accellera

SYSTEMS INITIATIVE

Universal Verification Methodology
for SystemC (UVM-SystemC)

Language Reference Manual

Accellera SystemC Verification Working Group

February 2023

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
Accellera Systems Initiative, 8698 Elk Grove Blvd. Suite 1, #114, Elk Grove, CA 95624, USA

Notices

Accellera Systems Initiative Standards documents are developed within Accellera Systems Initiative
(Accellera) and its Technical Committee. Accellera develops its standards through a consensus devel opment
process, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and intereststo achieve thefinal product. Volunteers are not necessarily members of Accelleraand
serve without compensation. While Accelleraadministersthe process and establishesrulesto promotefairness
in the consensus devel opment process, Accellera does not independently evaluate, test, or verify the accuracy
of any of the information contained in its standards.

Useof an AccelleraStandard iswholly voluntary. Accelleradisclaimsliability for any personal injury, property
or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly
or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard
document.

Accelleradoes not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for
a specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
Standards documents are supplied “AS1S.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test,
measure, purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to determine
that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellerais not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
carein any given circumstances.

Interpretations. Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellerawill initiate reasonabl e action to prepare appropriate responses. Since Accellera Standards represent
a consensus of concerned interests, it is important to ensure that any interpretation has also received the
concurrence of a balance of interests. For this reason, Accelleraand the members of its Technical Committee
and Working Groups are not able to provide an instant response to interpretation requests except in those cases
where the matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of
membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Comments on standards and requests
for interpretations should be addressed to:

Accellera Systems Initiative

8698 Elk Grove Blvd. Suite 1, #114
Elk Grove, CA 95624

USA

Note: Attentioniscalled to the possibility that implementation of thisstandard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rightsin connection therewith. Accellerashall not be responsible for identifying patents

ii
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

for which alicense may be required by an Accellera Standard or for conducting inquiriesinto the legal validity
or scope of those patents that are brought to its attention.

Accelleraisthe soleentity that may authorize the use of Accellera-owned certification marksand/or trademarks
to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee, if any, is paid to Accellera.
Permissionto photocopy portions of any individual standard for educational classroom use can a so be obtained
from Accellera. To arrange for authorization please contact Lynn Garibaldi, Executive Director, Accellera
Systems Initiative, 8698 Elk Grove Blvd. Suite 1, #114, Elk Grove, CA 95624, phone (916) 760-1056, e-mail
lynn@accellera.org.

Suggestions for improvements to the Universal Verification Methodology (UVM) Language Reference
Manual for SystemC (UVM-SystemC) are welcome. They can be sent to the Accellera SystemC Verification
discussion forum:

forums.accell era.org/forum/38-systemc-verification-uvm-systemc-scv

The current Accellera SystemC Verification Working Group web page is:

accellera.org/activities/working-groups/systemc-verification

iii
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

mailto:lynn@accellera.org
http://forums.accellera.org/forum/38-systemc-verification-uvm-systemc-scv
https://accellera.org/activities/working-groups/systemc-verification

Contributors

The development of the Universal Verification Methodology for SystemC (UVM-SystemC) Langauge
Reference Manual was sponsored by the Accellera Systems Initiative and was created under the leadership
of the following people:

Stephan Gerth, Bosch (Chair)
Bas Arts, NXP Semiconductors (Vice-chair)
Thilo Vortler, COSEDA Technologies GmbH (Technical Editor)
Martin Barnasconi, NXP Semiconductors (Technical Editor)

Acknowledgements

The creation of this standard has been supported by the European Commission as part of the Seventh
Framework Programme (FP7) for Research and Technological Development in the project ‘ Verification for
heterogeneous Reliable Design and Integration’ (VERDI). The research leading to this result has received
funding from the European Commission under Grand agreement |1D 287562.

More information on the Seventh Framework Programme (FP7) and VERDI project can be found here:

https:.//cordis.europa.eu/project/id/287562

The partnersin the VERDI consortium wish to thank Cadence Design Systems Inc. for theinitial contribution
of the UVM-SC library reference and documentation (UVM version 1.0, June 2011). This document contains
portions of thiswork, and has been extended to make it compatible with the UVM 1.2 standard.

iv
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

https://cordis.europa.eu/project/id/287562

Contents

1. 100 1o 1o o 1
2. LI 0071700 | 2
2.1 S T I o T o I 0= Y A = o 2

2.2 Implementation, aPPliCALION. ..o s bt sre s 2

2.3 Call, called from, deriVed FrOML..........coiiiii ettt et sbe s ereeebesans 2

24 Implementation-AefiNEd...........coi i e e 2

3 L@ o= Y PSRN 3
31 N E T g1 0= o PSSP 3

3.2 L= L 1] S 3

3.3 GlODE FUNCLIONS......viuiiiiieie ettt et st st st se et se st e e sbe e ebe e ere e 3

34 BaSE ClASSES. ...ttt ettt ettt b et ae bt ettt ne et ne e e 3

35 POIICY ClASSES......ciiieicectieee ettt sttt se e s e e bbb s te et e s besr et e ntenaenseseeneeneerensesaesnens 3

3.6 Registry and faCtory ClaSSES........ociriireiriereere e 4

37 Component hierarChy ClasSES.........coiiiiiiiesecece et ene s 4

38 SEOUENCEN CIASSES.......iteuiiteeetereete sttt sttt b ettt b et b et b e e b e se b s et e sbebesbesesbenenbeneas 5

39 SEUUENCE ClASSES......cviitiieiteiteteite it eee e e e esestestestestesbesbesaesbesteseessentestesenseseeseeseesessessestesteseessens 5

3.10 Configuration and rESOUICE ClASSES........ciiririerirterieterieierieiesieie st st sresesbeseebeseebeseebeseeseseenesnas 5

311 Phasing and synchronization ClaSSeS..........ccieiiieiiiinie st 5

312 REPOIING ClESSES.....uiueitiuertiietirietesiett sttt e bbbt e bt b et a et b e b e eb s eae s 6

I B T |V o o= PP S PR 6

BLA TLIM CIBSSES....cticiicticiecteete ettt ettt ettt ettt e st et e s be et e s be e beeaeeebeeneesbeeasesaeetesaeentesaeenbenneanes 7

315 Register abStraction ClASSES........cciiiiiiiieiesieierte ettt s et s e e e e neeneene e 7

316 Existing SystemC functionality used in UVM-SyStemC.........ccoeorinrinniennienseneeseeeneens 7

3.17 Methodology for hierarchy CONSIIUCTION.........ccccoveiiiiicise e e 8

4, S Fe Sl = o =T 10
4.1 0177 0.4 1Yo o O RSP 10

g I R O =153 o = o o 10

4.2 01V 041 o] oo RSP 10

2 R O =SS0 = 1 o o 10

4.2.2 CONSITUCKONS.....ciiteeieeieeste sttt r s e e e e e sre e e e s b e e nesbeenesre e resneenneenes 11

e T [1= 01 () 1= 4 o o 1SR 11

N O (= o] ISP 12

425 PrINENG. ...ttt ettt skttt b e n e 13

N ST = (= o o) (1o TS 14

A.2.7 COPYING. ittt sttt ettt sttt se et se bt se b e sa st s b es e sb et e b e e eb e e ebeneebeseebeseebe e 14

