member function compose_report_message shall construct the actual string sent to the file or command line
from the severity, component name, report id, and the message itself.

NOTE-An implementation can overload this member function to customize action processing.

13.4.8.4 report_summarize

virtual void report summarize(UVM FILE file = 0) const;

The member function report_summarize shall output statistical information issued by this central report server.
This information is sent to the standard output (stdout) if there is no argument specified or if the argument file is 0;
otherwise the information is send to a file using the argument file as file handle. The member function
uvm_root::run_test shall call this member function at the end of simulation.

13.5 uvm_report_catcher

The class uvm_report_catcher shall be used to catch messages issued by the uvm report server. Catchers are
objects of type uvm_callbacks<uvm_report_object, uvm_report_catcher>, so all facilities in the classes
uvm_callback and uvm_callbacks<T, CB> are available for registering catchers and controlling catcher state.

Multiple report catchers can be registered with a report object. The catchers can be registered as default catchers
which catch all reports on all reporters of type uvm_report_object, or catchers can be attached to specific report
objects (i.e. components).

User extensions of uvm_report_catcher must implement the catch method in which the action to be taken on
catching the report is specified. The catch method can return CAUGHT, in which case further processing of the
report is immediately stopped, or return THROW in which case the (possibly modified) report is passed on to other
registered catchers. The catchers are processed in the order in which they are registered.

Page 205 UVM-SystemC Language Reference Manual — DRAFT

On catching a report, the catch method can modify the severity, id, action, verbosity or the report string itself before
the report is finally issued by the report server. The report can be immediately issued from within the catcher class
by calling the issue method.

The catcher maintains a count of all reports with severity UVM_FATAL, UVM_ERROR or UVM_WARNING
severity and a count of all reports with severity UVM_FATAL, UVM_ERROR or UVM_WARNING whose
severity was lowered. These statistics are reported in the summary of the uvm_report_server.

13.5.1 Class definition

namespace uvm {

class uvm_report_catcher : public uvm_callback
{
public:

typedef enum { UNKNOWN ACTION, THROW, CAUGHT} action_e;

uvm_report catcher(const std::string& name = "uvm report catcher");

// Group: Current Message State
uvm_report object* get_client() const;
uvm_severity get_ severity() const;

int get_verbosity () const;

std::string get id() const;
std::string get message() const;
uvm_action get_action() const;
std::string get fname () const;

int get_line() const;

uvm_report message element container* get_element container () const;

// Group: Change Message State
protected:

void set_severity(uvm_severity severity);
void set verbosity(int verbosity);

void set id(const std::string& id);

void set_message(const std::string& message);

void set action(uvm action action);

void add_int(const std::string& name,

uvm _bitstream t value,

UVM-SystemC Language Reference Manual —- DRAFT Page 206

int size,
uvm_radix_enum ra

uvm_action action

void add_string(const std::str
const std::str
uvm_action act

void add_object(const std::str

dix,

(UVM_LOG | UVM_RM RECORD));

ing& name,

ing& value,

ion = (UVM_LOG | UVM_RM RECORD));

ing& name,

uvm_object* obj,

uvm_action act

// Group: Debug

ion = (UVM_LOG | UVM_RM RECORD));

static uvm_report_catcher* get_ report_catcher(const std::stringé&
static void print catcher(UVM FILE file = 0);
// Group: Callback interface
virtual action_e do_catch®() = 0;
// Group: Reporting
protected:
void uvm_report_fatal (const std::string& id,
const std::string& message,
int verbosity,
const std::string& fname = "",
int Iine = O,
const std::stringé& context name = "",
bool report enabled checked = false);

void uvm_report_error(const st
const st
int verb
const st
int Iine
const st

bool rep

Page 207

d::stringé& id,

d::string& message,

osity,

d::string& fname = "",

=0,

d::string& context name = "",

ort enabled checked = false);

UVM-SystemC Language Reference Manual — DRAFT

name) ;

void uvm_report warning(const std::stringé& id,
const std::string& message,

int verbosity,

const std::string& fname = "",
int line = 0,
const std::string& context name = "",

bool report enabled checked = false);

void uvm_report_info(const std::string& id,
const std::string& message,

int verbosity,

const std::string& fname = "",
int Iine = 0,
const std::string& context name = "",

bool report enabled checked = false);

void issue();
public:

static void summarize () ;
}: // class uvm report catcher

} // namespace uvm

13.5.2 Constructor

uvm_report catcher(const std::string& name = "uvm report catcher");

The constructor shall create a new report catcher object. The argument name is optional, but should generally be
provided to aid in debugging.

13.5.3 Current message state

13.5.3.1 get_client

uvm_report object* get client() const;

The member function get client shall return the uvm_report_object that has generated the message that is
currently being processed.

UVM-SystemC Language Reference Manual —- DRAFT Page 208

13.5.3.2 get_severity

uvm_severity get severity() const;

The member function get_severity shall return the uvm_severity of the message that is currently being processed. If
the severity was modified by a previously executed report object (which re-threw the message), then the returned
severity is the modified value.

13.5.3.3 get_verbosity
int get_verbosity () const;

The member function get_verbosity shall return the verbosity of the message that is currently being processed. If
the verbosity was modified by a previously executed report object (which re-threw the message), then the returned
verbosity is the modified value.

13.5.3.4 get_id
std::string get_id() const;

The member function get_id shall return the string id of the message that is currently being processed. If the id was
modified by a previously executed report object (which re-threw the message), then the returned id is the modified
value.

13.5.3.5 get_message
std::string get message() const;

The member function get_message shall return the string message of the message that is currently being processed.
If the message was modified by a previously executed report object (which re-threw the message), then the returned
message is the modified value.

13.5.3.6 get_action
uvm_action get_action() const;

The member function get_action shall return the uvm_action of the message that is currently being processed. If
the action was modified by a previously executed report object (which re-threw the message), then the returned
action is the modified value.

13.5.3.7 get_fname

std::string get_fname () const;

The member function get_fname shall return the file name of the message.

13.5.3.8 get_line

int get_line() const;

The member function get_line shall return the line number of the message.

Page 209 UVM-SystemC Language Reference Manual — DRAFT

13.5.3.9 get_element_container

uvm_report message element container* get_element container () const;

The member function get_element_container shall return the element container of the message.
13.5.4 Change message state

13.5.4.1 set_severity

void set_severity(uvm_severity severity);

The member function set_severity shall change the severity of the message to severity. Any other report catchers
will see the modified value.

13.5.4.2 set_verbosity

void set_verbosity(int verbosity);

The member function set_severity shall change the verbosity of the message to verbosity. Any other report catchers
will see the modified value.

13.5.4.3 set_id

void set_id(const std::stringé& id);

The member function set_id shall change the id of the message to id. Any other report catchers will see the modified
value.

13.5.4.4 set_message

void set_message(const std::string& message);

The member function set_message shall change the text of the message to message. Any other report catchers will
see the modified value.

13.5.4.5 set_action
void set action(uvm action action);

The member function set_action shall change the action of the message to action. Any other report catchers will see
the modified value.

13.5.4.6 add_int

void add int(const std::string& name,
uvm _bitstream t value,
int size,

uvm_radix_enum radix,

UVM-SystemC Language Reference Manual —- DRAFT Page 210

uvm_action action = (UVM_LOG | UVM RM RECORD));

The member function add_int shall add an integral type with the name name and value value to the message. The
required argument size indicates the size of value. The required argument radix determines how to display and
record the element. Any other report catchers will see the newly added element.

13.5.4.7 add_string

void add_string(const std::string& name,
const std::string& value,

uvm_action action = (UVM_LOG | UVM RM RECORD));

The member function add_string shall adds a string with the name name and value value to the message. Any other
report catchers will see the newly added element.

13.5.4.8 add_object

void add_object(const std::string& name,
uvm_object* obj,

uvm_action action = (UVM_LOG | UVM RM RECORD));

The member function add_object shall adds a uvm_object with the name name and value value to the message.
Any other report catchers will see the newly added element.

13.5.5 Debug

13.5.5.1 get_report_catcher

static uvm_report catcher* get report catcher(const std::string& name);

The member function get_report_catcher shall return the first report catcher that has name.

13.5.5.2 print_catcher

static void print catcher(UVM FILE file = 0);

The member function print_catcher shall print information about all of the report catchers that are registered. For
finer grained detail, the member function uvm_callbacks<T,CB>::display can be used by calling
uvm_report_ch::display(uvm_report_object).

13.5.6 Callback interface

13.5.6.1 do_catch® (catch’)

virtual action_e do_catcho() =0

Page 211 UVM-SystemC Language Reference Manual — DRAFT

The member function do_catch® shall be called for each registered report catcher. The member functions in the
Current Message State interface (see 13.5.3) can be used to access information about the current message being
processed.

13.5.7 Reporting

13.5.7.1 uvm_report_fatal

void uvm_report_ fatal (const std::string& id,
const std::string& message,

int verbosity,

const std::string& fname = "",
int line = O,
const std::string& context name = "",

bool report enabled checked = false);

The member function uvm_report_fatal shall issue a fatal message using the current messages report object. This
message will bypass any message catching callbacks.

13.5.7.2 uvm_report_error

void uvm_report_error(const std::string& id,
const std::string& message,

int verbosity,

const std::string& fname = "",
int Iine = O,
const std::string& context name = "",

bool report enabled checked = false);

The member function uvm_report_error shall issue an error message using the current messages report object.
This message will bypass any message catching callbacks.

13.5.7.3 uvm_report_warning

void uvm _report warning(const std::stringé& id,
const std::string& message,

int verbosity,

const std::string& fname = "",
int line = 0,
const std::string& context name = "",

bool report enabled checked = false);

The member function uvm_report_warning shall issue a warning message using the current messages report
object. This message will bypass any message catching callbacks.

UVM-SystemC Language Reference Manual —- DRAFT Page 212

13.5.7.4 uvm_report_info

void uvm_report_info(const std::string& id,
const std::string& message,

int verbosity,

const std::string& fname = "",
int line 0,
const std::string& context name = "",

bool report enabled checked = false);

The member function uvm_report_info shall issue an info message using the current messages report object. This
message will bypass any message catching callbacks.

13.5.7.5 issue

void issue() ;

The member function issue shall immediately issue the message which is currently being processed. This is useful if
the message is being CAUGHT but should still be emitted. Issuing a message will update the report_server stats,
possibly multiple times if the message is hot CAUGHT.

13.5.7.6 summarize

static void summarize () ;

The member function summarize shall print the statistics for the active catchers. It shall be called automatically by
the member function uvm_report_server::report_summarize.
13.6 uvm_report_message_element_base

The class uvm_report_message_element_base shall be used as base class for all report message elements.

13.6.1 Class definition

namespace uvm {

class uvm_report message_element base

{

public:
virtual const std::string get name () const;
virtual void set name(const std::string& name);
virtual uvm_action get_action() const;

virtual void set action(uvm action action);

protected:

Page 213 UVM-SystemC Language Reference Manual — DRAFT

~uvm_report_message_element_base () ;
}; // class uvm report message element base

} // namespace uvm

13.6.2 Member functions

13.6.2.1 get_name

virtual const std::string get name () const;

The member function get_name shall get the name of the message element

13.6.2.2 set_name

virtual void set name(const std::string& name);
The member function set_name shall set the name of the message element
13.6.2.3 get_action

virtual uvm_action get_action() const;

The member function get_action shall get the authorized action for the message element

13.6.2.4 set_action

virtual void set_action(uvm_action action);

The member function set_action shall set the authorized action for the message element

13.7 uvm_report_message_int_element

The class uvm_report_message_int_element shall be used as message element class for integral types.

13.7.1 Class definition

namespace uvm {

class uvm_report message int element : public uvm report message_element base
{

public:

virtual uvm bitstream t get value(int& size, uvm _radix enum& radix) const;

virtual void set value(uvm bitstream t value, int size, uvm radix enum radix);

UVM-SystemC Language Reference Manual —- DRAFT Page 214

protected:

~uvm_report message_int element () ;
}; // class uvm report message int element

} // namespace uvm

13.7.2 Member functions

13.7.2.1 get_value

virtual uvm bitstream t get value(int& size, uvm radix enum& radix) const;

The member function get_value shall get the value as integral type (uvm_bitstream) of the element, with size and
radix.

13.7.2.2 set_value

virtual void set value(uvm bitstream t value, int size, uvm radix enum radix);

The member function set_value shall set the value as integral type (uvm_bitstream) of the element, with size and
radix.

13.8 uvm_report_message_string_element

The class uvm_report_message_string_element shall be used as message element class for string types.

13.8.1 Class definition

namespace uvm {
class uvm_report message_string element : public uvm_report message element base
{
public:
virtual const std::string get_value() const;

virtual void set_value(const std::stringé& value);

protected:

~uvm_report message_string element();
}; // class uvm report message string element

} // namespace uvm

Page 215 UVM-SystemC Language Reference Manual — DRAFT

13.8.2 Member functions

13.8.2.1 get_value

virtual const std::string get value() const;

The member function get_value shall get the value as string type (std::string) of the element.

13.8.2.2 set_value

virtual void set_value(const std::string& value);

The member function set_value shall set the value as string type (std::string) of the element.

13.9 uvm_report_message object_element

The class uvm_report_message_object_element shall be used as message element class for string types.

13.9.1 Class definition

namespace uvm {

class uvm_report message object_element : public uvm_report message element base

{
public:
virtual uvm object* get value() const;

virtual void set_value(uvm _object* value);

protected:

~uvm_report message_object_element();
}; // class uvm report message object element

} // namespace uvm

13.9.2 Member functions

13.9.2.1 get_value

virtual uvm object* get value() const;

The member function get_value shall get the value as object type (uvm_object) of the element.

UVM-SystemC Language Reference Manual —- DRAFT Page 216

13.9.2.2 set_value

virtual void set_value(uvm object* value);

The member function set_value shall set the value as object type (uvm_object) of the element.

13.10 uvm_report_message_element_container

The class uvm_report_message_element_container shall be used as container class for each report message to

dynamically add and delete elements.

13.10.1 Class definition

namespace uvm {

class uvm_report message element container :

{

public:

public uvm_object

uvm_report message element container(uvm object name name = "element container");

virtual unsigned int size() const;
virtual void do_delete(int index);
virtual void delete elements () ;

virtual queue of element get_elements()

virtual void add_int(const std::string& name,

virtual

virtual

uvm_bitstream t value,

int size, uvm_radix_enum radix,

uvm_action action = (UVM LOG | UVM RM RECORD)) ;

void add_string(

void add_object (

const std::string& name,
const std::string& value,

uvm_action action = (UVM_LOG | UVM RM RECORD)

const std::string& name,
uvm_object* obj,

uvm_action action = (UVM_LOG | UVM RM RECORD)

}; // class uvm report message element container

} // namespace uvm

Page 217

UVM-SystemC Language Reference Manual — DRAFT

)

)

13.10.2 Constructor

uvm_report message element container (uvm object name name = "element container");

The constructor shall create a new object of type uvm_report_message_element_container.
13.10.3 Member functions

13.10.3.1 size

virtual unsigned int size() const;

The member function size shall return the size of the container, i.e. the number of elements.

13.10.3.2 do_delete® (delete?)

virtual void do_delete(int index);

The member function do_delete® shall delete the index-th element in the container.

13.10.3.3 delete_elements

virtual void delete elements();

The member function delete_elements shall delete all the elements in the container.

13.10.3.4 get_elements

virtual queue of_ element get_elements() const;

The member function get_elements shall get all the elements from the container and put them in a queue. The queue
is a standard vector (std::vector) containing the handles to objects of type uvm_report_message_element_base.