T T o411 o 7= 111 oo SR 15

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

42,9 PACKING. ...ttt bbb 15

4,210 UNPACKING...c.eeieieieuieisi s sesestestes e saesaeae e s e esessessesrestestesaesteseeseensesseneeseesensessessenses 16
4211 ODJECE MBETOS.eveveeeierteuesteestereete sttt st et se bt e bt ss et st sb et sbe st be e be e sbe e nbe e sbenne 17
4.3 (01170 ¢ 1 (0o U PRSP PRRT 18
e T R O =SS0 =] o o 18
4.3.2 SIMUIEION CONLIOL......ciiiieiiriee e s e 18
A.3.3 TOPOIOGYeeveuereeuertiirtierie ettt ettt bbbt bbb 19
434 GloDal VABDIE. ..o e 20
4.4 UVITL_POMT DBSE. ..ttt et bbbttt sttt b e e 21
441 Class AefiNItION......ccciiiieiiece ettt et et 21
442 Template ParameEter TF.........co it r e seebe e 21
443 CONSITUCKON.eeeetieeeeste ettt e b sae e sre e e e sreesre s e e s resneenreenne e 21
N S \V 1= 010 T g 10 Tox o P 21
4.5 uvm_export_bas;e§ .. 22
8 R O =530 =] o o 22
452 Template ParamELEr [F.......oooo it nens 23
TR B o g L [§ o (o SO 23
454 MeEMDEr FUNCLIONS........coiiiieiitiisiee ettt 23
4.6 uvm_componen’[_name§ ... 24
4.6.1 Class defiNItION......cccoeiiiiiese ettt et e 24
4.6.2 CONSLIAINLS ON USBOE......cuerverertireetireetesieteseeseseesessesessesesseessess b ssesesseseseesesseseseenessenes 24
4.6.3 CONSITUCKONeteetieieete et r e sne e s re e e e s reesre s e e s b e smnenreenne e 24
I S B = 1 £ (o (o RSSO 25
4.6.5 OPEraor CONSE Char™cceciiiie et sttt sae st beseesrenean 25
0 Loy 0 = xS =SS 26
51 0177 4 I 0= o (= TSRS 26
511 Class defiNitiON......ccoiiiiiisise et s resre e sre e 26
5.1.2 CONSLrAINIS ON USBOE.....ccuecviiteriereereieeseeseesesessestessessessestessessessessessessesssssessssessesessens 27
TN e R = ot o TP U ST PTSTPRSTPPTPRTPROPTN 27
L300 0 R U 1 1o 7= o: (111 TS 28
515 OpErator<<, OPEIEIOI>>........ccoiiiiiereiiee s s e sre e e ne s 30
5.1.6 Datamembers (Variables).......cccoeiiiiiieiiicicececeses e 30
52 01V 0T o101 ST ROTRTPE TR PEPRTPTRTPSTPRPN 31
B5.2. 1 Class defiNitiON........ccciuiiiiiriieiie et 31
522 CONSIAINTS ON USAE. .. .cveuieeierieierieesteestesestesesteseeseseebeseeseseesesee e sbenesbeesbesessesesseseas 32
LI T = T 01 o R 1Y/ 0= 32
524 Printer SUBLYPING......coiirietireeeiee sttt 34
525 Dal@ MEMDENS.....coiiiiiiriis ettt 36
53 UVIM_EBDIE PFINEEN ...t bbb 36
5.3 1 Class defiNitioNccccoeirienineninesee ettt s naene s 36
B.3.2 CONSIIUCTO.......eiiiiiie sttt sttt st sae st sae e ee s b e e nte st e e be st e et e sneeeesneennas 36
Vi

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

LTS R B < 1111 SO PSP STPSTPROTPRPTORTN 36

5.4 01V I = ST 111 (R 36
3t R O =5 3 1= 1T 1 o) 36
5.4.2 CONSIIUCLO.......coiuiieesieeeesieeie sttt s sae e see e e s b e e ne s b e e e sreenresneeneeneennas 37
L C T = 11T P RPN 37
55 01V g I T TSI 111 (= TSRS 37
TN R O =5\ (= 1T Tl (o o PSPPSR 37
5.5.2 CONSIIUCLO ... oottt st s b b e e sbeeresneeneeneenas 37
TG T = 1 1) PR PR SRRTSRR 37
5.6 U\ o o0 0] o= = PRSPPSO 37
200 R O =5 S (= 1T Tl o) 38
5.6.2 CONSLIAINIS ON USBOE.....ccuecviiteriereeieieeseeseesesessestessessessestessessessessesssssesssssessssessessessens 38
5.6.3 MemMbDEr fUNCHIONS.......cco it snen 38
o B 0410 = = = =1 1] 10 40
57 Default POlICY ODJECES......coveuiieeeireeiereee e et 42
571 uvm _default table Printer......cccciii e 42
5.7.2 uvm_default_tree Printer.......cccoioiireeeree et s 42
5.7.3 uvm _default [iNe Printer.....ccccii ittt eneas 42
5.7.4 UVM_AEfaUIT PDIINTEN.......oiiiieieiteeet et 43
5.75 UVM _AEfAUIT PACKEN......cci ittt sttt s enea 43
5.7.6 UVM_defaUlt COMPEIES......coueiieeerieiriee ettt 43
N A TV, o o == 01 (=0 (0 (= S 43
RegIStry and faCtOry ClaSSES.......cciiiiiiiirisie ettt st s e aeenesre e e 44
6.1 01V g T 0] o = o AT/ = o o= SR 44
200 It R O =5 53 1= 1T 1 o) 44
6.1.2 MemMDEr fUNCHIONS......cciieeieieeie sttt st 44
6.2 UVIM_ODJECE FEOISIIY ...ttt 45
B.2.1 Class defiNItiON........ccciuiiriiiireire et 45
6.2.2 Template PAraMELEr T......cociieerieirieesiees e 45
6.2.3 MEMDEr fUNCHIONS.......coiieeiereeierieeriee ettt s e st 46
6.3 UVIM_COMPONENE_TEJISIIYeveuerteieteeetese ettt ettt b e sa b snenes 47
B.3.1 Class defiNItiON........cccouiiriiriieirieere e e 47
6.3.2 Template PAraMELEr T......cocoiiiirieirieeriee bbb 48
6.3.3 MEMDEr fUNCLIONS.......coiieeiereeiesieeriec ettt st 48
6.4 UVITL FBEEOMY ...ttt bbbttt bbb e 49
B.4.1 Class defiNItiON........ccoiririririrriseere et 49
6.4.2 ACCESS AN rEQISIIALION.ceiveeeterietereeie ettt b e s b b 50
6.4.3 Type and iNStaNCE OVEITIES.......ccciveieeeeceeece et 51
L O = 1 o 1SS 52
LT B T o o PP 54
6.5 UVIM_AEFAUIE FACTONY ..o 55
vii

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

B.5.1 Class AEfINMITION.......eeeiirieeeeeieeeeee ettt e e s e e s e te e s sbeesssbeeeseabesssseessabeeesanaesssanes 55

LSV = (=0 1= 1 - (] S 56

6.5.3 Type and iNStaNCe OVEITITES........ccoriireeiirieere bbb e 56

LN O = (o] SRS 57

B.5.5 DEDUD. .. .evceeteieritist ettt 57

7. Component hierarChy ClaSSES........couiiiiiie e et ae e reens 59
7.1 UVIM_COMPONENT. ...ttt s s s a s sr e e s e sae e r e e e n e e 59
711 Class defiNItIONcoccceveiiieiseiee ettt st e s saene s 59

7.1.2 CONSrUCTION INEEITACE......c.eeieeiriei et seens 61

7.1.3 Hi€rarchy intErfaCh.......ccoiiiiiiie e et 61

7.1.4 PhaSing INEEITACE........ccirieiriee ettt st snene s 63

7.15 Process CONIOl INtEITACE.......ccvirieirieire et 70

7.1.6 Configuration INTEITACE........coiiiiireerc e 70

A A © o)1= v (1o g] 01 = 1 = 71

7.1.8 FaCtOry INEITACE......coiiirieiree it 72

7.1.9 Hierarchical reporting iNtErfaCe..........ccoviiiieieiisie e e 74

0 00 T o o S 76

7.2 01V 4 1o LY R 76
7.2.1 Class AEfiNITION......cooiiiieecece e et ere et e b e eaeesreens 76

7.22 TemMPlale PAraMELErS.....ccccoicieereeeetes e ste e e stesee e ae e e e e e e e eresaesresrestesresrestesteseens 76

R T o =SSP 77

7.2.4 MemMDEr fUNCHIONS......cciieeiereeie sttt st st s st 77

7.3 UVITL IMIONITON ..ttt ettt ettt b e ekt se b se bt se bt b et s b et e b et eb et et e seebeseebe e 77
7.3 1 Class defiNItiON........ccciiiiiiriieie e ettt 77

7.3.2 MeMDEr fUNCHIONS.......cceieiiieieie e s s e sre e e e 78

74 U170 (= o | P USROS PPSRTR 78
741 Class AEfINITIONccuiiieiecccececeece e re e s eesrean 78

7.4.2 MeMDEr fUNCHIONS......ccoiieeiereeierieeriee sttt st s sae e ne st 78

7.5 U1V LT = 2T P TP 79
7.5.1 Class defiNItiON........ccoiiiiiirinirine ettt 79

7.5.2 MemMbDEr fUNCHIONS.......cci et sre e sne e 79

7.6 0140 = PP RPPRRR 80
7.6.1 Class AEfiNITION.......cccoiiieiicece ettt eae e b e e reens 80

7.6.2 MeEMDEr fUNCHIONS......cciiieeiereeieriee ettt st sttt 80

7.7 UVIML_SCOMED0BINT. ...ttt ettt sttt sttt sttt b et b et b e e nb e e eb e e 80
771 Class defiNItiON........ccciiiiiiiriieese et 80

T7.7.2 MeEMDEr FUNCLIONS.......ccuiiiiieceeeie ettt sttt st sbe b saeesneeneesneennas 81

7.8 01V TS T 01 v] o= 81
7.8.1 Class AEfiNITION......ccciiiieicececeee e et et eae e b eaeeereens 81

7.8.2 Template PAraMELEr T....occciiiiiieicesesere et sttt et e e e e e aeerenns 81

T.8.3 EXPIONT...ieeieeeeeeeeee ettt e r e r e e 8l

viii

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

7.8.4 MEMDET TUNCHIONS.......eiiiieeieieiii ettt et e e s st e e s eaa e e s aae e s sab e e e ssseeesaneeessabeeean 82

S [0 1= o= o BRSSP 83
8.1 UVIML_SEOUENCEN _DBSE.....eieitieetireeieseeies ettt bbbttt bbbttt b et 83
811 Class defiNItiON........ccuiuiiriiiriieirie et 83
S 0 I ©0 g 1 U (oo PSRRI 84
8.1.3 MEMDEr fUNCHIONS......cciieeiereeierieiriee ettt ettt e st 84
8.2 UVIM_SEUENCEr_PAIAIM_DASE........cuiiieiiiiiie e 87
8.2.1 ClasS dEfiNItION........ccuiuiiriiiriirieesie et et 87
8.2.2 Template PAraMELENS.......cceiiieeetereete ettt b e s b e s b e s ebeseene s 88
8.2.3 CONSIIUCLONcoieiieesteeee sttt ettt sae e sae e e sresn e s b e e nresreenreeneenesneennas 88
824 REUUESES.......oiuiititeitist ettt 88
8.3 U g o (U1 0o PSSR PRRRRTRN 89
ST 50 R O =5 3 1= 1T Tl o) T 89
8.3.2 TeMPIAE PArAMELErS.....cececeeeterteee et e e s te e e e e e resaesaesresresresrestesteseens 89
S G TG R ©0 g 1 (U0 o USSP 89
e TG 2 o d 0] S PSSR UPPPRRIN 89
8.35 SeqUENCEr INTEITACE.......cceiviereeere e e 89
8.3.6 MACIOS.....ceeeieeieet ettt ettt r e r e e sn e e e nre e nre e 90
SEOUENCE ClBSSES. .. eeueveueeteeetereete sttt et sttt ettt b et b e bt seb e e bt s e ebe b eb e b e s e b e ae e b e e e b e s e bt e e bt e ebe b eneneenes 92
9.1 01V g I = 115" o 1 o o TS 92
LS 80 ISt R O =5 53 1= 1T o) 92
O0.1.2 CONSIIUCLONS.....c.eeeutereeetesieereeiee st e sre e sreesee e eesae e b e sne e s e sneesreensesne e s s sneennesreennesnees 92
9.1.3 CONSIIAINLS ON USAE. .. .cveveeeuerieierieerieestesessesesteseeseseebeseesesaesessesesbenesbenesbesesseseeseseas 92
9.1.4 MeMDEr fUNCHIONS......coiiieeiereeiesieesiee sttt st sa s e see e se e sre e 93
9.2 UVIML_SEOUENCE TTEIML ..ttt ettt ettt b e bbb bbb nb e nes 93
.21 ClasS AEfiNItION......c.ciiiiireiiriiieese ettt 93
0.2.2 CONSIIUCKONS.....cuveeuiertietesiieste et ettt st tesaeesee s e e eesae e besaeebesaeesbeensesbeensesaeeneesaeenaesaeas 94
9.2.3 MEMDEr fUNCHIONS.......cciieeiereeierieereee ettt st s s sae e be e nre e 94
9.3 UVIM_SEOUENCE DBSE.... ettt ettt b e 96
9.3.1 Class defiNItIONcccevieirieieeriee sttt b et naene s 96
O0.3.2 CONSIIUCTO ... eeiterieesieeee ettt ae et st sae st e sae st e saeeeesbeente st e enbesbeenbesneantesneaneas 97
0.3.3 SEOUENCE SLALE......eiiieeeriiiiitierie ettt sttt st sbe e e e e reenreena 97
9.3.4 SEQUENCE EXECULTION.eueieireetitetirieiest ettt sttt 97
9.35 RUN-IME PhASING......ciiiieieieiece et st e b b e aesne s re e s 99
0.3.6 SEQUENCE CONIOL......ciitiiriiieteriete ettt sttt et 100
9.3.7 SeqUENCE ItEIM EXECULION.......cecieriiieieestesieseesteae e e eee e s e s re e sresresresteseeseesaenaennenens 102
0.3.8 RESPONSE INEITACE......c.eiuiirtiiriiieeei ettt 103
94 UVITT_SEOUEBIICE. .. vt euteeteesiteesieessteesbessasessbessatesnbeesabe e seesate e sbeeaase et e e sateenbeesabeebeenabeenbeenanennbeas 105
LSt R O =5\ 1= 1T Tl (o) o P 105
9.4.2 TemMPlale PArAMELErS.....ccciveeeireeeeteee e ste e e et e e e e e e e e reste s e snestesresrestetees 105
iX

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

10.