13.10.3.5 add_int

virtual void add_int(const std::string& name,
uvm _bitstream t value,
int size, uvm_radix_gnum radix,

uvm_action action = (UVM LOG | UVM RM RECORD));

The member function add_int shall add an integral type (uvm_bitstream) with the name name and value value to
the container. The required argument size indicates the size of value. The required argument radix determines how
to display and record the element. The argument action shall be used to specify whether the element will be printed
or recorded.

13.10.3.6 add_string

virtual void add string(const std::string& name,

const std::string& value,

UVM-SystemC Language Reference Manual —- DRAFT Page 218

uvm_action action = (UVM_LOG | UVM RM RECORD));

The member function add_string shall add a string type (std::string) with the name name and value value to the
container. The argument action shall be used to specify whether the element will be printed or recorded.

13.10.3.7 add_object

virtual void add object(const std::string& name,
uvm_object* obj,

uvm_action action = (UVM _LOG | UVM RM RECORD));

The member function add_object shall add an object type (uvm_object) with the name name and value value to the
container. The argument action shall be used to specify whether the element will be printed or recorded.

13.11 uvm_report_message

The class uvm_report_message is the basic UVM object message class. It provides the fields that are common to
all messages. It also has a message element container and provides the APIs necessary to add integral types, strings
and uvm_objects to the container. The report message object can be initialized with the common fields, and passes
through the whole reporting system (i.e. report object, report handler, report server, report catcher, etc) as an object.
The additional elements can be added/deleted to/from the message object anywhere in the reporting system, and can
be printed or recorded along with the common fields.

13.11.1 Class definition

namespace uvm {

class uvm_report message : public uvm object
{
public:
uvm_report message(const uvm_object name name = "uvm_report message");
static uvm _report message* new_report message(const std::string& name
= "uvm_report message");

virtual void do_print(const uvm printers& printer) const;

// Group: Infrastructure References

virtual uvm_report object* get report object() const;
virtual void set_report object(uvm_report object* ro);
virtual uvm report handler* get report handler () const;
virtual void set report handler (uvm report handler* rh);
virtual uvm_report server* get report server() const;

virtual void set report server (uvm report server* rs);

Page 219 UVM-SystemC Language Reference Manual — DRAFT

// Group: Message Fields

virtual uvm_severity get severity() const;

virtual void set_severity(uvm_severity sev);
virtual const std::string get id() const;

virtual void set_id(const std::string& id);
virtual const std::string get message() const;
virtual void set message(const std::string& msg);
virtual int get verbosity () const;

virtual void set_verbosity(int ver);

virtual const std::string get filename () const;
virtual void set filename(const std::string& fname);
virtual int get_line() const;

virtual void set line(int In);

virtual const std::string get context() const;
virtual void set_context(const std::string& cn);
virtual uvm_action get_action() const;

virtual void set action(uvm_action act);

virtual UVM FILE get file() const;

virtual void set_file(UVM FILE {1l);

virtual uvm _report message element_container* get element container ()

virtual void set_report message(uvm_severity severity,
const std::string& id,
const std::string& message,
int verbosity,
const std::string& filename,
int Iline,

const std::string& context name);

// Group: Message Element APIs

virtual void add int(const std::string& name,
uvm _bitstream t value,
int size,

uvm radix enum radix,

uvm_action action = (UVM_LOG | UVM RM RECORD));

virtual void add string(const std::string& name,

const std::string& value,

UVM-SystemC Language Reference Manual —- DRAFT

const;

Page 220

uvm_action action = (UVM_LOG | UVM RM RECORD));

virtual void add object(const std::string& name,
uvm_object* obj,

uvm_action action = (UVM _LOG | UVM RM RECORD));

}: // class uvm report message

} // namespace uvm

13.11.2 Constructor

uvm_report message(const uvm _object name name = "uvm_report message");

The constructor shall create a new object of type uvm_report_message.
13.11.3 Generic member functions

13.11.3.1 new_report_message

static uvm _report message* new_report message(const std::string& name = "uvm report message");
The member function new_report_message shall create a new object of type uvm_report_message.
13.11.3.2 do_print

virtual void do_print(const uvm printers& printer) const;

The member function do_print shall provide UVM printer formatted output of the message.
13.11.4 Infrastructure references

13.11.4.1 get_report_object

virtual uvm_report_object* get report_object() const;

The member function get_report_object shall get the uvm_report_object that originated the message.
13.11.4.2 set_report_object

virtual void set_report object(uvm_report object* ro);

The member function set_report_object shall set the uvm_report_object that originated the message.

13.11.4.3 get_report_handler

virtual uvm_report handler* get report handler () const;

Page 221 UVM-SystemC Language Reference Manual — DRAFT

The member function get report_handler shall get the uvm_report_handler that is responsible for checking
whether the message is enabled, should be upgraded/downgraded, etc.

13.11.4.4 set_report_handler
virtual void set_report handler(uvm _report handler* rh);

The member function set_report_handler shall set the uvm_report_handler that is responsible for checking
whether the message is enabled, should be upgraded/downgraded, etc.

13.11.4.5 get_report_server
virtual uvm_report server* get report server () const;

The member function get_report_server shall get the uvm_report_server that is responsible for servicing the
message’s actions.

13.11.4.6 set_report_server

virtual void set report server (uvm report server* rs);

The member function set_report_server shall set the uvm_report_server that is responsible for servicing the
message’s actions.

13.11.5 Message fields

13.11.5.1 get_severity

virtual uvm_severity get severity() const;

The member function get_severity shall get the severity of the message.

13.11.5.2 set_severity

virtual void set_severity(uvm_severity sev);

The member function set_severity shall set the severity of the message.

13.11.5.3 get_id

virtual const std::string get_id() const;

The member function get_id shall get the id of the message.
13.11.5.4 set_id

virtual void set id(const std::string& id);

The member function set_id shall set the id of the message. The value of this field is completely defined by the
application. For the application it is recommended to follow a consistent convention. Settings in the
uvm_report_handler allow various messaging controls based on this field. See uvm_report_handler.

UVM-SystemC Language Reference Manual —- DRAFT Page 222

13.11.5.5 get_message

virtual const std::string get message() const;
The member function get_message shall get the user message content string.
13.11.5.6 set_message

virtual void set message(const std::string& msg);
The member function set_message shall set the user message content string.
13.11.5.7 get_verbosity

virtual int get verbosity () const;

The member function get_verbosity shall get the message threshold value. This value is compared against settings
in the uvm_report_handler to determine whether this message should be executed.

13.11.5.8 set_verbosity
virtual void set verbosity(int ver);

The member function set_verbosity shall set the message threshold value. This value is compared against settings in
the uvm_report_handler to determine whether this message should be executed.

13.11.5.9 get_filename
virtual const std::string get_filename () const;

The member function get_filename shall get the file from which the message originates. This value is automatically
populated by the messaging macros.

13.11.5.10 set_filename

virtual void set filename(const std::string& fname);

The member function set_filename shall set the file from which the message originates. This value is automatically
populated by the messaging macros.

13.11.5.11 get_line

virtual int get_line() const;

The member function get_line shall get the line in the file from which the message originates. This value is
automatically populate by the messaging macros.

13.11.5.12 set_line

virtual void set_line(int In);

Page 223 UVM-SystemC Language Reference Manual — DRAFT

The member function set_line shall set the line in the file from which the message originates. This value is
automatically populate by the messaging macros.

13.11.5.13 get_context
virtual const std::string get_context() const;

The member function get_context shall get the optional application-defined string that is meant to convey the
context of the message. It can be useful in scopes that are not inherently UVM like modules, interfaces, etc.

13.11.5.14 set_context

virtual void set context(const std::string& cn);

The member function set_context shall get the optional application-defined string that is meant to convey the
context of the message. It can be useful in scopes that are not inherently UVM like modules, interfaces, etc.

13.11.5.15 get_action
virtual uvm action get action() const;

The member function get_action shall get the action(s) that the uvm_report_server should perform for this message.
This field is populated by the uvm_report_handler during message execution flow.

13.11.5.16 set_action
virtual void set_action(uvm_action act);

The member function set_action shall set the action(s) that the uvm_report_server should perform for this message.
This field is populated by the uvm_report_handler during message execution flow.

13.11.5.17 get_file
virtual UVM FILE get file() const;

The member function get_file shall get the file that the message is to be written to when the message’s action is
UVM_LOG. This field is populated by the uvm_report_handler during message execution flow.

13.11.5.18 set _file

virtual void set file(UVM FILE f]);

The member function set_file shall set the file that the message is to be written to when the message’s action is
UVM_LOG. This field is populated by the uvm_report_handler during message execution flow.

13.11.5.19 get_element_container

virtual uvm_report message element container* get element container () const;

The member function get_element_container shall get the element container of the message.

UVM-SystemC Language Reference Manual —- DRAFT Page 224

13.11.6 Message element APIs

13.11.6.1 add_int

virtual void add int(const std::string& name,
uvm_bitstream t value,
int size,
uvm_radix enum radix,

uvm_action action = (UVM _LOG | UVM RM RECORD));

The member function add_int shall add an integral type (uvm_bitstream) with the name name and value value to
the message. The required argument size indicates the size of value. The required argument radix determines how to
display and record the element. The argument action shall be used to specify whether the element will be printed or
recorded.

13.11.6.2 add_string

virtual void add string(const std::string& name,
const std::string& value,

uvm_action action = (UVM_LOG | UVM RM RECORD));

The member function add_string shall add a string type (std::string) with the name name and value value to the
message. The argument action shall be used to specify whether the element will be printed or recorded.

13.11.6.3 add_object

virtual void add_object(const std::string& name,
uvm_object* obj,

uvm_action action = (UVM LOG | UVM RM RECORD)) ;

The member function add_object shall add an object type (uvm_object) with the name name and value value to the
message. The argument action shall be used to specify whether the element will be printed or recorded.

Page 225 UVM-SystemC Language Reference Manual — DRAFT

14.Macros

UVM-SystemC defines macros for the following functions:
e Component and object registration
e Reporting
e Sequence execution

e Callbacks

14.1 Component and object registration macros

These macros shall register components and objects with the uvm_factory, using the component registry
uvm_component_registry or uvm_object_registry, respectively. In addition, they shall implement the member
functions get_type and get_type_name to facilitate debugging and factory configuration or overrides.

14.1.1 Macro definitions

namespace uvm {

#define UVM _OBJECT UTILS(implementation-defined) implementation-defined
#define UVM OBJECT PARAM UTILS(implementation-defined) implementation-defined
#define UVM COMPONENT UTILS(implementation-defined) implementation-defined

#define UVM COMPONENT PARAM UTILS(implementation-defined) implementation-defined

} // namespace uvm

14.1.2 UVM_OBJECT UTILS, UVM_OBJECT PARAM_UTILS

#define UVM OBJECT UTILS(implementation-defined) implementation-defined

#define UVM OBJECT PARAM UTILS(implementation-defined) implementation-defined
The macros UVM_OBJECT _UTILS and UVM_OBJECT_PARAM_UTILS shall implement the following
functionality:

« Implement the virtual member function get_type name with the following signature:
virtual const std::string get type name () const;
This member function shall return the name of the class, which is provided as argument to this macro, as

string.

o Implement the static member function get_type with the following signature:

static uvm_object registry< classname >* get_type();
This member function shall return the factory proxy object as pointer of type uvm_object_registry.

« Register the class with the factory.

NOTE-An implementation may use the concept of variadic macros to be able to accept a variable number of macro arguments.

UVM-SystemC Language Reference Manual —- DRAFT Page 226

14.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS

#define UVM COMPONENT UTILS(implementation-defined) implementation-defined

#define UVM COMPONENT PARAM UTILS(implementation-defined) implementation-defined
The macros UVM_COMPONENT_UTILS and UVM_COMPONENT_PARAM_UTILS shall implement the
following functionality:

o Implement the virtual member function get_type_name with the following signature:
virtual const std::string get_type name () const;

This member function shall return the name of the class, which is provided as argument to this macro, as
string.

« Implement the static member function get_type with the following signature:
static uvm_component_registry< classname >* get_type ()

This member function shall return the factory proxy object as pointer of type uvm_component_registry.
e Register the class with the factory

NOTE-An implementation may use the concept of variadic macros to be able to accept a variable number of macro arguments.

14.2 Reporting macros

The report macros shall provide additional functionality to the UVM reporting classes to facilitate efficient filtering
messages based on verbosity, id and severity information, as well as annotating file and line number information to
the reported messages.

14.2.1 Macro definitions

namespace uvm {

#define UVM_INFO(ID, MSG, VERBOSITY) implementation-defined
#define UVM _WARNING(ID, MSG) implementation-defined
#define UVM ERROR(ID, MSG) implementation-defined

#define UVM_FATAL(ID, MSG) implementation-defined

} // namespace uvm

14.2.2 UVM_INFO

#define UVM_INFO(ID, MSG, VERBOSITY) implementation-defined

The macro UVM_INFO shall only call member function uvm_report_info if argument VERBOSITY is lower than
the configured verbosity of the associated reporter. Argument ID is given as the message tag and argument MSG is
given as the message text. The file and line number are also sent to the member function uvm_report_info by
means of using the predefined macros _ FILE__and __ LINE__.

Page 227 UVM-SystemC Language Reference Manual — DRAFT

14.2.3 UVM_WARNING

#define UVM _WARNING(ID, MSG) implementation-defined

The macro UVM_WARNING shall call the member function uvm_report_warning with a verbosity of
UVM_NONE. The message cannot be turned off using the reporter’s verbosity setting, but can be turned off by
setting the action for the message. Argument ID is given as the message tag and argument MSG is given as the
message text. The file and line number are also sent to the member function uvm_report_warning by means of
using the predefined macros __ FILE__and __ LINE_ .

14.2.4 UVM_ERROR

#define UVM _ERROR(ID, MSG) implementation-defined

The macro UVM_ERROR shall call the member function uvm_report_error with a verbosity of UVM_NONE.
The message cannot be turned off using the reporter’s verbosity setting, but can be turned off by setting the action
for the message. Argument ID is given as the message tag and argument MSG is given as the message text. The file
and line number are also sent to the member function uvm_report_error by means of using the predefined macros
__FILE__and __ LINE__.

14.2.5 UVM_FATAL

#define UVM FATAL(ID, MSG) implementation-defined

The macro UVM_FATAL shall call member function uvm_report_fatal with a verbosity of UVM_NONE. The
message cannot be turned off using the reporter’s verbosity setting, but can be turned off by setting the action for the
message. Argument ID is given as the message tag and argument MSG is given as the message text. The file and
line number are also sent to the member function uvm_report_fatal by means of using the predefined macros
__FILE__and _ LINE__.

14.3 Sequence execution macros
The sequence execution macros are shall provide a convenience layer to start sequences or sequence items on a

default sequencer, if not specified, or on another sequencer if specified.

NOTE-It is strongly recommended not to use the sequence execution macros in an application. Instead, for a sequence item to
start, it is recommended to use the member functions start_item (see 10.3.6.2) and finish_item (see 10.3.6.3). To start a
sequence, it is recommended to use the member function start (see 10.3.4.1).

14.3.1 Macro definitions

namespace uvm {

#define UVM DO(SEQ OR ITEM) implementation-defined

#define UVM DO_PRI(SEQ OR ITEM, PRIORITY) implementation-defined

#define UVM DO _ON(SEQ OR ITEM, SEQR) implementation-defined

#define UVM DO ON PRI (SEQ OR ITEM, SEQR, PRIORITY) implementation-defined

#define UVM CREATE (SEQ OR ITEM) implementation-defined

UVM-SystemC Language Reference Manual —- DRAFT Page 228

#define UVM CREATE ON(SEQ OR ITEM, SEQR) implementation-defined
#define UVM_DECLARE P_SEQUENCER(SEQR) implementation-defined

} // namespace uvm

14.3.2 UVM_DO

#define UVM DO(SEQ OR ITEM) implementation-defined

The macro UVM_DO shall start the execution of a sequence or sequence item. It takes as an argument
SEQ_OR_ITEM, which is an object of type uvm_sequence_item or object of type uvm_sequence.