L I T O] = { ([(o] TR 105

9.4.4 MEMDEr fUNCHIONS.....cciiieieieieriee ettt st st 105
Configuration and reSOUICE ClASSES.......c.ciuiririirieierieie ettt et st sn e sreneas 107
0 50 R 0¥/ o oo o o o T 107

10.2.1 Class defiNitiON.......cooereeeeeeeeeere e re e nne e 107

10.1.2 Template ParamMELEr T.......ccccceieeiieieeeceeese st e e e te e e st et sae e e e e e e e e e eressesneerens 108

10.1.3 CONSIFAINIS ON USAJE.....c.erueuieererieierieesieesseessessssesse st seseste e sseesbesessessssessesessesessens 108

10.1.4 MeMDBEr FUNCHIONS.......iviirieiirieirie sttt 108
10.2 UVIM_TESOUICE 0D ..ttt e 109

10.2.1 ClasS AEfiNITION.....ciiiiieeeieee ettt b s sae s e se e be e sre e 109

10.2.2 Template ParamELEr T......ooccoiieireerieeeeree ettt b e e ere e 110

10.2.3 CONSITAINtS ON USAQE.......eiveiveiriiereeieeieeeeesessessessessessessessessessesssssessessessessssesssssenses 110

10.2.4 MemBEr FUNCHIONS......cciiirieriesieee ettt st s esesne s e neas 110
10.3 UVM_resource b OPLIONS.......ccccciiiiiiieieie ettt reene e resre e s 112

10.3.1 Class AefiNitiON......cceoeieeeeieeeeeeeere e re e nne e 112

10.3.2 MEMDEr FUNCHIONS......iviiiieiiieiiieesie st 112
10.4 UVIM_TESOUICE OPLIONS.....ctieetireetereeiirtesestesestee st ese et seebese b e bbb e bbb e b nn s neneseens 113

10.4.1 Class AEfiNITION .ovciieirieiriecricse et 113

10.4.2 MemBEr FUNCHIONS......cciiisieiiesieesie ettt s eseene s e neas 113
105 UVIML_TESOUICE DASE......ociiiiiiectecie e stes et ettt e et st ae s besbe s tesb e te s be st et e nae e e e enenneeneans 113

10.5.1 Class AefiNitiON.......c.cceieieeieeeieese e e re e nne e 113

F0.5.2 CONSLIUCLOLcveeueieteeieeieeseeeee st seeste s e sre e e sre e s sseesse e e saeeaessreenesreensesme e resneenrenns 114

10.5.3 Resource datahase INtErfate........ccoveieieiieieeee e 114

10.5.4 Read-0NlY INEITACE. ...t et re s 114

B0 I o) o= (o o S 115

10.5.6 SCOPE INLEITACE......cecicieiieciieie ettt st e e e e e e eneeneene e 115

FO5.7 PLIOMTY .ottt sttt b et b et se et se b sn s nnene s 115

10.5.8 ULty fUNCHIONS......c.eciiiiiictise e st e e nesneene 116

10.5.9 AUAIT traIl .. et s eneas 116

10.5.10 Data MEMDEIS......cceieeiirietereeiesiee s st ste s e st te s beseebeseeteseesessesesaesessenessenessenens 116
10.6 UVIM_TESOUICE OO0 .. .c.eiuiiiuireeiirteierteeste ettt st sttt st se ettt b e sb et b e e b se et seebeseebe e 117

10.6.1 ClasS AEfiNITION .o..ciieeirieirieisicsee et 117

L0 T02 o T~ OSRSS 118

10.6.3 SPEI_CECK. ..o e e e e e 118

LR S s 111 g = o= 118

L0.6.5 LOOKUPD. .. vevtreeeieeniriircstite ettt ettt st sttt st e e st e e sbe s sesans 119

10.6.6 Priority iNTEITaCE.....ccoiieeeeeterc bbb 120

L0O.6.7 DEDUG. . ceveeeeereeierietesieiesieesteeste st te st et seebeseebeseesesaesestesesbesesbenesbe e ebeseebesenbeseesenens 121
FO.7 UVITL_TES0OUICE. . .cueeueiesieetietesiesse s st see s e se s e e e st se e s e e st e st ar s Rt se e r e R e seene e s e n e e e e eneeseeneerennis 121

10.7.1 ClasS AEfiNITION. ..ot sae e et e be e sre e 121

10.7.2 Template ParamELEr T......ooccoveiieirieeeereee ettt b e s ere e 122

X

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

10.7.3 TYPE INLEITACE....c.eitiieieeete et e b e et sr e 122

10.7.4 SEU/GEL INLEITACE......civerireetireeie ettt es 122

10.7.5 Read/WILE INtEITACE........ei et e 123
10.7.6 Priority INTEITACE.......cieeeececeee e e e resre s 123

10.8 UVIML_TESOUICE LY[ES....eeueeueeueeieeieeieeie ettt sttt st se e se et r b sa e er b e sn e e e 124
10.8.1 ClasS AEfiNITiON.....ciiiireeiieeereee ettt r e s sae s e see e be e stenens 124
10.8.2 Type definitions (tyPEAEFS).......ooiirririerie e 124

11. Phasing and SyNChroNiZation ClASSES.........c.ciueveeieieiie st te e sa e se e se e sesresresresnens 125
O R U1V o ¢ I o)== OSSPSR PV 125
1111 ClasS AEfiNITION .ovciiciieiriecsicses et 125
11,12 CONSLIUCLION.....uectietieieeiteetecteeee st e ste st e etesteetesteebesreebeeseebesaeesseeseessesnsessesnsesseensens 126
G T - (RS TTRSRS 126
11,04 CallDACKS.....ceeeieecee ettt st st bbb bbb e e 127
11,15 SCHEAUIE........cceeecec ettt s st a e e e e e e e e eneenens 128
11.1.6 SYNCAMONIZALION........ciuieiieieteeetereete ettt et s b e s b e s 129
50 3o o1 T SR 130

I 2 U1V o [o011 = o SOOI 130
11.2.1 ClasS AEfiNITION.....iiiiiieeree ettt see e e be e sre e 130
A 0 1 1 (o) SRS 131
11.2.3 MeMDEr FUNCHIONS.....c.ieiiiieiiieirieesie st 131

11.3 UVM_DOttOMUD_PNESE......cceiieiictiiei e bbb 132
11.3. 1 ClasS AEfiNITION.....ciiciieeeieee ettt st sae e see e b e e sre e 132

IR T 0 11 1 (o) RS 132
11.3.3 MEMDEr FUNCHIONS.....cuiiieiieiirieirieesees et 132

114 UVM_TOPAOWN PSR,ceitieciirieie ettt ettt s 132
1141 ClasS AEfiNITION. ...ttt st sae e e see e b e sre e 133
O 0 1 1 (o) SRS 133
11.4.3 MeMDEr FUNCHIONS.......iiviiieieieirie et 133

115 yvm_process phase® (UVM_tasK_PRESET).........ovveeeeveeeneeeeeeseeeeeeeeseeeeeesseseeeeseeseeesseeseeees 133
11.5.1 Class AefiNItiON........cooieiiiicie et ee bbb sreens 134
11.5.2 MembEr FUNCHIONS......ciuiitiierieieieie et et e 134

116 UVIM_ODJECHION. ...ttt et e bbbt bbb 134
11.6.1 Class AefiNiTiON.......c.coeieeieeeeee e et b e sne 134
G @0 1 1 (0] R PR 135
11.6.3 OBJECHION CONLIOL.....c.eiuiiiiierieieeeee ettt e 135
11.6.4 CallDACK NOOKS........cceeiiiiiieiieiiectecec ettt st sttt st sre et eae s 137

11.6.5 ODJECHONS SLALUS.....ccueiuiitirierierieierie ettt st s e e e sae e 138

117 UVM_CAIIDACK. ..ot 138
11.7.1 Class AefiNiTiON.......c.coeieieeeeeeeer e et sn 139
7 @0 1 1 (o) SRt 139
11.7.3 MemDBEr FUNCHIONS......ccuiitiierieeeieie ettt s 139

Xi

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

11.8 UVM_CAIIDACK O ...ttt 140
11.8.1 ClasS AEfiNITiON.....ciiiireeiriee ettt sttt sae e see e b e e sre e 140
11.8.2 Template ParamELEr T.....oocoiiiireirieeeeree ettt eb e e ere e 140
11.8.3 Template Parameter CBi.........ccccceieiiiiiiecie e seste e e e et snesre e e 140
T12.8.4 CONSLIUCLOT ...c.veeuviteeiisteetesteeseeseesteseeseeseesbeseesbeestesbeentesseebesseessesneessesneeseesnsessean 140
11.8.5 MeMDEr fUNCHIONS.......civiiirieiirieirie sttt 140

119 UVM_CAIIDACKS.. ...t 141
11.9.1 ClasS AEfiNITION.....ciieiiieeireee ettt s sae s e see e benesrenens 141
11.9.2 Template ParamMELEr T......oocoiiireiseeeereee ettt b e e ere e 142
11.9.3 Template Parameter CB..........cccoeieiriieieciese e e et snesre e e 142
10.9.4 CONSLIUCLOLeteeueieteeeeeeeeseeeeeseeseesbeestesbeenbesbeesesseasesseesseeneesaeesesseensesseenbesneansenns 142
1195 Add/dEete INtEIfACE.......cceereeireiriere s 142
11.9.6 terator INtEITACES.......ccvve e see 143
T T o 1 o OSSPSR 144

12. REPOMING CIASSES......c.eeetereeteriet ettt b et b et b e et se et e seebesaebenrenens 145

2 UV o T = o0 A 1S5 o PRSP 145
12,11 Class AefiNitiON......cceoereeeieeeeeese e e nne e 145
12.1.2 CONSLIUCLOLecteeueeeteeeeeieesseeeesreseesresresbe e e sseesesneasseeneesaeeaeesreesesreennesneenresneensenns 146
12.1.3 INfrastructure FEfErENCES......ccvieeeeee et 146
12.1.4 MESSAQE fIElUS.....ucuiiiiicieeees ettt 147
12.1.5 Message &ament APIS... ..o 150

2272 0V o o = o A o) o = ot 151
12.2.1 Class efiNitiON.cc.ooereeeieeeeeese e e nne e 151
12.2.2 CONSLIUCLOIS.......ceitieueereeeeesteeeesieesessee e sseesresseesse e e e sreeessaeesresaeesresanesresnnenreennesneenns 152
12.2.3 REPOIMING....cviueitiiitieeteriete sttt b e bt e bbbt b et ss e b e b e s s 153
12.2.4 Verbosity CONfiQUIAioN........cccceieiiericieieeieeeees ettt et e e e e e e e enens 154
12.2.5 ACHON CONFIGUIBLION.uiiriiiriiieiiieies ettt 155
12.2.6 File CONfIQUIELION.......cceiiiiieieierieeeee et sttt e e e ae e eneeneene e 155
12.2.7 Override CONFIQUIBLION.ccciueirieeriererie sttt 156
12.2.8 Report handler CONfigUIation.........ccccuevueieeieeienierie e 157

123 UVM_IEPOrt_NBNAIEY ..ot e 157
12.3.1 ClasS AEfiNITION.....ciiiireeereee ettt s sae e e be e sre e 157
12.3.2 CONSLIUCLOL ... ceteeueieteeeeeueeseeeeesteseesbeestesbeesbesbeesesseassesneesaeeaeesaeetesaeensesseenbesaeensenas 158
12.3.3 MEMDEr FUNCHIONS.......iiiiiieiiieirieesie sttt 158
12.3.4 get_VErbOSIY TEVEL. ..o e 158
12.3.5 QB BCHON......iiiiicecie ettt ettt s ee e be st e st e e e e e e e e eneenneneanens 158
12.3.6 get_file Nandle.........coo i e 158
N A (= o0 PSSP PP SRR 159
12.3.8 FOIMMEL_BCHON.coviiieiieeiieee bbb 159

i Y Vi o R (= o [0 A = V= S PO TR UPRPR 159
12,41 Class AefiNitiON......ccooeieeeeeeieeee e e nnenne 159

Xii

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

13.

14.

12.4.2 MEMDEN FUNCLIONS.....eiiiitieiectiieceeee e see ettt et ee s st e s st e s seae e e sesaeessabeesssssessereeessbeneas 160

125 UM _default rEPOM SEIVENt st st e e eeresresaesnens 162
12.5.1 Class AefiNitiON........coeeiiiieie e s st s e saeens 162
12.5.2 CONSLIUCLOLccteeueeeteeee e steeeesreseeste s e b e sre e s sse e s e eseesaeeaeesreenesreesesne e resneenrenns 163
2R T @ 1 1 o | P 163
1254 SEVENLY COUNL.....ccveiveieieeieeeeeeeetee s e e e e teste e sae st e e s ae e e e e e e e eneeseeseeneeresresaesrens 164
2 3T 0 I oo U o | RS 164
12.5.6 MESSAYE PrOCESSING...ccurererrerrerrestesressestessesseseeesesessessessessestessessessessessessensessessesenses 165
12,6 UVIM_TEPOIM_CAICHEN ..ottt 166
12.6.1 ClasS AEfiNITION.....ciiiiieeeree ettt r e st sae e see e be e sre e 166
D A @0 1 1 (o) SRS 167
12.6.3 CUrrent MESSAGE SLALE........ceviuieiieiiie sttt see e sbeenreenare s 167
12.6.4 Change MESSATE STALE........ceerueuirieiireierierie sttt 168
12.6.5 DEDUG. . cotireetirietirieiesieiesieseste s te st te sttt e ebeseebeseebesaesestesesbesesbe e ebe e ebeseebeseebeneereneas 169
12.6.6 Callback INtEIfaCE.......coeeeceeece e et 169
2 A = = oo 1 o SRS 170
o 0SSR 172
13.1 Component and object registration MAaCIOS..........ccveeereierenesesee e e e se e sre e e sreneas 172
13.1.1 MaCro defiNitioNS........cceecuiiieiiciecie et e resaeas 172
13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS.......cccocvvrrrrrrernene 172
13.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS........... 172
13.2 REPOIMING MECTOS.....cveveeeeeteeterreeteetestestestestestessessesseseesessessessessessessessessessessensessessesssessessens 173
13.2.1 MaCro defiNitiONS........cceciuiiieiiciece et s re e 173
13.2.2 UVM_INFO.....ciiiiiieiresies ettt st sttt sttt et seebeseeneneas 173
13.2.3 UVM_WARNING......coii ittt sttt sttt st st s e e sae e sre e 173
13.2.4 UVM_ERROR......coiiiriiiiteisenis sttt sttt sbe et e st e sbesesbesaebeseesesens 174
1325 UVM _FATAL ettt st sttt st s e b sneenbeens 174
13.3 SeqUENCE EXECULION MACTOS.....cueveeereereereereetessessestessessessessessessessessssessessessessessessessessensessens 174
13.3.1 MaCro defiNitioNS........cceciuiiieiiciece et e re e 174
13.3.2 UVM_DO..u ittt ettt bbbttt 174
13.3.3 UVM_DO PRI.c.ooooeeeeeeeeeseeesseesseees s sessssessssssssesssssssss s sssesssssssasssssssssssessans 175
13.3.4 UVM_DO_ON....ociiiciiiieiiiieiesiet ettt sttt st st ses e sas e sttt ste e stenenes 175
13.35 UVM_DO ON_PRI.....ooooereeeeeieeeeeeeeseeseeeessiessesessesssesessssssessessssssssssssessnssesnens 175
13.3.6 UVM_CREATE. ...ttt sttt st st s st st st st sttt 175
13.3.7 UVM_CREATE _ON....iiiiiiiiie ettt sttt s sae e e e s enee s 175
13.3.8 UVM_DECLARE_P_SEQUENCER.........cccceitientrtinineninie e 175
134 CallDACK MACIOS.....ccuicuiiiecieecte ettt ettt e et r e saeesaesreesresnaesreeneens 176
G B R |V = (o I L= 1T T o] TSR 176
13.4.2 UVM_REGISTER CBi....ccuiitiiiiiiiieeeerie ettt 176
13.4.3 UVM_DO _CALLBACKS.......ct ettt sttt 176
TLIM CLBSSES......ueeitiiie sttt ettt ettt et et s e s be s aee s besaaesbeeaaesbeeabasbeeaseebeensesaeensesaeeseesaeesteeneeseenn 177
Xiii