In the case of a sequence, the sub-sequence shall be started using member function uvm_sequence_base::start with
argument call_pre_post set to false. In the case of a sequence item, the item shall be sent to the driver through the
associated sequencer.

NOTE-Randomization is not yet implemented as part of the UVM_DO macro.
14.3.3 UVM_DO_PRI
#define UVM DO_PRI(SEQ OR ITEM, PRIORITY) implementation-defined

The macro UVM_DO_PRI shall implement the same functionality as UVM_DO, except that the sequence item or
sequence is executed with the priority specified in the argument PRIORITY.

14.3.4 UVM_DO_ON
#define UVM DO ON(SEQ OR ITEM, SEQR) implementation-defined

The macro UVM_DO_ON shall implement the same functionality as UVM_DO, except that it also sets the parent
sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified argument SEQR.

14.3.5 UVM_DO_ON_PRI
#define UVM DO ON PRI (SEQ OR ITEM, SEQR, PRIORITY) implementation-defined

The macro UVM_DO_ON_PRI shall implement the same functionality as UVM_DO_PRI, except that it also sets
the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified
argument SEQR.

14.3.6 UVM_CREATE
#define UVM CREATE (SEQ OR ITEM) implementation-defined

The macro UVM_CREATE shall create and register the sequence item or sequence using the factory. It
intentionally does not start the execution.

NOTE-After calling this member function, an application can manually set values and start the execution.

Page 229 UVM-SystemC Language Reference Manual — DRAFT

14.3.7 UVM_CREATE_ON

#define UVM CREATE ON(SEQ OR ITEM, SEQR) implementation-defined

The macro UVM_CREATE_ON shall implement the same functionality as UVM_CREATE, except that it also sets
the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified
argument SEQR.

14.3.8 UVM_DECLARE_P_SEQUENCER
#define UVM DECLARE P SEQUENCER (SEQR) implementation-defined

The macro UVYM_DECLARE_P_SEQUENCER shall declare a variable p_sequencer whose type is specified by
The argument SEQUENCER.

14.4 Callback macros

The callback macros shall register and execute callbacks which are derived from class uvm_callbacks.

14.4.1 Macro definitions

namespace uvm {

#define UVM REGISTER CB(T, CB) implementation-defined

#define UVM DO _CALLBACKS (T, CB, METHOD) implementation-defined

} // namespace uvm

14.4.2 UVM_REGISTER_CB

#define UVM REGISTER CB(T, CB) implementation-defined

The macro UVM_REGISTER_CB shall register the given callback type CB with the given object type T. If a type-
callback pair is not registered, then a warning is issued if an attempt is made to use the pair (add, delete, etc.).

14.4.3 UVM_DO_CALLBACKS

#define UVM DO_CALLBACKS (T, CB, METHOD) implementation-defined
The macro UVM_DO_CALLBACKS shall call the given METHOD of all callbacks of type CB registered with the
calling object (i.e. this object), which is or is based on type T.

This macro executes all of the callbacks associated with the calling object (i.e. this object). The macro takes three
arguments:

e CBiis the class type of the callback objects to execute. The class type must have a function signature that
matches the argument METHOD.

UVM-SystemC Language Reference Manual —- DRAFT Page 230

e Tis the type associated with the callback. Typically, an instance of type T is passed as one the arguments in
the METHOD call.

e METHOD is the method call to invoke, with all required arguments as if they were invoked directly.

Page 231 UVM-SystemC Language Reference Manual — DRAFT

15.TLM interfaces

The TLM interfaces of UVM-SystemC shall be derived from the SystemC TLM interface definitions as defined in
IEEE Std. 1666-2011. As communication between UVM components is primarily based on TLM-1 message passing

semantics, dedicated ports and exports are defined compliant with these semantics.

NOTE-UVM-SystemC does not yet define the TLM-2.0 blocking and non-blocking transport interfaces, direct memory interface

(DMI), nor a debug transport interface. Use the SystemC TLM-2.0 interfaces instead.
The following TLM-1 ports are defined in UVM-SystemC:

e Ports based on TLM-1 blocking interfaces:

o uvm_blocking_put_port
o uvm_blocking_get_port

o uvm_blocking_peek port

o uvm_blocking_get_peek_port
e Ports based on TLM-1 non-blocking interfaces:

o uvm_nonblocking_put_port

o uvm_nonblocking_get port

o uvm_nonblocking_peek_port

o uvm_nonblocking_get peek port

e Analysis port and export classes:

o uvm_analysis_port

o uvm_analysis_export

o uvm_analysis_imp
e Request-response channel class:

o uvm_tlm_req_rsp_channel
e Sequencer interface classes

o uvm_sqr_if _base

o uvm_seq_item_pull_port

o uvm_seq_item_pull_export

o uvm_seq_item_pull_imp

NOTE 1-There are no dedicated TLM-1 FIFO and FIFO interface classes defined in UVM-SystemC. Instead, the use the
SystemC FIFO base classes tlm::tim_fifo<T> or tim::tim_analysis_fifo, or FIFO interfaces tim::tim_fifo_debug_if,

tim::tim_fifo_put_if, and tim::tim_fifo_get_if is recommended.

UVM-SystemC Language Reference Manual —- DRAFT

Page 232

15.1 uvm_blocking_put_port

The class uvm_blocking_put_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tim::tim_blocking_put_if. As this port class shall be derived from class uvm_port_base, it
inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

15.1.1 Class definition

namespace uvm {

template <typename T>
class uvm_blocking put port : public uvm port base< tlm::tlm blocking put if<T> >
{
public:
uvm_blocking put port();
uvm_blocking put port(const std::string& name);
virtual const std::string get_type name () const;

virtual void put(const T& val);
}; // class uvm blocking put port

} // namespace uvm

15.1.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

15.1.3 Constructor

uvm_blocking put_port() ;

uvm_blocking put port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking put interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

15.1.4 Member functions

15.1.4.1 get_type _name

virtual const std::string get_type name () const;

The member function get_type_name shall return the string “uvm::uvm_blocking_put_port”.

Page 233 UVM-SystemC Language Reference Manual — DRAFT

15.1.4.2 put

virtual void put(const T& val);

The member function put shall send the transaction of type T to the recipient. It shall call the member function put
of the associated interface which is bound to this port.

According to the TLM-1 blocking put semantics, the member function put shall not return until the recipient has
indicated that the transaction object has been processed, by calling member function get or peek. Subsequent calls to
the member function put shall be treated as distinct transaction instances, regardless of whether or not the same
transaction object or message is passed.

15.2 uvm_blocking_get port

The class uvm_blocking_get_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tlm::tim_blocking_get_if. As this port class shall be derived from class uvm_port_base, it
inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

15.2.1 Class definition

namespace uvm {

template <typename T>
class uvm _blocking get port : public uvm port base< tlm::tlm blocking get if<T> >
{
public:
uvm_blocking get_port();
uvm_blocking_get port(const std::string& name);
virtual const std::string get_type name () const;

virtual void get(T& val);
}; // class uvm blocking get port

} // namespace uvm

15.2.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

15.2.3 Constructor

uvm_blocking get_port();

uvm_blocking get port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking get interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

UVM-SystemC Language Reference Manual —- DRAFT Page 234

15.2.4 Member functions

15.2.4.1 get_type_name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_blocking_get_port”.

15.2.4.2 get

virtual void get(T& val);
The member function get shall retrieve a transaction of type T from the sender. It shall call the member function get
of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction object
has been delivered by the sender by means of its member function put. Subsequent calls to the member function get
shall return a different transaction object. This actually means that a call to get shall consume the transaction from
the sender.

15.3 uvm_Dblocking_peek port

The class uvm_blocking_peek_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tlm::tim_blocking_peek_if. As this port class shall be derived from class uvm_port_base, it
inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

15.3.1 Class definition

namespace uvm {

template <typename T>
class uvm blocking peek port : public uvm port base< tlm::tlm blocking peek if<T> >
{
public:
uvm_blocking peek port () ;
uvm_blocking peek port(const std::string& name);
virtual const std::string get type name () const;

virtual void peek(T& val) const;
}; // class uvm blocking peek port

} // namespace uvm

15.3.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

Page 235 UVM-SystemC Language Reference Manual — DRAFT

15.3.3 Constructor

uvm_blocking peek port();

uvm_blocking peek port(const std::string& name) ;

The constructor shall create a new port with TLM-1 blocking peek interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

15.3.4 Member functions

15.3.4.1 get_type_name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_blocking_peek port”.

15.3.4.2 peek

virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member function
peek of the associated interface which is bound to this port.

According to the TLM-1 blocking peek semantics, the member function peek shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsequent calls to the member
function peek shall return exactly the same transaction object. This actually means that a call to peek shall not
consume the transaction from the sender. A transaction shall only be consumed by means of a call to get.

15.4 uvm_Dblocking_get peek port

The class uvm_blocking_get_peek_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tIm::tim_blocking_get_peek_if. As this port class shall be derived from class uvm_port_base, it
inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

15.4.1 Class definition

namespace uvm {

template <typename T>
class uvm _blocking get_peek port : public uvm port base< tlm::tlm blocking get peek if<T> >
{
public:
uvm_blocking get peek port();
uvm_blocking get peek_port(const std::string& name);
virtual const std::string get type name () const;

virtual void get(T& val);

UVM-SystemC Language Reference Manual —- DRAFT Page 236

virtual void peek(T& val) const;
}; // class uvm blocking get peek port

} // namespace uvm

15.4.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

15.4.3 Constructor

uvm_blocking get peek port();

uvm_blocking get peek port(const std::stringé& name);

The constructor shall create a new port with TLM-1 blocking get and peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

15.4.4 Member functions

15.4.4.1 get_type _name

virtual const std::string get_type name () const;

The member function get_type_name shall return the string “uvm::uvm_blocking_get_peek_port”.

15.4.4.2 get

virtual void get(T& val);

The member function get shall retrieve a transaction of type T from the sender. It shall call the member function get
of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction object
has been delivered by the sender by means of its member function put. Subsequent calls to the member function get
shall return a different transaction object. This actually means that a call to get shall consume the transaction from
the sender.

15.4.4.3 peek

virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member function
peek of the associated interface which is bound to this port (see member function connect).

According to the TLM-1 blocking peek semantics, the member function peek shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsequent calls to the member
function peek shall return exactly the same transaction object. This actually means that a call to peek shall not
consume the transaction from the sender. A transaction shall only be consumed by means of a call to get.

Page 237 UVM-SystemC Language Reference Manual — DRAFT

15.5 uvm_nonblocking_put_port

15.5.1 Class definition

namespace uvm {

template <typename T>
class uvm_nonblocking put port : public uvm port base< tlm::tlm nonblocking put if<T> >
{
public:
uvm_nonblocking put port();
uvm_nonblocking put port(const std::string& name);
virtual const std::string get type name () const;
virtual bool try put(const T& val);

virtual bool can_put() const;
}; // class uvm nonblocking put port

} // namespace uvm

15.5.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

15.5.3 Constructor

uvm_nonblocking put port() ;

uvm_nonblocking put port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking put interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

15.5.4 Member functions

15.5.4.1 get_type_name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_put_port”.

15.5.4.2 try_put

virtual bool try put(const T& val);

UVM-SystemC Language Reference Manual —- DRAFT Page 238

The member function try_put shall send the transaction of type T to the recipient, if possible. It shall call the
corresponding non-blocking put method of the associated interface which is bound to this port. If the recipient is
able to respond immediately, then the member function shall return true. Otherwise, the member function shall
return false, and shall not accept or return the next transaction.

15.5.4.3 can_put

virtual bool can_put() const;

The member function can_put shall return true if the recipient is able to respond immediately; otherwise it shall
return false.

15.6 uvm_nonblocking_get port

15.6.1 Class definition

namespace uvm {

template <typename T>
class uvm_nonblocking get port : public uvm port base< tlm::tlm nonblocking get if<T> >
{
public:
uvm_nonblocking get port();
uvm_nonblocking get port(const std::string& name);
virtual const std::string get_type name () const;
virtual bool try get(T& val);

virtual bool can_get() const;
}; // class uvm nonblocking get port

} // namespace uvm

15.6.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

15.6.3 Constructor

uvm_nonblocking get port();

uvm_nonblocking get port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking get interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

Page 239 UVM-SystemC Language Reference Manual — DRAFT

15.6.4 Member functions

15.6.4.1 get_type_name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_get_port”.

15.6.4.2 try_get

virtual bool try get(T& val);

The member function try_get shall retrieve a new transaction of type T. It shall call the corresponding non-blocking
get method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return
true. Otherwise, the output argument is not modified and the member function shall return false.

15.6.4.3 can_get

virtual bool can_get() const;

The member function can_get shall return true if a new transaction can be provided immediately upon request.
Otherwise it shall return false.

15.7 uvm_nonblocking_peek port

15.7.1 Class definition

namespace uvm {

template <typename T>
class uvm_nonblocking peek_port : public uvm port base< tlm::tlm nonblocking peek if<T> >
{
public:
uvm_nonblocking peek port();
uvm_nonblocking peek port(const std::string& name);
virtual const std::string get type name () const;
virtual bool try peek(T& val);

virtual bool can_peek () const;
}i; // class uvm nonblocking peek port

} // namespace uvm

UVM-SystemC Language Reference Manual —- DRAFT Page 240

15.7.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

15.7.3 Constructor

uvm_nonblocking peek port();

uvm_nonblocking peek port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

15.7.4 Member functions

15.7.4.1 get_type_name

virtual const std::string get_type name () const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_peek_port”.

15.7.4.2 try_peek

virtual bool try peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call the
corresponding non-blocking peek method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return
true. Otherwise, the output argument is not modified and the member function shall return false.

15.7.4.3 can_peek

virtual bool can_peek () const;

The member function can_peek shall return true if a new transaction can be provided immediately upon request.
Otherwise it shall return false.

15.8 uvm_nonblocking_get peek port

15.8.1 Class definition

namespace uvm {
template <typename T>
class uvm _nonblocking get_peek port

: public uvm port base< tlm::tlm nonblocking get peek if<T> >

public:

Page 241 UVM-SystemC Language Reference Manual — DRAFT

uvm_nonblocking get peek port();
uvm_nonblocking get peek port(const std::string& name) ;
virtual const std::string get_type name () const;

virtual bool try get(T& val);

virtual bool can_get() const;

virtual bool try peek(T& val);

virtual bool can_peek () const;
}; // class uvm nonblocking get peek port

} // namespace uvm

15.8.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

15.8.3 Constructor

uvm_nonblocking get peek port();

uvm_nonblocking get peek port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking get and peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

15.8.4 Member functions

15.8.4.1 get_type_name

virtual const std::string get_type name () const;
The member function get_type_name shall return the string “uvm::uvm_nonblocking_get_peek_port”.
15.8.4.2 try _get

virtual bool try get(T& val);

The member function try_get shall retrieve a new transaction of type T. It shall call the corresponding non-blocking
get method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return
true. Otherwise, the output argument is not modified and the member function shall return false.

15.8.4.3 can_get

virtual bool can_get() const;

UVM-SystemC Language Reference Manual —- DRAFT Page 242

The member function can_get shall return true if a new transaction can be provided immediately upon request.
Otherwise it shall return false.

15.8.4.4 try_peek

virtual bool try peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call the
corresponding non-blocking peek method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return
true. Otherwise, the output argument is not modified and the member function shall return false.

15.8.4.5 can_peek

virtual bool can_peek () const;

The member function can_peek shall return true if a new transaction can be provided immediately upon request.
Otherwise it shall return false.