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

141

14.2

14.3

14.4

145

14.6

14.7

14.8

14.9

UVM_DIOCKING_ PUL_POM......oueiiiieiiieiiriecrie et 177

1411 ClasS AEfiNITION..c..ciiiireeeree ettt sae e see e b e e sre e 177
14.1.2 Template ParamELEr ...ttt b e e b e e ere e 177
T4.1.3 CONSLIUCLOLeteeueieteeeeeieeseeeeesreseesre s e sbe e e sse e s sseesseeseesneeaessreeeesreenesne e resneenrenns 178
14.1.4 MembBer fFUNCHIONS........ccii ettt sttt e e b enns 178
01970 g1 o] oo (0 g o N T=: A oo o SR 178
14.2.1 Class AefiNItiON........cooieci e ereens 178
14.2.2 Template ParamMELEr T.......ccccceieieeieeeceeese s se e st se e te st se e e e e e e e resaesneereas 178
G T @0 11 1 (o) SRS 179
14.2.4 MeMDEr FUNCHIONS.....c.iiviiieiiieirieesie et 179
UVM_DIOCKING_ PEEK POMT.......cuetiieieieieiete ettt s s 179
14.3. 1 ClasS AEfiNITION.....ciiiiieiieeree ettt s sae e e see e b e sre e 179
14.3.2 Template ParamELEr T.. ..ottt b e b e e ere e 179
14.3.3 CONSLIUCLOLeveeueieteeeeeieeseeeeesreseesressesbe s e sre e s sne e seemeesneeaessreenesreensesme e resneenrenns 180
14.3.4 MembBEr fUNCHIONS........ccciiieee ettt sttt re s 180
(010 g1 o Koo (0 a0 o T=: R o= =[G) VO 180
14.4.1 Class AefiNItiON........cociei et ereens 180
14.4.2 Template ParamMELEr T......cccccceceeiieieeeceeese s se et sre e ae st se e e e e e e e e ressesneenen 181
G T @0 11 1 (o) SRS 181
14.4.4 MeMDEr FUNCHIONS.....c.iiiiieeiiieirie ettt 181
UVM_NONDIOCKING_PUL_ POttt 181
14.5.1 ClasS AEfiNITiON.....ciiiiieeriee ettt s e see e esre e 182
1452 Template ParamELEr T.. ..ottt b e b e e ebe e 182
T4.5.3 CONSLIUCLOLccteeueieteeeeeieeseeeeessesee st s e sbe e e sre e s saeesseeseesaeeaeesreenesreennesne e resnnenrenns 182
14.5.4 MembBEr fFUNCHIONS........coii ettt st sttt re s 182
UVM_NONDBIOCKING. GEL POM......cieieieieeeteee e sttt e e s s seenesresresnesrens 183
14.6.1 Class AefiNitiON........cooeciiieece e s s sre e eaeens 183
14.6.2 Template ParamMELEr T......ccccccecieiieieeeceeese s e e e te st se e e e e e e e eresaesnesreas 183
3G T @0 11 1 (o) RS 183
14.6.4 MeMDEr FUNCHIONS.......iiviiieieieirie sttt 183
UVM_NONDIOCKING_PEEK _POM......c.eiuieitieetereete ettt s s be e 184
14.7.1 Class AEfiNITION.....ciiiiieereee et sae e see e b e b 184
14.7.2 Template ParamELEr T.. ..ottt b e s ebe e 184
T4.7.3 CONSLIUCLOLecteeueieteeeeeieeseeeeesreseesbesee st e e sre e s e sseesseeseesaeeaessreeeesreensesne e resneenrenns 184
14.7.4 MembBEr fUNCHIONS........ooieieee ettt sttt e re s 184
uvm_Nonblocking gEL PEEK POM.......cvcecirireceee ettt s re e s eas 185
14.8.1 Class AefiNItiON........ccoieciiiee e saeens 185
14.8.2 Template ParamMELEr T.......ccccceceeieeieeeeeeese e e e st st e e e e e e e e e e e eresaesnesneas 185
2 S G T @0 11 1 (o) RS 185
14.8.4 MeMDEr FUNCHIONS.......iiviiiieiiieirieesie st 185
UVIML_@NAIYSIS POMT..c.viuiiteniitiieteseete sttt sttt ettt st s b e s bese b se b e saebesae e sre e nnenea 186
14.9.1 ClasS AEfiNITION.....ciiiireeree ettt sae e see e be e sre e 186
14.9.2 Template ParamELEr T.. ..ottt b e e ere e 187
Xiv

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

15.

R TG T Oa 1 1 8 [ox (o O 187

14.9.4 MeMDEr FUNCHIONS.....c.iiviiieiiieisie sttt 187
1410 UVIM_ANAIYSIS EXPOM..ccuieitieetereeie sttt sttt sttt sttt st b et st se et sb et bt bbb s 188
14.10.1 ClaSS AEfiNITION.....ciieitireeiereeie ettt s b e s e see e be e srenens 188
14.10.2 Template ParamELEr T......oocoveiireeriereeeree ettt b e b e e ebe e 188
14.10.3 CONSLIUCLOLeveeueeeteeseeseeseeeeesseseesressesre e e ssee st sseasseeneesaeeaessreesesreensesseenresneensenns 188
14.10.4 MemMbBEr fUNCHIONS.........eoiiieeie ettt sttt reenns 188
I R U1V g I 0= Y Fo T o TSR 189
14.11.1 Class AefiNItiON........cccieee e e s be s sneens 189
14.11.2 Template ParamMELENS..........ccuevueieierieeeereseseestestesresresaeseeseeseesesseesessessesaessesseseesseneen 189
0 B R 0 1 1 (0] RSP 189
14.11.4 MeMDBEr FUNCHIONS.......iviiirieiiieisie sttt 189
14.12 uvm_tim_req rsp Channel ... e 190
14.12.1 ClasS AEfiNITION.....ciiiiireeireee ettt st s sae s e sae e be e srenens 190
14.12.2 TEMPIEte PArAMELENS.......cciviereiiriieeier et sb e 191
14.12.3 POrtS @nd EXPOITS......c.eiieiiiirieiesiesieiiesieseeseeseseseeresessesrestestesressesseseessessessessssessessenns 191
O B @0 1 1 (0] £ RSP 193
T U1V oI o Y o= = T 193
14.13.1 Class AefiNItiON........ccceeei et e be st saeens 193
14.13.2 TemMPIate ParaMELENS........c.ccueieeeeereeeerese e ste e e sre e seesee e esee e e e eresresaesresresressenean 193
14.13.3 MemMbBEr fUNCHIONS.......ceeiieiecie ettt sttt e re s 193
7 0V o TS = o (= 0 o101 oo 195
14.14.1 Class AefiNItiON........cceeii et eaeens 196
14.14.2 TempPlate ParaMELENS..........ccueveeeeierieeeseseseste e sresresaeseeseeeeses e s e sressesaesresteseesrenen 196
e @0 1 1 (o) SRS 196
14.14.4 MeMDBEr FUNCHIONS......uiiviiieiirieerie ettt 196
14.15 UvM_Seq itemM PUI_EXPOIT......co.oiiieirieerieeseee ettt e 196
14.15.1 ClasS AEfiNITION.....ciiiiireeereee ettt s b e s sae s e see e be e srenens 196
14.15.2 TEMPIEe PArAMELENS.......coiuiereiirieieier ettt 197
14.15.3 CONSLIUCLOLeveeueeteeee e seeeeesresee st s eesbe e e sseesesseesseeneesneeaessreesesreensesneeresneensenns 197
14.15.4 MemMbBEr fUNCHIONS........cciiiieie ettt sttt e reenns 197
14.16 uvm_Seg itemM PUIlL IMP...ccie et et resre s resaesnenas 197
14.16.1 Class AefiNItiON........cccieiiieece et ereens 197
14.16.2 TemMpPlate ParaMELENS..........ccueveeeeereeesesesestes e sresresteseesee e eses e e e sressesaesresteseesrenean 197
14.16.3 MemMbBEr fUNCHIONS........eciiiiecie ettt ettt e re s 197
RegiSter abStraCtion CIASSES.......cciviiiiieieresieie e st s e e e e seeaesaeebesbesresresbenteseens 198
151 UVIM_IEO DIOCK. ...ttt bbb 198
15.1.1 ClasS AEfiNITION.....ciiiiieeiree ettt s see e see e b e sre e 198
LT A @0 1 1 (o) SRS 200
15.1.3 INITAHZAHON.ceiieiieiieeiees ettt 201
15. 1.4 INEFOSPECHION. ...eecvieeeirteieriesere ettt b et bbbttt 202
XV

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

152

153

154

155

15.6

15.1.5 COVEIBOL.......eiueitiieieietese sttt sr e e et s e b b srenrenne e 205

L5.1.8 ACCESS....uecuiiueeueetistesteste s e ste st e e st e e e e ese e e eaeetesaesaeabeseesee st e tesee e eneeseeneeneetenaesrenteneenrens 207
15.1.7 BaACKOOONceiitieie ettt ettt e s re e b e e besheeabesbeenbestaenteereenns 209
15.1.8 Data members (Variables).........cccoeveiiieieseieieceee et 211
U1V T = o T 1T o TP P PPN 211
15.2.1 Class defiNitiON......cccceieececiece e st e e e e e resresnesnen 211
LT A @0 0 1 (o) G SRS 213
G T 1 1 (T 12 (o) o R 213
1524 INEFOSPECHION. . .euviviieiiteieriesert ettt ettt b et bbb 215
15.2.5 BUS GCCESS....ciiiiiiie ittt sttt sttt st st st be e sate s b e e s abe e b e e steere s 218
15.2.6 BaCKOOON.......c.eiiiieie ettt et e ae e e be s beebesbeenbesbeenbeereenns 220
01Y 0 g T (= o [1 1= SRR 220
15.3.1 Class AefiNitiON........coceeiiiieie e e s s ere s 220
15.3.2 CONSITUCTON.......viiiee ittt ettt st st be e st e s e e sabe e sbeeebe e nbeesnteenree s 221
15.3.3 INILAlIZAON.......eecii ettt e b e e b e re s 221
HEC T B T {0 o= 1o o VRS 221
15.3.5 BaCKOOON.......cei ittt et et s re e st be s beeabesbeenbesbeenbeereenes 222
U140 (1 (= PRSPPSO 223
15.4.1 Class AefiNitiON........coieiiiiee et s st s e ere s 223
15,42 CONSITUCTON.......viiiiiiieesiee sttt sae st st st et sba e st e e s aeesabe e sbaesbe e sbaesteenree s 226
15.4.3 INITAlIZAON.cicvi ettt st e b e e ar e re s 226
S A T {0 o= 1o RS 227
R S N 000 ST P 229
15.4.6 FTONTAOONccueieieeieeee st st te e s se e eetesae e steebesbesr e bestesaenseneeneennenens 233
15.4.7 BaACKOOONceiitieieieece ettt et e re e sre e e s beetesbeeabesbeenbesbeenbeereenns 234
T15.4.8 COVEIAOR. ...coiuviiiieiteeitie sttt st ste e st s bt e et st e e sbe e sbe e s be e s be e sbe e s beenbeesabeesaaesnnee e 236
15.4.9 CallDACKS........eoitiieeceee e st et bbb b b e nas 238
01Y] 04 T (= o [1= Lo SRR 239
15.5.1 Class defiNitioN........cooeciiieie ettt st ere s 239
15.5.2 CONSITUCTON.......viitiiiieesiee sttt st st sba e st e e aeesabe e sbeeebe e sbaesteenaee s 241
15.5.3 INItIAliZAION.eocti ettt b e re s 241
B B V{0 o= 1 o S 242
ST T ST Y 000 T P 244
15.5.6 CallDACKS.....ccoecieiiececetcecees e sttt sr et e e e nn e eneas 249
U1 0 T 107 PSP 250
15.6.1 Class defiNitiON......cccceieiieieieieie et e e resrennenne s 250
T A @0 1 1 (o) SRS 253
15.6.3 INITIAlIZBHION.cciitiiecee ettt sa e e e eneeaeenesrenrs 253
15.6.4 INErOSPECHION. . .evevieeeireeiirieest ettt ettt b ettt 253
15.6.5 HDL GCCESS.....couiiieuiieetietise st st e s e st e e s te st e e e e e e eaessessesaestesbesaestesbesteseensensenseneenenns 257
15.6.6 FFONEAOOL.......cccuiiiieie ettt et e s sa e s e s be s s besaaesbeentesbeenbesteensesaeennas 258
B S = T (o (oo | T 259
15.6.8 CallDACKS........ooiiieeieeee e e r e e 261
XVi