15.9 uvm_analysis_port

The class uvm_analysis_port offers a convenience layer for UVM users and is compatible with the SystemC
tim::tim_analysis_port, since it shall be derived from this class. Primary reason to introduce this derived port class
is to offer the UVM specific member function connect as alternative to the SystemC bind and operator() to connect
analysis ports with exports.

15.9.1 Class definition

namespace uvm {

template <typename T>
class uvm_analysis _port : public tlm::tlm analysis_port<T>
{
public:
uvm_analysis port() ;
uvm_analysis port(const std::string& name);
virtual const std::string get type name () const;
virtual void connect(tlm::tlm analysis if<T>& if);
void write(const T& t);

}; // class uvm analysis port

} // namespace uvm

Page 243 UVM-SystemC Language Reference Manual — DRAFT

15.9.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis port.

15.9.3 Constructor

uvm_analysis port();

uvm_analysis port(const std::string& name);

The constructor shall create a new analysis port. If specified, the argument name shall define the name of the port.
Otherwise, the name of the port is implementation-defined.

NOTE-UVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments min_size and max_size to
specify the minimum and maximum number of interfaces, respectively, that must have been connected to this port by the end of
elaboration.

15.9.4 Member functions

15.9.4.1 get_type _name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_analysis_port”.

15.9.4.2 connect

virtual void connect(tlm::tlm analysis if<T>& if);

The member function connect shall register the subscriber passed as an argument, so that any call to the member
function write of such analysis port instance shall be passed on to the registered subscriber. Multiple subscribers
may be registered with a single analysis port instance.

NOTE 1-The member function connect implements the same functionality as the SystemC member function bind.

NOTE 2-There may be zero subscribers registered with any given analysis port instance, in which case calls to the member
function write shall not be propagated.

15.9.4.3 write
void write(const T& t);

The member function write shall call the member function write of every subscriber which is bound to this analysis
port, by passing on the argument as a const reference.

15.10 uvm_analysis_export

The class uvm_analysis_export offers a convenience layer for UVM users and is compatible with the SystemC
export type sc_core::sc_export < tim::tlm_analysis_if <T> > since it shall be derived from this class. Primary
reason to introduce this export class is to offer the member function connect as alternative to the SystemC bind and
operator() to connect analysis ports with exports.

UVM-SystemC Language Reference Manual —- DRAFT Page 244

15.10.1 Class definition

namespace uvm {

template <typename T>
class uvm_analysis_export : public sc_core::sc_export< tlm::tlm analysis if<T> >
{
public:
uvm_analysis export();
uvm_analysis export(const std::stringé& name);
virtual const std::string get_type name () const;

virtual void connect(tlm::tlm analysis if<T>& _if);
}: // class uvm analysis export

} // namespace uvm

15.10.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis port.

15.10.3 Constructor

uvm_analysis_ export () ;

uvm_analysis_export(const std::stringé& name);

The constructor shall create a new analysis export. If specified, the argument name shall define the name of the
export. Otherwise, the name of the export is implementation-defined.

NOTE-UVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments min_size and max_size to
specify the minimum and maximum number of interfaces, respectively, that must have been connected to this port by the end of
elaboration.

15.10.4 Member functions

15.10.4.1 get_type_name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_analysis_export”.

15.10.4.2 connect

virtual void connect(tlm::tlm analysis if<T>& if);

Page 245 UVM-SystemC Language Reference Manual — DRAFT

The member function connect shall register the subscriber passed as an argument, so that any call to the member
function write of such analysis export instance shall be passed on to the registered subscriber. Multiple subscribers
may be registered with a single analysis export instance.

NOTE 1-The member function connect implements the same functionality as the SystemC member function bind.

NOTE 2-There may be zero subscribers registered with any given analysis export instance, in which case calls to the member
function write shall not be propagated.

15.11 uvm_analysis_imp

The class uvm_analysis_imp shall serve as termination point of analysis port and export connections. It shall call
the member function write of the component type passed as second template argument via its own member function
write, without modification of the value passed to it.

15.11.1 Class definition

namespace uvm {

template <typename T = int, typename IMP = int>
class uvm_analysis imp : public tlm::tlm analysis port<T>
{
public:
uvm_analysis_imp();
uvm_analysis_imp(const std::string& name);
virtual const std::string get_type name () const;
virtual void connect(tlm::tlm analysis if<T>& if);
void write(const T& t);

}: // class uvm analysis imp

} // namespace uvm

15.11.2 Template parameters

The template parameter T specifies the type of transaction to be communicated by the analysis port. The template
parameter IMP specifies the component type which implements the member function write.

15.11.3 Constructor

uvm_analysis imp () ;

uvm_analysis imp(const std::string& name);

The constructor shall create a new analysis implementation. If specified, the argument name shall define the name of
the export. Otherwise, the name of the export is implementation-defined.

UVM-SystemC Language Reference Manual —- DRAFT Page 246

15.11.4 Member functions

15.11.4.1 get_type_name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_analysis_imp”.

15.11.4.2 connect

virtual void connect(tlm::tlm analysis if<T>& if);

The member function connect shall register the subscriber passed as an argument, so that any call to the member
function write of such analysis implementation instance shall be passed on to the registered subscriber. Multiple
subscribers may be registered with a single analysis export instance.

NOTE 1-The member function connect implements the same functionality as the SystemC member function bind.

15.11.4.3 write

void write(const T& t);

The member function write shall shall call the member function write of the associated subscriber which is
specified as second template argument, by passing on the argument as a const reference.

15.12 uvm_tim_req_rsp_channel

The class uvm_tlm_req_rsp_channel offers a convenience layer for UVM users and is compatible with the
SystemC tlm::tim_req_rsp_channel, since it shall be derived from this class. It offers some UVM additional
capabilities such as the analysis ports for request and response monitoring.

The class uvm_tlm_req_rsp_channel contains a request FIFO of default type tIm::tIm_fifo<REQ> and a response
FIFO of default type tim::tim_fifo<RSP>. These FIFOs can be of any size. This channel is particularly useful for
dealing with pipelined protocols where the request and response are not tightly coupled.

15.12.1 Class definition

namespace uvm {

template < typename REQ,
typename RSP = REQ,
typename REQ CHANNEL = tlm::tlm fifo<REQ>,
typename RSP_CHANNEL = tlm::tlm fifo<RSP> >
class uvm_tlm req_ rsp_channel
: public tlm::tlm req rsp channel<REQ, RSP, REQ CHANNEL, RSP_CHANNEL>
{

public:

Page 247 UVM-SystemC Language Reference Manual — DRAFT

// ports and exports

uvm_analysis port<REQ> request ap;

uvm_analysis port<RSP> response_ap;

sc_core::sc_export< tlm::tlm fifo put if<REQ> > put request export;
sc_core::sc_export< tlm::tlm fifo put if<RSP> > put response export;
sc_core: :sc_export< tlm::tlm fifo get if<REQ> > get request export;
sc_core: :sc_export< tlm::tlm fifo get if<RSP> > get response_export;
sc_core::sc_export< tlm::tlm fifo get if<REQ> > get peek request export;
sc_core: :sc_export< tlm::tlm fifo get if<RSP> > get peek response_export;
sc_core: :sc_export< tlm::tlm master if<REQ, RSP> > master export;

sc_core::sc_export< tlm::tlm slave if<REQ, RSP> > slave export;

// constructors
uvm_tlm req rsp channel(int req size = 1 , int rsp size =1);

uvm_tlm req rsp channel (uvm_component name name, int req size = 1, int rsp size =1);
}: // class uvm tlm req rsp channel

} // namespace uvm

15.12.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. The template
parameters REQ_CHANNEL and RSP_CHANNEL specify the type of the request and response FIFO, respectively.
If parameters REQ_CHANNEL or RSP_CHANNEL are not specified, the interface will use FIFOs of type
tim::tIm_fifo.

15.12.3 Ports and exports
15.12.3.1 request_ap

uvm_analysis port<REQ> request ap;

The analysis port request_ap shall send the request transactions, which are passed via the member function put or
nb_put (via any port connected to the export put_request_export), via its member function write, to all connected
analysis exports and imps.

15.12.3.2 response_ap

uvm_analysis port<RSP> response_ap;

UVM-SystemC Language Reference Manual —- DRAFT Page 248

The analysis port response_ap shall send the response transactions, which are passed via the member function put
or nb_put (via any port connected to the export put_response_export), via its member function write, to all
connected analysis exports and imps.

15.12.3.3 put_request_export

sc_core: :sc_export< tlm::tlm fifo put if<REQ> > put request export;

The export put_request_export shall provide both the blocking and non-blocking put interface member functions
to the request FIFO based on interface tim::tIm_fifo_put_if, being member functions put, nb_put and nb_can_put.
Any put port variant can connect and send transactions to the request FIFO via this export, provided the transaction
types match.

15.12.3.4 put_response_export

sc_core::sc_export< tlm::tlm fifo put if<RSP> > put response export;

The export put_response_export shall provide both the blocking and non-blocking put interface member functions
to the response FIFO based on interface tim::tim_fifo_put_if, being put, nb_put and nb_can_put. Any put port
variant can connect and send transactions to the response FIFO via this export, provided the transaction types match.

15.12.3.5 get_request_export

sc_core::sc_export< tlm::tlm fifo get if<REQ> > get request export;

The export get_request_export shall provide both the blocking and non-blocking get and peek interface member
functions to the request FIFO based on interface tim::tim_fifo_get if, being get, nb_get, nb_can_get, peek,
nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the request FIFO via this
export, provided the transaction types match.

NOTE-This member function is functionally equivalent to get_peek_request_export.

15.12.3.6 get_response_export

sc_core::sc_export< tlm::tlm fifo get if<RSP> > get response_ export;

The export get_response_export shall provide both the blocking and non-blocking get and peek interface member
functions to the response FIFO based on interface tim::tim_fifo_get if, being get, nb_get, nb_can_get, peek,
nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the response FIFO via this
export, provided the transaction types match.

NOTE-This member function is functionally equivalent to get_peek_response_export.
15.12.3.7 get_peek_request_export
sc_core: :sc_export< tlm::tlm fifo get if<REQ> > get peek request_ export;

The export get_peek_request_export shall provide both the blocking and non-blocking get and peek interface
member functions to the request FIFO based on interface tim::tim_fifo_get if, being get, nb_get, nb_can_get,
peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the request FIFO via
this export, provided the transaction types match.

Page 249 UVM-SystemC Language Reference Manual — DRAFT

NOTE-This member function is functionally equivalent to get_request_export.

15.12.3.8 get_peek_response_export

sc_core::sc_export< tlm::tlm fifo get if<RSP> > get peek response export;

The export get_peek _response_export shall provide both the blocking and non-blocking get and peek interface
member functions to the response FIFO based on interface tim::tim_fifo_get_if, being get, nb_get, nb_can_get,
peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the response FIFO via
this export, provided the transaction types match.

NOTE-This member function is functionally equivalent to get_response_export.

15.12.3.9 master_export

sc_core::sc_export< tlm::tlm master if<REQ, RSP> > master export;

The export master_export shall provide a single interface that allows a master to put requests and get or peek
responses. It is a combination of the functionality offered by the exports put_request export and
get_peek_response_export.

15.12.3.10 slave_export

sc_core::sc_export< tlm::tlm slave if<REQ, RSP> > slave export;

The export slave_export shall provide a single interface that allows a slave to get or peek requests and to put
responses. It is a combination of the functionality offered by the exports get peek request export and
put_response_export.

15.12.4 Constructor

uvm_tlm req rsp channel(int req size = 1 , int rsp size =1);

uvm_tlm req rsp_channel (uvm_component name name, int req size = 1, int rsp size =1);

The constructor shall create a new TLM-1 interface containing a request and response FIFO. The argument req_size
specifies the size of the request FIFO. The argument rsp_size specifies the size of the response FIFO. If not
specified, default size of these FIFOs is 1. If specified, the argument name shall define the name of the interface.
Otherwise, the name of the interface is implementation-defined.

15.13 uvm_sqr_if_base

The class uvm_sqgr_if_base shall define an interface for sequence drivers to communicate with sequencers. The
driver requires the interface via a port, and the sequencer implements it and provides it via an export.

15.13.1 Class definition

namespace uvm {

template <typename REQ, typename RSP = REQ>

UVM-SystemC Language Reference Manual —- DRAFT Page 250

class uvm_sqr_if base : public virtual sc_core::sc_interface

{

public:

virtual void get next item(REQ& req) = 0;
virtual bool try next item(REQ& req) = 0;
virtual void item done(const RSP& item) = 0;
virtual void item done() = 0;

virtual void put(const RSP& rsp) = 0;
virtual void get(REQ& reg) = 0;

virtual void peek(REQ& req) = 0;

protected:

uvm_sqr_if base();
}: // class uvm sqr if base

} // namespace uvm

15.13.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object
types must be a derivative of class uvm_sequence_item.

15.13.3 Member functions

15.13.3.1 get_next_item

virtual void get next_item(REQ& req) = 0;
The member function get_next_item shall retrieve the next available item from a sequence. The call will block until
an item is available. The following steps occur on this call:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on
the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

The chosen sequence will return from member function wait_for_grant (see 10.3.6.4).
The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 10.3.4.4).
The chosen sequence item is randomized.

The chosen sequence’s member function uvm_sequence_base::post_do is called (see 10.3.4.7).

o U A~ w N

Return with a reference to the item.

Page 251 UVM-SystemC Language Reference Manual — DRAFT

Once member function get next_item is called, the member function item_done must be called to indicate the
completion of the request to the sequencer. This will remove the request item from the sequencer FIFO.

15.13.3.2 try_next_item

virtual bool try next item(REQ& req) = 0;

The member function try_next_item shall retrieve the next available item from a sequence if one is available. If
available, it shall return true. Otherwise, the member function shall return false. The following steps occur on this
call:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on
the current sequencer arbitration mode. If no sequence is available, the member function returns false.

2. The chosen sequence will return from member function uvm_sequence_base::wait_for_grant (see
10.3.6.4).

The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 10.3.4.4).
The chosen sequence item is randomized.

The chosen sequence uvm_sequence_base::post_do is called (see 10.3.4.7).

I e

Return with a reference to the item.

Once the member function try_next_item is called, the member function item_done must be called to indicate the
completion of the request to the sequencer. This will remove the request item from the sequencer FIFO.

15.13.3.3 item_done

virtual void item done(const RSP& item) = 0;

virtual void item done() = 0;
The member function item_done shall indicate that the request is completed to the sequencer. Any
uvm_sequence_base::wait_for_item_done calls made by a sequence for this item will return.
The current item is removed from the sequencer FIFO.

If a response item is provided, then it will be sent back to the requesting sequence. The response item must have its
sequence ID and transaction ID set correctly, using the member function uvm_sequence_item::set_id_info.

Before the member function item_done is called, any calls to the member function peek will retrieve the current
item that was obtained by member function get next_item. After the member function item_done is called,
member function peek will cause the sequencer to arbitrate for a new item.

15.13.3.4 get

virtual void get(REQ& req) = 0;
The member function get shall retrieve the next available item from a sequence. The call blocks until an item is
available. The following steps occur on this call:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on
the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

UVM-SystemC Language Reference Manual —- DRAFT Page 252

2. The chosen sequence will return from member function uvm_sequence_base::wait_for_grant (see
10.3.6.4).

The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 10.3.4.4).
The chosen sequence item is randomized.
The chosen sequence’s member function uvm_sequence_base::post_do is called (see 10.3.4.7).

Indicate item_done to the sequencer

N o g &~ w

Return with a reference to the item.

When the member function get is called, the member function item_done may not be called. A new item can be
obtained by calling the member function get again, or a response may be sent using either member function put, or
uvm_driver::rsp_port.write().

15.13.3.5 peek

virtual void peek(REQ& req) = 0;

The member function peek shall return the current request item if one is in the sequencer FIFO. If no item is in the
FIFO, then the call will block until the sequencer has a new request. The following steps will occur if the sequencer
FIFO is empty:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on
the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked relevant
sequence, then re-arbitrate.

2. The chosen sequence will return from member function uvm_sequence_base::wait_for_grant (see
10.3.6.4).

3. The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 10.3.4.4).
4. The chosen sequence item is randomized.
5. The chosen sequence’s member function uvm_sequence_base::post_do is called (see 10.3.4.7).
Once a request item has been retrieved and is in the sequencer FIFO, subsequent calls to member function peek will

return the same item. The item will stay in the FIFO until either the member function get or item_done is called.

15.13.3.6 put

virtual void put(const RSP& rsp) = 0;

The member function put shall send a response back to the sequence that issued the request. Before the response is
put, it must have its sequence ID and transaction ID set to match the request. This can be done using the member
function uvm_sequence_item::set_id_info.

This member function will not block. The response will be put into the sequence response queue or it will be sent to
the sequence response handler.

15.14 uvm_seq_item_pull_port

The class uvm_seq_item_pull_port shall define the port for use in sequencer-driver communication.

Page 253 UVM-SystemC Language Reference Manual — DRAFT

15.14.1 Class definition

namespace uvm {

template <typename REQ, typename RSP = REQ>
class uvm_seq_item pull port : public uvm port base< uvm_sqr_ if base<REQ, RSP> >
{
public:
uvm_seq_item pull port(const char* name);
virtual const std::string get_type name () const;

}: // class uvm seq item pull port

} // namespace uvm

15.14.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.
15.14.3 Constructor
uvm_seq_item pull port(const char *name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise, the
name of the export is implementation-defined.

15.14.4 Member functions
15.14.4.1 get_type_name
virtual const std::string get_type name () const;
The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_port”.

15.15 uvm_seq_item_pull_export

The class uvm_seq_item_pull_port shall define the export for use in sequencer-driver communication.

15.15.1 Class definition

namespace uvm {

template <typename REQ, typename RSP = REQ>
class uvm_seq_item pull export : public uvm port base< uvm sqr_ if base<REQ, RSP> >
{

public:

UVM-SystemC Language Reference Manual —- DRAFT Page 254

uvm_seq_item pull export(const char* name);
virtual const std::string get_type name () const;

}; // class uvm seq item pull export

} // namespace uvm

15.15.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.
15.15.3 Constructor
uvm_seq_item pull export(const char* name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise, the
name of the export is implementation-defined.

15.15.4 Member functions

15.15.4.1 get_type_name

virtual const std::string get_type name () const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_export”.

15.16 uvm_seq_item_pull_imp

The class uvm_seq_item_pull_imp shall implement the interface used in sequencer-driver communication.

15.16.1 Class definition

namespace uvm {

template <typename REQ, typename RSP = REQ>
class uvm_seq_item pull imp : public uvm port base< uvm sqr_ if base<REQ, RSP> >
{
public:
uvm_seq_item pull imp(const char* name);
virtual const std::string get type name () const;

}i; // class uvm seq item pull imp

} // namespace uvm

Page 255 UVM-SystemC Language Reference Manual — DRAFT

15.16.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.

15.16.3 Constructor

uvm_seq_item pull imp(const char* name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise, the
name of the export is implementation-defined.

15.16.4 Member functions

15.16.4.1 get_type _name

virtual const std::string get type name () const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_imp”.

UVM-SystemC Language Reference Manual —- DRAFT Page 256

16. Global defines, typedefs and enumerations

This section lists the global defines, types and enumerations used in UVM-SystemC.

16.1 Global defines

16.1.1 UVM_MAX_STREAMBITS

The definition UVM_MAX_STREAMBITS shall be used to set the maximum size for integer types. If not defined,
a default size of 4096 is used.

16.1.2 UVM_PACKER_MAX BYTES

The definition UVM_PACKER_MAX_BYTES shall be used to set the maximum bytes to allocate for packing an
object using the uvm_packer. Default is UVM_MAX_STREAMBITS, in bytes.

16.1.3 UVM_DEFAULT_TIMEOUT

The definition UVM_DEFAULT_TIMEOUT shall be used as default timeout for the run phases. If not defined, a
default timeout of 9200 seconds shall be used. The timeout can be overridden by using the member function
uvm_root::set_timeout (see 5.3.2.3).

16.2 Type definitions (typedefs)

16.2.1 uvm_bitstream_t

The typedef uvm_bitstream_t shall define an integer type with a size defined by UVM_MAX_STREAMBITS. An
application can use this type in member functions such as uvm_printer::print_field (see 6.2.3.1),
uvm_packer::pack_field (see 6.1.3.1) and uvm_packer::unpack_field (see 6.1.4.3).

16.2.2 uvm_integral_t

The typedef uvm_bitstream_t shall define an integer type with a size of 64 bits. An application can use this type in
member functions such as uvm_printer::print_field_int (see 6.2.3.2), uvm_packer::pack_field_int (see 6.1.3.2)
and uvm_packer::unpack_field_int (see 6.1.4.2).

16.2.3 UVM_FILE

The typedef uvm_file shall define the file descriptor which supports output streams.

16.2.4 uvm_report_cb

The typedef uvm_report_cb is the alias for uvm_callbacks<uvm_report_object, uvm_report_catcher>.

16.2.5 uvm_config_int

The typedef uvm_config_int is the alias for uvm_config_db<uvm_bitstream_t>.

Page 257 UVM-SystemC Language Reference Manual — DRAFT

16.2.6 uvm_config_string

The typedef uvm_config_string is the alias for uvm_config_db<std::string>.

16.2.7 uvm_config_object

The typedef uvm_config_object is the alias for uvm_config_db<uvm_object*>.

16.2.8 uvm_config_wrapper

The typedef uvm_config_wrapper is the alias for uvm_config_db<uvm_object wrapper*>.
16.3 Enumeration

16.3.1 uvm_action

The enumeration type uvm_action shall define all possible values for report actions. Each report is configured to
execute one or more actions, determined by the bitwise OR of any or all of the following enumeration constants.

e UVM_NO_ACTION: No action is taken.
o UVM_DISPLAY: Sends the report to the standard output.
e UVM_LOG: Sends the report to the file(s) for this (severity, id) pair.

e UVM_COUNT: Counts the number of reports with the COUNT attribute. When this value reaches
max_quit_count, the simulation terminates.

e UVM_EXIT: Terminates the simulation immediately.
¢ UVM_CALL_HOOK: Callback the report hook methods.

e UVM_STOP: Causes the simulator to stop, enabling continuation as interactive session.

UVM_RM_RECORD: Sends the report to the recorder.

16.3.2 uvm_severity
The enumeration type uvm_severity shall define all possible values for report severity:
e UVM_INFO: Informative message.
o UVM_WARNING: Indicates a potential problem.
e UVM_ERROR: Indicates a real problem. Simulation continues subject to the configured message action.
o UVM_FATAL: Indicates a problem from which simulation cannot recover. The simulation will be
terminated immediately.
16.3.3 uvm_verbosity
The enumeration type uvm_verbosity shall define standard verbosity levels for reports.
o UVM_NONE: Report is always printed. VVerbosity level setting cannot disable it.
e UVM_LOW: Report is issued if configured verbosity is set to UVM_LOW or above.

UVM-SystemC Language Reference Manual —- DRAFT Page 258

UVM_MEDIUM: Report is issued if configured verbosity is set to UVM_MEDIUM or above.
UVM_HIGH: Report is issued if configured verbosity is set to UVM_HIGH or above.
UVM_FULL.: Report is issued if configured verbosity is set to UVM_FULL or above.

16.3.4 uvm_active_passive_enum

The enumeration type uvm_active passive_enum shall define whether a component, usually an agent, is in
“active” mode or “passive” mode.

UVM_ACTIVE: uvm_agent is in “active” mode, which means that the sequencer, driver and monitor are

enabled.

UVM_PASSIVE: uvm_agent is in “passive” mode, which means that only the monitor is enabled.

16.3.5 uvm_sequence_state enum

The enumeration type uvm_sequence_state_enum shall define the current sequence state.

UVM_CREATED: The sequence has been allocated.

UVM_PRE_START: The sequence is started and the callback uvm_sequence_base::pre_start is being
executed.

UVM_PRE_BODY: The sequence is started and the callback uvm_sequence_base::pre_body is being
executed.

UVM_BODY: The sequence is started and the callback uvm_sequence_base::body is being executed.
UVM_ENDED: The sequence has completed the execution of the callback uvm_sequence_base::body.

UVM_POST_BODY: The sequence is started and the callback uvm_sequence_base::post_body is being
executed.

UVM_POST_START: The sequence is started and the callback uvm_sequence_base::post_start is being
executed.

UVM_STOPPED: The sequence has been forcibly ended by issuing a uvm_sequence_base::kill on the
sequence.

UVM_FINISHED: The sequence is completely finished executing.

16.3.6 uvm_phase_type

The typedef uvm_phase_type shall define an enumeration list which defines the phase type.

Page 259

UVM_PHASE_IMP: The phase object is used to traverse the component hierarchy and call the component
phase method as well as the callbacks phase_started and phase_ended.

UVM_PHASE_NODE: The object represents a simple node instance in the graph. These nodes will
contain a reference to their corresponding IMP object.

UVM_PHASE_SCHEDULE: The object represents a portion of the phasing graph, typically consisting of
several NODE types, in series, parallel, or both.

UVM-SystemC Language Reference Manual — DRAFT

e UVM_PHASE TERMINAL: This internal object serves as the termination NODE for a SCHEDULE
phase object.

¢ UVM_PHASE DOMAIN: This object represents an entire graph segment that executes in parallel with
the run phase. Domains may define any network of NODEs and SCHEDULEs. The built-in domain called
uvm consists of a single schedule of all the run-time phases, starting with pre_reset and ending with
post_shutdown.

UVM-SystemC Language Reference Manual —- DRAFT Page 260

Annex A. UVM-SystemVerilog features not included in
UVM-SystemC

(Informative)

The following is a list of major UVM-SystemVerilog features not available in UVM-SystemC. However, future
UVM-SystemC implementations may address these topics. Note that this is not an exhaustive list.
A.1 No field macros

UVM in SystemVerilog provides field macros to set up automation of fields inside a uvm_object. The automation
of the fields means that the fields automatically get an implementation for all of the mandatory member functions of
uvm_object. It is recommended not to use these field automation macros, because their implementation has impact
on simulation performance and gives intransparent results for e.g. debugging. Therefore UVM-SystemC will not
implement these field automation macros. As a consequence, an application needs to implement each of the
mandatory member functions of uvm_object: do_print, do_pack, do_unpack, do_copy, and do_compare.

A.2 No automated configuration

UVM-SystemC does not define automated configuration through the member function apply_config_settings. All
configuration needs to be explicitly retrieved using get_config_int, get_config_string, or get_config_object.

A.3 No transaction recording

UVM-SystemC does not define a transaction recording mechanism aligned with that of UVM-SystemVerilog. An
application may use the existing transaction recording mechanism available in the SystemC Verification library
(SCV) where appropriate.

A.4 No register abstraction layer

UVM-SystemC does not define any register layer classes to create registers and memories.

A.5 No constraint randomization and coverage classes

SystemVerilog offers the API for constraint randomization and coverage classes. Classes for constraint
randomization of parameters and usage of coverage classes are not yet available in UVM-SystemC. Future
extensions may integrate the SystemC Verification library (SCV) or CRAVE library to introduce randomization and
a constraint solver.

A.6 No assertions

Although not part of the UVM, but native functionality in SystemVerilog are assertions. These elements are not part
of the SystemC language and therefore not supported in the UVM-SystemC implementation.

Page 261 UVM-SystemC Language Reference Manual — DRAFT

Annex B. Renamed functions UVM-SystemC versus
UVM-SystemVerilog

(Informative)

Classes or member functions marked with symbol ° are renamed in UVM-SystemC compared to the UVM standard
implemented in SystemVerilog, due to the incompatibility in case of reserved keywords in C/C++ or an
inappropriate name in the context of SystemC base class or member function definitions. Table C.1 below shows the
renamed classes and member functions and also the reference to the original UVM SystemVerilog name is given.

Class name in UVM- | Class name Member Method Section
SystemC in UVM- function in in UVM-

SystemVerilog UVM-SystemC | SystemVerilog
uvm_process_phase | uvm_task phase 3.11
uvm_factory do_register register 7521
uvm_phase exec_process exec_task 12.14.2
uvm_callbacks do_delete delete 12.95.3
uvm_report_catcher do_catch catch 135.6.1
uvm_report_message do_delete delete 13.10.3.2

UVM-SystemC Language Reference Manual —- DRAFT Page 262

Annex C. Terminology

(Informative)

C.1 Definitions

agent: An abstract container used to emulate and verify DUT devices; agents encapsulate a driver, sequencer, and
monitor.

application: A C++ program, written by an end user.
blocking: An interface where tasks block execution until they complete. See also: non blocking.

callback: A member function overridden within a class in the component hierarchy that is called back by the kernel
at certain fixed points during elaboration and simulation. UVM defines pre-defined callback functions as part of the
phasing mechanism, such as end_of elaboration_phase, build_phase, connect phase, run_phase, etc. In
addition, UVM supports the creation of user-defined callback classes and functions.

child:: An instance that is within a given component. Component A is a child of component B if component A is
within component B. See also: parent.

component: A piece of VIP that provides functionality and interfaces. Also referred to as a transactor.

configuration: Ability to change the properties of components or objects independent from the component
hierarchy and composition. Configuration parameters can be stored in and retrieved from a central database, which
can be accessed at any place in the verification environment, and at any time during the simulation.

consumer: A verification component that receives transactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usually interacting with the
device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides the implementation of methods used for
communication. Used in UVM to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time, the exact
specification of the object to be created.

fifo: An instance of a primitive channel that models a first-in-first-out buffer.

foreign methodology: A verification methodology that is different from the methodology being used for the
majority of the verification environment.

generator: A verification component that provides transactions to another component. Also referred to as a
producer.

implementation: A specific concrete implementation of the UVM-SystemC class library as defined in this standard.
It only implements the public shell which need be exposed to the application (for example, parts may be
precompiled and distributed as object code by a tool vendor). See also: kernel.

Page 263 UVM-SystemC Language Reference Manual — DRAFT

interface: A class derived, directly or indirectly, from class sc_core::sc_interface. An interface proper is an
interface, and in the object-oriented sense a channel is also an interface. However, a channel is not an interface
proper.

interface proper: An abstract class derived, directly or indirectly, from class sc_core::sc_interface but not derived
from class sc_core::sc_object. An interface proper declares the set of methods to be implemented within a channel
and to be called through a port. An interface proper contains pure virtual function declarations, but typically it
contains no function definitions and no data members.

kernel: The core of any UVM-SystemC implementation including the underlying elaboration and simulation
engines. The kernel honors the semantics defined by this standard but may also contain implementation-specific
functionality outside the scope of this standard. See also: implementation.

master: This term has no precise technical definition in this standard, but it is used to mean a module or port that
can take control of a memory-mapped bus in order to initiate bus traffic, or a component that can execute an
autonomous software thread and thus initiate other system activity. Generally, a bus master would be an initiator.

member function: A function declared within a class definition, excluding friend functions. Outside of a
constructor or member function of the class or of any derived class, a non-static member function can only be
accessed using the dot . and arrow -> operators. See also: method.

method : A function that implements the behavior of a class. This term is synonymous with the C++ term member
function. In UVM-SystemC, the term method is used in the context of an interface method call. Throughout this
standard, the term member function is used when defining C++ classes (for conformance to the C++ standard), and
the term method is used in more informal contexts and when discussing interface method calls.

monitor: A passive entity that samples DUT signals, but does not drive them.
non blocking: A call that returns immediately. See also: blocking.

parent:: The inverse relationship to child. Component A is the parent of component B if component B is a child of
component A.

parent sequence: A sequence which contains one or more child sequences.

port: A TLM interface that defines the set of methods used for communication. Used in UVM to connect to an
export.

primary (host) methodology: The methodology that manages the top-level operation of the verification
environment and with which the user/integrator is presumably more familiar.

process: A process instance belongs to an implementation-defined class derived from class uvm_object. Each
process instance has an associated function that represents the behavior of the process. A process may be a static or a
dynamic (e.g., spawned) process. See also: spawned process.

recipient: The component that implements a callback or function that receives and processes a transaction. See also:
sender.

request: A transaction that provides information to initiate the processing of a particular operation.
response: A transaction that provides information about the completion or status of a particular operation.
root sequence: A sequence which has no parent sequence.

scoreboard: The mechanism used to dynamically predict the response of the design and check the observed
response against the predicted response. Usually refers to the entire dynamic response-checking structure.

UVM-SystemC Language Reference Manual —- DRAFT Page 264

sender: The component that implements a callback or function that initiates the transmission of a transaction. See
also: recipient.

sequence: A UVM object that procedurally defines a set of transactions to be executed and/or controls the execution
of other sequences.

sequencer: An advanced stimulus generator which executes sequences that define the transactions provided to the
driver for execution.

spawned process: A process instance that is dynamically created by calling the SystemC function
sc_core::sc_spawn. See also: process.

test: Specific customization of an environment to exercise required functionality of the DUT.

testbench: The structural definition of a set of verification components used to verify a DUT. Also referred to as a
verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more components.

transactor: See component.

verification environment: See environment.

virtual sequence: A conceptual term for a sequence that controls the execution of sequences on other sequencers.

C.2 Acronyms and Abbreviations

AMS
API
CDV
CBCL
CLI
DUT
DUV
EDA
FIFO
HDL
HVL
IP
OSClI
SC
SCV
SV
TLM
uvC

Page 265

analog mixed signal

application programming interface

coverage-driven verification
common base class library
command line interface
device under test

device under verification
electronic design automation
first-in, first-out

hardware description language
high-level verification language
intellectual property

Open SystemC Initiative
SystemC

SystemC Verification library
SystemVerilog

transaction level modeling

UVM Verification Component

UVM-SystemC Language Reference Manual — DRAFT

UVM Universal Verification Methodology

VIP verification intellectual property

UVM-SystemC Language Reference Manual —- DRAFT Page 266

Index

~uvm_component_name, destructor, 40

A

abstract, data member
class uvm_packer, 50
action configuration
class uvm_report_object, 193
add, member function
class uvm_callbacks, 182
class uvm_phase, 165
add_by name, member function
class uvm_callbacks, 182
add_int, member function
class uvm_report_catcher, 210
class uvm_report_message, 225
class uvm_report_message_element_container,
218
add_object, member function
class uvm_report_catcher, 211
class uvm_report_message, 225
class uvm_report_message_element_container,
219
add_string, member function
class uvm_report_catcher, 211
class uvm_report_message, 225
class uvm_report_message_element_container,
218
adjust_name, member function
class uvm_printer, 56
agent. definition, 263
all_dropped, member function
class uvm_component, 101
class uvm_objection, 176
analysis_export, export
class tuvm_subscriber, 112
application, definition, 263

B

big_endian, data member
class uvm_packer, 50
blocking, definition, 263

Page 267

body, member function
class uvm_sequence_base, 131
build_phase, member function
class uvm_component, 94

C

callback hooks
class uvm_objection, 176
callback macros, 230
callback, definition, 263
callback_mode, member function
class uvm_callback, 178
callbacks
class uvm_phase, 164
can_get, member function
class uvm_nonblocking_get_peek_port, 242
class uvm_nonblocking_get_port, 240
can_peek, member function
class uvm_nonblocking_get peek_port, 243
class uvm_nonblocking_peek_port, 241
can_put, member function
class uvm_nonblocking_put_port, 239
check_phase, member function
class uvm_component, 97
child, definition, 263
clear, member function
class uvm_objection, 174
clear_response_queue, member function
class uvm_sequence_base, 136
clone, member function
class uvm_object, 29
compare, member function
class uvm_object, 31
compare_field, member function
class uvm_comparer, 60
compare_field_int, member function
class uvm_comparer, 60
compare_field_real, member function
class uvm_comparer, 61
compare_object, member function
class uvm_comparer, 61
compare_string, member function
class uvm_comparer, 61
compare_type, member function

UVM-SystemC Language Reference Manual — DRAFT

class uvm_comparer, 63
comparing
class uvm_object, 31
component and object registration, 226
component, definition, 263
compose_report_message, member function
class uvm_default_report_server, 205
class uvm_report_server, 200
configuration, definition, 263
configuration_phase, member function
class uvm_component, 95
connect, member function
class uvm_analysis_export, 245
class uvm_analysis_imp, 247
class uvm_analysis_port, 244
class uvm_port_base, 38
connect_phase, member function
class uvm_component, 94
construction
class uvm_phase, 163
construction interface
class uvm_component, 90
constructor
class uvm_analysis_export, 245
class uvm_analysis_imp, 246
class uvm_analysis_port, 244
class uvm_blocking_get_peek port, 237
class uvm_blocking_get port, 234
class uvm_blocking_peek_port, 236
class uvm_blocking_put_port, 233
class uvm_default_report_server, 202
class uvm_nonblocking_get port, 239
class uvm_nonblocking_peek_port, 241, 242
class uvm_nonblocking_put_port, 238
class uvm_report_catcher, 208
class uvm_report_handler, 196
class uvm_report_message_element_container,
218,221
class uvm_seq_item_pull_export, 255
class uvm_seq_item_pull_imp, 256
class uvm_seq_item_pull_port, 254
class uvm_tlm_req_rsp_channel, 250
constructors
class uvm_report_object, 189
consumer, definition, 263
convert2string, member function
class uvm_object, 29

UVM-SystemC Language Reference Manual —- DRAFT

copy, member function
class uvm_object, 30
copying
class uvm_object, 30
create, member function
class uvm_component_registry, 71
class uvm_object, 28
class uvm_object_registry, 69
create_component, member function
class uvm_component, 101
class uvm_component_registry, 70
class uvm_object_wrapper, 67

create_component_by name, member function

class uvm_default_factory, 84
class uvm_factory, 77

create_component_by type, member function

class uvm_default_factory, 83

class uvm_factory, 76
create_item, member function

class uvm_sequence_base, 134
create_object, member function

class uvm_component, 101

class uvm_object_registry, 68

class uvm_object_wrapper, 67
create_object_by name, member function

class uvm_default_factory, 83

class uvm_factory, 76
create_object_by type, member function

class uvm_default_factory, 83

class uvm_factory, 76
creation

class uvm_default_factory, 83

class uvm_factory, 76

class uvm_object, 28
current_grabber, member function

class uvm_sequencer_base, 117

D

debug
class uvm_factory, 77, 84
class uvm_resource_pool, 156
debug_create_by name, member function
class uvm_default_factory, 84
class uvm_factory, 78
debug_create_by type, member function
class uvm_default_factory, 84

Page 268

class uvm_factory, 77
define_domain, member function
class uvm_component, 99
delete_by name, member function
class uvm_callbacks, 183
delete_elements, member function
class uvm_report_message_element_container,
218
die, member function
class uvm_root, 35
display, member function
class uvm_callbacks, 184
display_objections, member function
class uvm_objection, 177
do_catch, member function
class uvm_report_catcher, 211
do_compare, member function
class uvm_object, 31
do_copy, member function
class uvm_object, 30
class uvm_report_server, 199
do_delete, member function
class uvm_callbacks, 182
class uvm_report_message_element_container,
218
do_kill, member function
class uvm_sequence_base, 134
do_pack, member function
class uvm_object, 32
do_print, member function
class uvm_default_report_server, 202
class uvm_object, 29
class uvm_report_handler, 196
class uvm_report_message, 221
class uvm_resource_base, 150
do_record, member function
class uvm_object, 30
do_register, member function
class uvm_default_factory, 80
class uvm_factory, 74
do_unpack, member function
class uvm_object, 33
driver, definition, 263
drop_objection, member function
class uvm_objection, 175
class uvm_phase, 166
dropped, member function

Page 269

class uvm_component, 100

class uvm_objection, 176
dump, member function

class uvm_resource_pool, 156

E

emit, member function
class uvm_line_printer, 58
class uvm_printer, 55
class uvm_table_printer, 57
class uvm_tree_printer, 58
enable_print_topology, member function
class uvm_root, 36
end_of elaboration_phase, member function
class uvm_component, 94
environment, definition, 263
exec_func, member function
class uvm_phase, 164
exec_process, member function
class uvm_phase, 164
exec_task. See exec_process
execute, member function
class uvm_bottomup_phase, 170
class uvm_process_phase, 172
class uvm_topdown_phase, 171
execute_item, member function
class uvm_sequencer_base, 115
execute_report_message, member function
class uvm_default_report_server, 205
class uvm_report_server, 200
exists, member function
uvm_config_db, 141
export, definition, 263
extract_phase, member function
class uvm_component, 97

F

factory

class uvm_component, 101
factory method, definition, 263
fifo, definition, 263
file configuration

class uvm_report_object, 193
final_phase, member function

class uvm_component, 98
find, member function

UVM-SystemC Language Reference Manual — DRAFT

class uvm_phase, 164
class uvm_root, 36
find_all, member function
class uvm_root, 36
find_by name, member function
class uvm_phase, 164
find_override_by name, member function
class uvm_default_factory, 85
class uvm_factory, 78
find_override_by_type, member function
class uvm_default_factory, 85
class uvm_factory, 78
find_unused_resources, member function
class uvm_resource_pool, 156
finish_item, member function
class uvm_sequence_base, 134
first, member function
class uvm_callback _iter, 180
foreign methodology, definition, 263
format_action, member function
class uvm_report_handler, 197
format_footer, member function
class uvm_printer, 55
format_header, member function
class uvm_printer, 55
format_row, member function
class uvm_printer, 55

G

generator, definition, 263
get, member function
class uvm_blocking_get_peek_port, 237
class uvm_blocking_get port, 235
class uvm_component_registry, 71
class uvm_coreservice_t, 42
class uvm_factory, 74
class uvm_object_registry, 68
class uvm_resource_pool, 152
class uvm_sequencer, 121
class uvm_sqr_if base, 252
uvm_config_db, 140
get_action, member function
class uvm_report_catcher, 209
class uvm_report_message, 224
class uvm_report_message_element_base, 214
get_by name, member function

UVM-SystemC Language Reference Manual —- DRAFT

class uvm_resource, 158

class uvm_resource_db, 143

class uvm_resource_pool, 154
get_by type, member function

class uvm_resource, 158

class uvm_resource_db, 143

class uvm_resource_pool, 154
get_ch, member function

class uvm_callback iter, 180
get_child, member function

class uvm_component, 91
get_children, member function

class uvm_component, 91
get_client, member function

class uvm_report_catcher, 208
get_common_domain, member function

class uvm_domain, 168
get_context, member function

class uvm_report_message, 224
get_current_item, member function

class uvm_sequencer_param_base, 119

uvm_sequence, 138
get_depth, member function

class uvm_component, 92

class uvm_sequence_item, 127
get_domain, member function

class uvm_component, 98

class uvm_phase, 165
get_domain_name, member function

class uvm_phase, 166
get_domains, member function

class uvm_domain, 168
get_drain_time, member function

class uvm_objection, 177
get_element_container, member function

class uvm_report_catcher, 210

class uvm_report_message, 224
get_elements, member function

class uvm_report_message_element_container,

218

get_factory, member function

class uvm_coreservice_t, 41

class uvm_default_coreservice _t, 42
get_field_attribute, member function

class uvm_comparer, 63
get_file, member function

class uvm_report_message, 224

Page 270

get_filename, member function get_message, member function

class uvm_report_message, 223 class uvm_report_catcher, 209
get_finish_on_completion, member function class uvm_report_message, 223
class uvm_root, 35 get_message_database, member function
get_first, member function class uvm_default_report_server, 204
class uvm_callbacks, 183 class uvm_report_server, 199
get_first_child, member function get_miscompare_string, member function
class uvm_component, 91 class uvm_comparer, 63
get_fname, member function get_name, member function
class uvm_report_catcher, 209 class uvm_object, 27
get_full_name, member function class uvm_port_base, 38
class uvm_component, 91 class uvm_report_message_element_base, 214
class uvm_object, 27 get_next, member function
class uvm_phase, 165 class uvm_callbacks, 183
class uvm_port_base, 38 get_next_child, member function
get_highest_precedence, member function class uvm_component, 91
class uvm_resource, 159 get_next_item, member function
class uvm_resource_pool, 154 class uvm_sequencer, 121
get_id, member function class uvm_sqr_if _base, 251
class uvm_report_catcher, 209 get_num_children, member function
class uvm_report_message, 222 class uvm_component, 91
get_id_count, member function get_object_type, member function
class uvm_default_report_server, 204 class uvm_object, 28
class uvm_report_server, 199 get_objection, member function
get_id_set, member function class uvm_phase, 166
class uvm_default_report_server, 204 get_objection_count, member function
class uvm_report_server, 199 class uvm_objection, 177
get_imp, member function get_objection_total, member function
class uvm_phase, 166 class uvm_objection, 177
get_inst_count, member function get_objectors, member function
class uvm_object, 28 class uvm_objection, 177
get_inst_id, member function get_packet_size, member function
class uvm_object, 27 class uvm_packer, 49
get_is_active, member function get_parent, member function
class uvm_agent, 109 class uvm_component, 90
get_jump_target, member function class uvm_phase, 165
class uvm_phase, 167 class uvm_port_base, 38
get_last, member function get_parent_sequence, member function
class uvm_callbacks, 183 class uvm_sequence_item, 126
get_line, member function get_peek_request_export, export
class uvm_report_catcher, 209 class uvm_tlm_req_rsp_channel, 249
class uvm_report_message, 223 get_peek_response_export, export
get_max_messages, member function class uvm_tlm_req_rsp_channel, 250
class uvm_comparer, 62 get_phase_type, member function
get_max_quit_count, member function class uvm_phase, 163
class uvm_default_report_server, 202 get_policy, member function
class uvm_report_server, 198 class uvm_comparer, 62

Page 271 UVM-SystemC Language Reference Manual — DRAFT

get_prev, member function

class uvm_callbacks, 184
get_priority, member function

class uvm_sequence_base, 132
get_quit_count, member function

class uvm_default_report_server, 203

class uvm_report_server, 198
get_report_action, member function

class uvm_report_object, 193
get_report_catcher, member function

class uvm_report_catcher, 211
get_report_file_handle, member function

class uvm_report_object, 193
get_report_handler, member function

class uvm_report_message, 221

class uvm_report_object, 195
get_report_max_verbosity _level, member function

class uvm_report_object, 192
get_report_object, member function

class uvm_report_message, 221
get_report_server, member function

class uvm_coreservice_t, 41

class uvm_default_coreservice_t, 43

class uvm_report_message, 222
get_report_verbosity_level, member function

class uvm_report_object, 192
get_request_export, export

class uvm_tlm_req_rsp_channel, 249
get_response, member function

uvm_sequence, 138
get_response_export, export

class uvm_tlm_req_rsp_channel, 249
get_response_queue_depth, member function

class uvm_sequence_base, 136
get_response_queue_error_report_disabled, member

function

class uvm_sequence_base, 136
get_result, member function

class uvm_comparer, 64
get_root, member function

class uvm_coreservice_t, 41

class uvm_default_coreservice_t, 43
get_root_sequence, member function

class uvm_sequence_item, 127
get_root_sequence_name, member function

class uvm_sequence_item, 127
get_run_count, member function

UVM-SystemC Language Reference Manual —- DRAFT

class uvm_phase, 163
get_schedule, member function

class uvm_phase, 165
get_schedule_name, member function

class uvm_phase, 165
get_scope, member function

class uvm_resource_base, 149
get_sequence_path, member function

class uvm_sequence_item, 127
get_sequence_state, member function

class uvm_sequence_base, 130
get_sequencer, member function

class uvm_sequence_item, 126
get_server, member function

class uvm_report_server, 200
get_severity, member function

class uvm_comparer, 63

class uvm_report_catcher, 209

class uvm_report_message, 222
get_severity_count, member function

class uvm_default_report_server, 203

class uvm_report_server, 199
get_severity _set, member function

class uvm_default_report_server, 204

class uvm_report_server, 199
get_state, member function

class uvm_phase, 163
get_transaction_id, member function

class uvm_transaction, 124
get_type, member function

class uvm_object, 28

class uvm_resource, 157
get_type_handle, member function

class uvm_resource, 157

class uvm_resource_base, 149
get_type_name, member function

class uvm_agent, 109

class uvm_analysis_export, 245

class uvm_analysis_imp, 247

class uvm_analysis_port, 244

class uvm_blocking_get_peek_port, 237

class uvm_blocking_get port, 235

class uvm_blocking_peek_port, 236

class uvm_blocking_put_port, 233

class uvm_callback, 179

class uvm_component_registry, 71

class uvm_driver, 107

Page 272

class uvm_env, 109
class uvm_monitor, 108
class uvm_nonblocking_get peek_port, 242
class uvm_nonblocking_get_port, 240
class uvm_nonblocking_peek port, 241
class uvm_nonblocking_put_port, 238
class uvm_object, 28
class uvm_object_registry, 68
class uvm_object_wrapper, 67
class uvm_port_base, 38
class uvm_scoreboard, 111
class uvm_seq_item_pull_export, 255
class uvm_seq_item_pull_imp, 256
class uvm_seq_item_pull_port, 254
class uvm_subscriber, 112
class uvm_test, 110
get_use_response_handler, member function
class uvm_sequence_base, 136
get_use_sequence_info, member function
class uvm_sequence_item, 125
get_uvm_domain, member function
class uvm_domain, 169
get_uvm_phases, member function
class uvm_domain, 168
get_uvm_schedule, member function
class uvm_domain, 168
get_value, member function
class uvm_report_message_int_element, 215
class uvm_report_message_object_element, 216
class uvm_report_message_string_element, 216
get_verbosity, member function
class uvm_comparer, 62
class uvm_report_catcher, 209
class uvm_report_message, 223
grab, member function
class uvm_sequence_base, 133
class uvm_sequencer_base, 116

H

has_child, member function
class uvm_component, 91
has_do_available, member function
class uvm_sequencer_base, 117
has_lock, member function
class uvm_sequence_base, 133
class uvm_sequencer_base, 116

Page 273

hierarchical reporting interface
class uvm_component, 103
hierarchy interface
class uvm_component, 90
host methodology, definition, 264

Id count

class uvm_default_report_server, 204
identification

class uvm_object, 27
implementation, definition, 263
incr_id_count, member function

class uvm_default_report_server, 204
incr_quit_count, member function

class uvm_report_server, 203
incr_severity_count, member function

class uvm_default_report_server, 203
init_access_record, member function

class uvm_resource_base, 150
interface proper, definition, 264
interface, definition, 264
is, member function

class uvm_phase, 164
is_after, member function

class uvm_phase, 164
is_auditing, member function

class uvm_resource_options, 147
is_before, member function

class uvm_phase, 164
is_blocked, member function

class uvm_sequence_base, 133

class uvm_sequencer_base, 116
is_child, member function

class uvm_sequencer_base, 114
is_enabled, member function

class uvm_callback, 178
is_grabbed, member function

class uvm_sequencer_base, 117
is_item, member function

class uvm_sequence_item, 127
is_null, member function

class uvm_packer, 48
is_quit_count_reached, member function

class uvm_default_report_server, 203
is_read_only, member function

UVM-SystemC Language Reference Manual — DRAFT

class uvm_resource_base, 149
is_relevant, member function

class uvm_sequence_base, 132
is_tracing, member function

class uvm_resource_db_options, 146
issue, member function

class uvm_report_catcher, 213
item_done, member function

class uvm_sequencer, 121

class uvm_sqr_if_base, 252

J

jump, member function
class uvm_phase, 167
jumping
class uvm_phase, 167

K

kernel, definition, 264
kill, member function

class uvm_sequence_base, 134
knobs, data member

class uvm_printer, 56

L

last, member function

class uvm_callback _iter, 180
lock, member function

class uvm_sequence_base, 133

class uvm_sequencer_base, 116
lookup

class uvm_resource_pool, 153
lookup, member function

class uvm_component, 92
lookup_name, member function

class uvm_resource_pool, 153
lookup_regex, member function

class uvm_resource_pool, 155
lookup_regex_names, member function

class uvm_resource_pool, 155
lookup_scope, member function

class uvm_resource_pool, 155
lookup_type, member function

class uvm_resource_pool, 154

UVM-SystemC Language Reference Manual —- DRAFT

M

macros

class uvm_component, 105

class uvm_object, 33
main_phase, member function

class uvm_component, 96
master, definition, 264
master_export, export

class uvm_tlm_req_rsp_channel, 250
match_scope, member function

class uvm_resource_base, 150
member function, definition, 264
Message processing

class uvm_default_report_server, 205
Message recording

class uvm_default_report_server, 204
method, definition, 264
mid_do, member function

class uvm_sequence_base, 131
monitor, definition, 264

N

new_report_message, member function
class uvm_report_message, 221
next, member function
class uvm_callback_iter, 180
non blocking, definition, 264
notification
class uvm_resource_base, 149

@)

objection control

class uvm_objection, 174
objection interface

class uvm_component, 100
objection status

class uvm_objection, 177
operator const char*(), operator

class uvm_component_name, 40
override configuration

class uvm_report_object, 194
override_t, enum

class uvm_resource_types, 160

Page 274

P

pack, member function
class uvm_object, 31
pack_bytes, member function
class uvm_object, 31
pack_field, member function
class uvm_packer, 47
pack_field_int, member function
class uvm_packer, 47
pack_ints, member function
class uvm_object, 32
pack_object, member function
class uvm_packer, 47
pack_real, member function
class uvm_packer, 47
pack_string, member function
class uvm_packer, 47
pack_time, member function
class uvm_packer, 47
packing
class uvm_object, 31
parent sequence, definition, 264
parent, definition, 264
peek, member function
class uvm_blocking_get peek_port, 237
class uvm_blocking_peek_port, 236
class uvm_sequencer, 121
class uvm_sqr_if _base, 253
phase_ended, member function
class uvm_component, 98
phase_ready to_end, member function
class uvm_component, 98
phase_started, member function
class uvm_component, 98
phasing interface
class uvm_component, 92
physical, data member
class uvm_packer, 49
port, definition, 264
post_body, member function
class uvm_sequence_base, 131
post_configuration_phase, member function
class uvm_component, 96
post_do, member function
class uvm_sequence_base, 131
post_main_phase, member function

Page 275

class uvm_component, 96
post_reset _phase, member function

class uvm_component, 95
post_shutdown_phase, member function

class uvm_component, 97
post_start, member function

class uvm_sequence_base, 132
post-run phases

class uvm_component, 93
pre_abort, member function

class uvm_component, 105
pre_body, member function

class uvm_sequence_base, 131
pre_configuration_phase, member function

class uvm_component, 95
pre_do, member function

class uvm_sequence_base, 131
pre_main_phase, member function

class uvm_component, 96
pre_reset _phase, member function

class uvm_component, 94
pre_shutdown_phase, member function

class uvm_component, 97
pre_start, member function

class uvm_sequence_base, 130
pre-run phases

class uvm_component, 92
prev, member function

class uvm_callback_iter, 180
primary methodology, definition, 264
print, member function

class uvm_default_factory, 85

class uvm_factory, 78

class uvm_object, 29
print_accessors, member function

class uvm_resource_base, 150
print_array_footer, member function

class uvm_printer, 56
print_array header, member function

class uvm_printer, 56
print_array_range, member function

class uvm_printer, 56
print_catcher, member function

class uvm_report_catcher, 211
print_config, member function

class uvm_component, 100
print_config_matches, member function

UVM-SystemC Language Reference Manual — DRAFT

class uvm_component, 100
print_config_with_audit, member function
class uvm_component, 100
print_double, member function
class uvm_printer, 54
print_field, member function
class uvm_printer, 53
print_field_int, member function
class uvm_printer, 53
print_generic, member function
class uvm_printer, 55
print_msg, member function
class uvm_comparer, 62
print_object, member function
class uvm_printer, 54
print_object_header, member function
class uvm_printer, 54
print_override_info, member function
class uvm_component, 103
print_real, member function
class uvm_printer, 53
print_resources, member function
class uvm_resource_pool, 156
print_string, member function
class uvm_printer, 54
print_time, member function
class uvm_printer, 55
print_topology, member function
class uvm_root, 36
printing
class uvm_object, 29
priority
class uvm_resource, 159
class uvm_resource_base, 150
priority_t, enum
class uvm_resource_types, 160
process control interface
class uvm_component, 99
process, definition, 264
process_report_message, member function
class uvm_default_report_server, 205
class uvm_report_handler, 196
class uvm_report_server, 200
put, member function
class uvm_blocking_put_port, 234
class uvm_sequencer, 121
class uvm_sqr_if_base, 253

UVM-SystemC Language Reference Manual —- DRAFT

put_request_export, export

class uvm_tlm_req_rsp_channel, 249
put_response_export, export

class uvm_tlm_req_rsp_channel, 249

Q

Quit count
class uvm_default_report_server, 202

R

raise_objection, member function
class uvm_objection, 174
class uvm_phase, 166
raised, member function
class uvm_component, 100
class uvm_objection, 176
read only interface
class uvm_resource_base, 149
read, member function
class uvm_resource, 158
read/write interface
class uvm_resource, 158
read_by name, member function
class uvm_resource_db, 144
read_by type, member function
class uvm_resource_db, 144
recipient, definition, 264
record, member function
class uvm_object, 30
record_read_access, member function
class uvm_resource_base, 150
record_write_access, member function
class uvm_resource_base, 150
recording
class uvm_object, 30
register. See do_register, See do_register
registering types
class uvm_default_factory, 80
class uvm_factory, 74
report handler configuration
class uvm_report_object, 195
report_phase, member function
class uvm_component, 97
report_summarize, member function
class uvm_default_report_object, 205
class uvm_report_object, 200

Page 276

reporting
class uvm_report_object, 189
reporting macros, 227
request, definition, 264
request_ap, port
class uvm_tlm_req_rsp_channel, 248
reset_phase, member function
class uvm_component, 95
reset_quit_count, member function
class uvm_default_report_server, 203
reset_report_handler, member function
class uvm_report_object, 195
reset_severity_counts, member function
class uvm_default_report_server, 203
resource database interface
class uvm_resource_base, 149
response interface
class uvm_sequence_base, 135
response, definition, 264
response_ap, port
class uvm_tlm_req_rsp_channel, 248
response_handler, member function
class uvm_sequence_base, 136
resume, member function
class uvm_component, 99
root sequence, definition, 264
rsp_port, port
class uvm_driver, 107
rsrc_q_t, typedef
class uvm_resource_types, 160
run_phase, member function
class uvm_component, 94
run_test, global function, 24
run_test, member function
class uvm_root, 35
run-time phases
class uvm_component, 93

S

schedule
class uvm_phase, 165
scope interface
class uvm_resource_base, 149
scoreboard, definition, 264
send_request, member function
class uvm_sequencer_base, 118

Page 277

class uvm_sequencer_param_base, 119

uvm_sequence, 138
sender, definition, 265
seq_item_export, data member

class uvm_sequencer, 120
seq_item_port, port

class uvm_driver, 106
sequence control

class uvm_sequence_base, 132
sequence execution

class uvm_sequence_base, 130
sequence execution macros, 228
sequence item execution

class uvm_sequence_base, 134
sequence, definition, 265
sequencer, definition, 265
set

class uvm_resource_pool, 153
set priority

class uvm_resource_pool, 155
set, member function

class uvm_resource, 158

class uvm_resource_db, 144

class uvm_resource_pool, 153

uvm_config_db, 140
set/get interface

class uvm_resource, 158
set_action, member function

class uvm_report_catcher, 210

class uvm_report_message, 224

class uvm_report_message_element_base, 214

set_anonymous, member function
class uvm_resource_db, 144
set_arbitration, member function
class uvm_sequencer_base, 117
set_context, member function
class uvm_report_message, 224
set_default, member function
class uvm_resource_db, 143
set_depth, member function
class uvm_sequence_item, 126
set_domain, member function
class uvm_component, 98
set_drain_time, member function
class uvm_objection, 176
set_factory, member function
class uvm_coreservice_t, 41

UVM-SystemC Language Reference Manual — DRAFT

class uvm_default_coreservice _t, 43
set_field_attribute, member function
class uvm_comparer, 63
set_file, member function
class uvm_report_message, 224
set_filename, member function
class uvm_report_message, 223
set_finish_on_completion, member function
class uvm_root, 35
set_id, member function
class uvm_report_catcher, 210
class uvm_report_message, 222
set_id_count, member function
class uvm_default_report_server, 204
class uvm_report_server, 199
set_id_info, member function
class uvm_sequence_item, 126
set_inst_override, member function
class uvm_component, 102
class uvm_component_registry, 71
class uvm_object_registry, 69
set_inst_override_by name, member function
class uvm_default_factory, 81
class uvm_factory, 74
set_inst_override_by type, member function
class uvm_component, 102
class uvm_default_factory, 81
class uvm_factory, 74
set_line, member function
class uvm_report_message, 223
set_max_messages, member function
class uvm_comparer, 62
set_max_quit_count, member function
class uvm_default_report_server, 202
class uvm_report_server, 198
set_message, member function
class uvm_report_catcher, 210
class uvm_report_message, 223
set_message_database, member function
class uvm_default_report_server, 204
class uvm_report_server, 199
set_miscompare_string, member function
class uvm_comparer, 63
set_name, member function
class uvm_object, 27

class uvm_report_message_element_base, 214

set_name_override, member function

UVM-SystemC Language Reference Manual —- DRAFT

class uvm_resource_pool, 153
set_override, member function

class uvm_resource, 158

class uvm_resource_pool, 153
set_parent_sequence, member function

class uvm_sequence_item, 126
set_phase_imp, member function

class uvm_component, 99
set_policy, member function

class uvm_comparer, 62
set_priority, member function

class uvm_resource, 159

class uvm_resource_base, 150

class uvm_resource_pool, 155

class uvm_sequence_base, 132
set_priority_name, member function

class uvm_resource_pool, 155
set_priority_type, member function

class uvm_resource_pool, 155
set_quit_count, member function

class uvm_default_report_server, 202

class uvm_report_server, 198
set_read_only, member function

class uvm_resource_base, 149
set_report_default_file, member function

class uvm_report_object, 194
set_report_default_file_hier, member function

class uvm_component, 104
set_report_handler, member function

class uvm_report_message, 222

class uvm_report_object, 195
set_report_id_action, member function

class uvm_report_object, 193
set_report_id_action_hier, member function

class uvm_component, 104
set_report_id_file, member function

class uvm_report_object, 194
set_report_id_file_hier, member function

class uvm_component, 105
set_report_id_verbosity, member function

class uvm_report_object, 192
set_report_id_verbosity hier, member function

class uvm_component, 103
set_report_object, member function

class uvm_report_message, 221
set_report_server, member function

class uvm_coreservice_t, 41

Page 278

class uvm_default_coreservice _t, 43

class uvm_report_message, 222
set_report_severity_action, member function

class uvm_report_object, 193
set_report_severity action_hier, member function

class uvm_component, 104
set_report_severity_file, member function

class uvm_report_object, 194
set_report_severity file_hier, member function

class uvm_component, 104
set_report_severity_id_action, member function

class uvm_report_object, 193

set_report_severity id_action_hier, member function

class uvm_component, 104
set_report_severity_id_file, member function
class uvm_report_object, 194
set_report_severity_id_file_hier, member function
class uvm_component, 105
set_report_severity_id_override, member function
class uvm_report_object, 195
set_report_severity id_verbosity, member function
class uvm_report_object, 192
set_report_severity id_verbosity hier, member
function
class uvm_component, 103
set_report_severity _override, member function
class uvm_report_object, 194
set_report_verbosity_level, member function
class uvm_report_object, 192
set_report_verbosity_level _hier, member function
class uvm_component, 105
set_request, member function
class uvm_sequence_base, 135
set_response_queue_depth, member function
class uvm_sequence_base, 136
set_response_queue_error_report_disabled, member
function
class uvm_sequence_base, 136
set_scope, member function
class uvm_resource_base, 149
set_sequencer, member function
class uvm_sequence_item, 126
set_server, member function
class uvm_report_server, 200
set_severity, member function
class uvm_comparer, 63
class uvm_report_catcher, 210

Page 279

class uvm_report_message, 222
set_severity _count, member function
class uvm_default_report_server, 203
class uvm_report_server, 198
set_timeout, member function
class uvm_root, 35
set_transaction_id, member function
class uvm_transaction, 124
set_type_override, member function
class uvm_component, 102
class uvm_component_registry, 71
class uvm_object_registry, 69
class uvm_resource_pool, 153
set_type_override_by name, member function
class uvm_default_factory, 82
class uvm_factory, 75
set_type_override_by_type, member function
class uvm_component, 102
class uvm_default_factory, 82
class uvm_factory, 75
set_use_sequence_info, member function
class uvm_sequence_item, 125
set_value, member function
class uvm_report_message_int_element, 215
class uvm_report_message_object_element, 217
class uvm_report_message_string_element, 216
set_verbosity, member function
class uvm_comparer, 62
class uvm_report_catcher, 210
class uvm_report_message, 223
Severity count
class uvm_default_report_server, 203
shutdown_phase, member function
class uvm_component, 97
size, member function
class uvm_report_message_element_container,
218
slave_export, export
class uvm_tlm_req_rsp_channel, 250
sort_by precedence, member function
class uvm_resource_pool, 154
spawned process, definition, 265
spell_check, member function
class uvm_resource_pool, 152
sprint, member function
class uvm_object, 29
start, member function

UVM-SystemC Language Reference Manual — DRAFT

class uvm_sequence_base, 130
start_item, member function

class uvm_sequence_base, 134
start_of simulation_phase, member function

class uvm_component, 94
start_phase_sequence, member function

class uvm_sequencer_base, 115
starting_phase, member function

class uvm_sequence_base, 137
state

class uvm_phase, 163
stop_sequences, member function

class uvm_sequencer, 121

class uvm_sequencer_base, 116
summarize, member function

class uvm_report_catcher, 213
suspend, member function

class uvm_component, 99
sync, member function

class uvm_phase, 166
synchronization

class uvm_phase, 166

T

template parameter CB
class uvm_callback_iter, 179
class uvm_callbacks, 182

template parameter IF
class uvm_ port_base, 38

template parameter T
class uvm_analysis_export, 245
class uvm_analysis_imp, 246
class uvm_analysis_port, 244
class uvm_blocking_get peek_port, 237
class uvm_blocking_get port, 234
class uvm_blocking_peek_port, 235
class uvm_blocking_put_port, 233
class uvm_callback _iter, 179
class uvm_callbacks, 182
class uvm_component_registry, 70
class uvm_config_db, 140
class uvm_nonblocking_get peek_port, 242
class uvm_nonblocking_get port, 239
class uvm_nonblocking_peek port, 241
class uvm_nonblocking_put_port, 238
class uvm_object_registry, 68

UVM-SystemC Language Reference Manual —- DRAFT

class uvm_resource, 157
class uvm_resource_db, 143
template parameters
class uvm_driver, 106
class uvm_seq_item_pull_export, 255
class uvm_seq_item_pull_imp, 256
class uvm_seq_item_pull_port, 254
class uvm_sequence, 137
class uvm_sequencer, 120
class uvm_sequencer_param_base, 119
class uvm_sqr_if base, 251
class uvm_tlm_req_rsp_channel, 248
test, definition, 265
testbench, definition, 265
trace_mode, member function
class uvm_objection, 174
transaction, definition, 265
transactor. See component
traverse, member function
class uvm_bottomup_phase, 170
class uvm_process_phase, 172
class uvm_topdown_phase, 171
try_get, member function
class uvm_nonblocking_get peek_port, 242
class uvm_nonblocking_get_port, 240
try_next_item, member function
class uvm_sequencer, 121
class uvm_sqr_if_base, 252
try_peek, member function
class uvm_nonblocking_get peek_port, 243
class uvm_nonblocking_peek_port, 241
try_put, member function
class uvm_nonblocking_put_port, 238
turn_off_auditing, member function
class uvm_resource_options, 147
turn_off_tracing, member function
class uvm_resource_db_options, 146
turn_on_auditing, member function
class uvm_resource_options, 147
turn_on_tracing, member function
class uvm_resource_db_options, 146
type and instance overrides types
class uvm_default_factory, 81
class uvm_factory, 74
type interface
class uvm_resource, 157

Page 280

U

ungrab, member function

class uvm_sequence_base, 133

class uvm_sequencer_base, 116
unlock, member function

class uvm_sequence_base, 133

class uvm_sequencer_base, 116
unpack, member function

class uvm_object, 32
unpack_bytes, member function

class uvm_object, 32
unpack_field, member function

class uvm_packer, 48
unpack_field_int, member function

class uvm_packer, 48
unpack_ints, member function

class uvm_object, 33
unpack_object, member function

class uvm_packer, 49
unpack_real, member function

class uvm_packer, 48
unpack_string, member function

class uvm_packer, 48
unpack_time, member function

class uvm_packer, 48
unpacking

class uvm_object, 32
unsync, member function

class uvm_phase, 167
use_metadata, data member

class uvm_packer, 50
use_response_handler, member function

class uvm_sequence_base, 135
user_priority_arbitration, member function

class uvm_sequencer_base, 114
utility functions

class uvm_resource_base, 150
uvm_action, enum, 258
uvm_active_passive_enum, enum, 259
uvm_agent

class, 108

class definition, 108

constructor, 108
uvm_analysis_export

class, 244

class definition, 245

Page 281

uvm_analysis_imp

class, 246

class definition, 246
uvm_analysis_port

class, 243

class definition, 243
uvm_bitstream_t, typedef, 257
uvm_blocking_get_peek_port

class, 236
uvm_blocking_get_port

class, 234

class definition, 234
uvm_blocking_peek_port

class, 235

class definition, 235, 236
uvm_blocking_put_port

class, 233

class definition, 233
uvm_bottomup_phase

class, 169

class definition, 169

constructor, 169

overview, 21
uvm_callback

class, 178

class definition, 178

constructor, 178

overview, 21
uvm_callback_iter

class, 179

class definition, 179

constructor, 179

overview, 21
uvm_callbacks

class, 180

class definition, 181

constructor, 182

overview, 21
uvm_comparer

class, 58

class definition, 58

overview, 19
uvm_component

class, 86

class definition, 86

constructor, 90
uvm_component_name

UVM-SystemC Language Reference Manual — DRAFT

class, 39

class definition, 39

constructor, 40

overview, 18
UVM_COMPONENT_PARAM_UTILS, macro, 227
uvm_component_registry

class, 69

class definition, 69

overview, 19
UVM_COMPONENT_UTILS, macro, 227
uvm_config_db

class, 139

class definition, 139

constraints on usage, 140

overview, 20
uvm_config_int, typedef, 257
uvm_config_object, typedef, 258
uvm_config_string, typedef, 258
uvm_config_wrapper, typedef, 258
uvm_coreservice_t

class, 40

class definition, 40

overview, 18
UVM_CREATE, macro, 229
UVM_CREATE_ON, macro, 230
UVM_DECLARE_P_SEQUENCER

macro, 122
UVM_DECLARE_P_SEQUENCER, macro, 230
uvm_default_comparer, default policy object, 65
uvm_default_coreservice_t

class, 42

class definition, 42
uvm_default_factory

class, 78

overview, 19
uvm_default_line_printer, default policy object, 64
uvm_default_packer, default policy object, 64
uvm_default_printer, default policy object, 64
uvm_default_recorder, default policy object, 65
uvm_default_report_server

class, 201

class definition, 201
uvm_default_table_printer, default policy object, 64
UVM_DEFAULT_TIMEOUT, global define, 257
uvm_default_tree_printer, default policy object, 64
UVM_DO, macro, 229
UVM_DO_CALLBACKS, macro, 230

UVM-SystemC Language Reference Manual —- DRAFT

UVM_DO_ON, macro, 229
UVM_DO_ON_PRI, macro, 229
UVM_DO_PRI, macro, 229
uvm_domain

class, 167

class definition, 167

constructor, 168

overview, 21
uvm_driver

class, 106

class definition, 106

constructor, 107
uvm_env

class, 109

class definition, 109

constructor, 109
UVM_ERROR, macro, 228
uvm_factory

class, 72

class definition, 72, 79

overview, 19
UVM_FATAL, macro, 228
uvm_get_report_object, member function

class uvm_report_object, 190
UVM_INFO, macro, 227
uvm_integral_t, typedef, 257
uvm_line_printer

constructor, 58
uvm_line_printer

class, 58

class definition, 58
UVM_MAX_STREAMBITS, global define, 257
uvm_monitor

class, 107

class definition, 107

constructor, 108
uvm_nonblocking_get_peek_port

class, 241

class definition, 241
uvm_nonblocking_get_port

class, 239

class definition, 239
uvm_nonblocking_peek_port

class, 240

class definition, 240
uvm_nonblocking_put_port

class, 238

Page 282

class definition, 238
uvm_object

class, 25

class definition, 25

constructor, 27

overview, 18
UVM_OBJECT_PARAM_UTILS, macro, 226
uvm_object_registry

class, 67

class definition, 67

overview, 19
UVM_OBJECT_UTILS, macro, 226
uvm_object_wrapper

class, 66

class definition, 66

overview, 19
uvm_objection

class, 172

class definition, 172

constructor, 174

overview, 21
uvm_packer

class, 44

class definition, 44

overview, 19

UVM_PACKER_MAX_BYTES, global define, 257

uvm_phase

class, 161

class definition, 161

constructor, 163

overview, 21
uvm_phase_type, enum, 259
uvm_port_base

class, 37

class definition, 37

constructor, 38

overview, 18
uvm_printer

class, 50

class definition, 50

overview, 18
uvm_process_phase

class, 171

class definition, 171

overview, 21
uvm_process_report_message, member function

class uvm_report_object, 191

Page 283

UVM_REGISTER_CB, macro, 230
uvm_report, member function

class uvm_report_object, 190
uvm_report_catcher

class, 205

class definition, 206

overview, 21
uvm_report_cb, typedef, 257
uvm_report_enabled, member function

class uvm_report_object, 190
uvm_report_error, member function

class uvm_report_catcher, 212

class uvm_report_object, 191
uvm_report_fatal, member function

class uvm_report_catcher, 212

class uvm_report_object, 191
uvm_report_handler

class, 195

class definition, 196

overview, 21
uvm_report_info, member function

class uvm_report_catcher, 213

class uvm_report_object, 190
uvm_report_message

class, 219

class definition, 219

overview, 21
uvm_report_message_element_base

class, 213

class definition, 213
uvm_report_message_element_container

class, 217

class definition, 217
uvm_report_message_int_element

class, 214

class definition, 214
uvm_report_message_object_element

class, 216

class definition, 216
uvm_report_message_string_element

class, 215

class definition, 215
uvm_report_object

class, 185

class definition, 186

overview, 21
uvm_report_server

UVM-SystemC Language Reference Manual — DRAFT

class, 197

class definition, 197

overview, 21
uvm_report_warning, member function

class uvm_report_catcher, 212

class uvm_report_object, 191
uvm_resource

class, 156

class definition, 156

overview, 20
uvm_resource_base

class, 147

class definition, 147

constructor, 148

overview, 20
uvm_resource_db

class, 141

class definition, 141

overview, 20
uvm_resource_db_options

class, 145

class definition, 145
uvm_resource_options

class, 146

class definition, 146

overview, 20
uvm_resource_pool

class, 151

class definition, 151

overview, 20
uvm_resource_types

class, 159

class definition, 159
uvm_root

class, 34

class definition, 34

overview, 18
uvm_scoreboard

class, 110

class definition, 110

constructor, 111
uvm_seq_item_pull_export

class, 254

class definition, 254
uvm_seq_item_pull_imp

class, 255

class definition, 255

UVM-SystemC Language Reference Manual —- DRAFT

uvm_seq_item_pull_port

class, 253

class definition, 254
uvm_sequence

class, 137

class definition, 137

constructor, 138

overview, 20
uvm_sequence_base

class, 127

class definition, 127

constructor, 129

overview, 20
uvm_sequence_item

class, 124

class definition, 124

constructor, 125

overview, 20

uvm_sequence_state_enum, enum, 259

uvm_sequencer
class, 119
class definition, 119
constructor, 120
macros, 122
overview, 20
uvm_sequencer_base
class, 113
class definition, 113
constructor, 114
overview, 20

uvm_sequencer_param_base

class, 118

class definition, 118
constructor, 119
overview, 20

uvm_set_config_int, global function, 24
uvm_set_config_string, global function, 24
uvm_severity, enum, 258

uvm_sqr_if _base
class, 250
class definition, 250
overview, 20
uvm_subscriber
class, 111
class definition, 111
constructor, 112
uvm_table_printer

Page 284

constructor, 57
uvm_table_printer

class, 56

class definition, 57
uvm_task phase. See uvm_process_phase
uvm_test

class, 110

class definition, 110

constructor, 110
uvm_tlm_req_rsp_channel

class, 247

class definition, 247
uvm_top, data member

class uvm_root, 36
uvm_topdown_phase

class, 170

class definition, 170

constructor, 171

overview, 21
uvm_transaction

class, 123

class definition, 123

constructor, 124

overview, 20
uvm_tree_printer

constructor, 57
uvm_tree_printer

class, 57

class definition, 57
uvm_verbosity, enum, 258
uvm_void

class, 25

class definition, 25

overview, 18
UVM_WARNING, macro, 228

Page 285

\

verbosity configuration

class uvm_report_object, 192
verification environment. See environment
virtual sequence, definition, 265

w

wait_for, member function
class uvm_objection, 177
wait_for_grant, member function
class uvm_sequence_base, 135
class uvm_sequencer_base, 115
wait_for_item_done, member function
class uvm_sequence_base, 135
class uvm_sequencer_base, 115
wait_for_relevant, member function
class uvm_sequence_base, 132
wait_for_sequence_state, member function
class uvm_sequence_base, 130
wait_for_sequences, member function
class uvm_sequencer_base, 118
wait_for_state, member function
class uvm_phase, 167
wait_modified, member function
uvm_config_db, 141
wait_modified, member function
class uvm_resource_base, 149
write, member function
class uvm_resource, 159
write_by name, member function
class uvm_resource_db, 144
write_by type, member function
class uvm_resource_db, 145

UVM-SystemC Language Reference Manual — DRAFT