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

15.7

158

159

15.10

1511

15.12

15.13

15.14

15.6.9 COVEIBOEL.......coueiririiieieteie sttt r e e sr b e et n e b b e renrenne e 262

01V oI o Lo 1 (= A = T 263
15.7.1 Class AefiNitiON........cooieciii et eae s 263
15.7.2 CONSITUCTON.......tiitiiiteesiee sttt sttt st sbe et e e sabe e sbeeebe e nbeesreenaee s 264
15.7.3 MembBer fUNCHIONS........cooi et sttt e re s 264
017704 T (= o 11 {0 264
15.8.1 Class AefiNitiON........cccoecuiiieie et s st s e eaeens 264
15.8.2 CONSITUCTON.......viiiiiiiiesiee sttt sttt ba e st e e e sabe e sbaeere e sbaesteenaee s 265
15.8.3 INILIAliZAION.......cocviceecece et sttt b e e re s 266
B B V(0= o= 1 o VS 266
D5.8.5 ACCESS. ..ot iiieitiictee et ettt st e ettt e e te e b e et e a e e bt e raeeaeeare e e teeaneeeteennaeenee e 266
15.8.6 SPECIAl OVEITIAES.......ccuiciiieceeeeeeeeee e sttt ereeaesnesreenas 268
15.8.7 Data MEMDEIS......cceiieee ettt ee s aeebesbe e tesreens 268
0140 (Y (= o O PRSPPI 268
15.9.1 Class AefiNitiON........coieciiiiece et saeens 268
15.9.2 CONSITUCTON.......viiiieiiiesiee sttt s be et e s e e sabe e sbaesre e sbaesteenaee s 270
15.9.3 INILIAlIZAON.......eiiii et st e b e re s 270
e B T {0 o= 1 o S 272
15.9.5 HDL CCESS......oiiiieiiie it et steeesteestee et s e te e s ae e steesaae e be e e saeebeesaeeeseesaseessnesnneenseas 274
15.9.6 CallDACKS......c.eciiiieieceiceeecs ettt s r et st e a et e e eneas 276
UVIMLVIEG CIS...ee et 277
15.10.1 MemMDBEr FUNCLIONS......cceiiiiieiiesieiesiere ettt sttt s e s e e e eneeneenesrenras 277
UVIML_VIEG FIEI. ot 278
15.11.1 Class defiNitiON......cccceierieicieeecire e e e re e s resrennesrens 278
LT B 2 @0 1 1 (o) SRS 280
T I G I 1 1 = 2 (o) o T 280
15,114 INEFOSPECHION. ..ttt sttt ettt b bbbttt 280
15.110.5 HDL GCCESS.....cveieueeeeteetesie st stestestestestestessessesseseeseesessesssstestessestestessessensensensensssenses 281
15.11.6 CallDACKS........eoiieceeceee ettt st st bbb bbb e e 282
UVM_VIEg FIEld CBS.....oececec e 284
15.12.1 Class AefiNItiON........ccoieiiieee et be st ereens 284
15.12.2 MeMDBEr FUNCLIONS......cciiiiiie ettt sttt et s e e eneeaesnesrenes 284
UVITLFE CDS.... ittt e 285
15.13.1 Class defiNitiON.......c.cceieieeeiececeee e e e re e e resrennesnens 285
15.13.2 MemMbBEr fUNCHIONS........ecieiieeie ettt st sttt re s 286
U\ 20 oI 7= 0 0T 17=" 0 PP OP RSP 289
15.14.1 Class AefiNItiON........ccieieiieece et be s e ereens 289
15.14.2 CONSITUCTONviitieiieesiee sttt stee st st sae st s et essa e st e e s saesabe e sbeesteesbaesbeenree s 289
15.14.3 INILIAlIZAION.eecviceececce et st et e eaaesbe e e e reenns 290
15.14.4 MemMOry MaNAgEIMENL......ccuiiieerrtirieeseesteeseesteesaessseesseesssesssessbeesseesssesssaessessses 290
15.14.5 INEFOSPECHION. . .cuvviieeirteierieest ettt b et b et 291
15.14.6 Data MEMDEIS.....cceiveieieeeeieieee e s e et sae st e e s ae e e e e e e e eseeressessesresresaesrens 291
15.14.7 TYPE AEfiNITIONS....ccveuireiiieiirieert et 292
XVii

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

16.

17.

1515 UVIM_MEM_TEOION. c.c.eiuiitiuirtiieeteiete st st ettt se et se bt se st sb st st e et e e b e se b e seebeseebeseebesbenesaenesneneas 292
15.15.1 Class defiNitiON......cc.cceieiieieieeecise e e e se s e eresresnesnens 292
15.15.2 MemMbBEr fUNCHIONS........cciiieeie ettt sttt re s 293
15.16 Global AECIAratioNS........ccecueiieieeieceeee et st be st e e sresbeseesrenan 296
L5.16.1 TYPES...veiteitieriresee sttt ettt ettt r e r e e ettt e r e r e R n R re e n e n e ene s 296
15.16.2 ENUMEIAIONS......ceeieuieieeeieesiestes e stestestes e seessessessessessesssssesesssssessessessessessessesseseens 297
Register interaCtion With DUTc.cuierirriie ettt sttt s se e nee e enens 300
30 R U1V o I ="o [= PO 300
16.1.1 Class defiNitiON........ccooeciiieie et eaeens 300
16.1.2 CONSITUCTON.......viiieiiiiesiee sttt et e e st sbe e et e e s aaesabe e sbaeebeesbaesnbeenaee s 301
16.1.3 MembBer fUNCHIONS........ccoiieee ettt ettt e re s 301
16.1.4 Data MEMDEIS.....ccueiveieieeieeeieee e e e e e s re st tesae st e e te e eseesse e eseesessessesresressesrens 301
16.2 UVIM_TEO DUS OP...iiiuiiieiirieiirieiisieeste sttt sttt skt e b sttt b et b et b et b e et e e et neebeseebe e 303
16.2.1 Class defiNitiON......cccceiieieicicecee e e e re e s resrennesrens 303
16.2.2 Data MEMDEIS.......ceiieee e ettt ee e e e saeebesbe e resneens 304
G UV o (=0 [0 == 305
16.3.1 Class defiNitioN........cceecuiiieie e e st s eae s 305
16.3.2 CONSITUCTON.......viiiiiiieesiee sttt ettt be e et e e aaesabe e sbeeebe e nbaesbeenaee s 305
16.3.3 MembBer fUNCLIONS.........coiiieeie ettt b e e re s 305
ECRCR R DT v= W 101 10101 £ SN 306
16.4 UVM_reg thM @0apter..... ..ottt b e e 306
16.4.1 Class defiNitiON......cccceierieiciece e e e e se e eresresaesrens 306
I A @0 1 1 (o) SRS 307
16.4.3 MeMDBEr FUNCLIONS.......ccoiiiieiiesiceereee ettt st s e e e e eneeaesnesrenes 307
16.5 UVIM_IEQ PrediCOr.......ciiiieieeeetereete ettt e st 307
16.5.1 Class defiNitiON.......ccceieiieeciecieiees e e e e e e s resresnesrens 307
16.5.2 CONSITUCTON.......ceiiteeiieesiee st e steeete et e ste et e e e st e sae e e teesse e e beesseesnteessaeenseesreeeseensenan 308
TG T o o £ 308
16.5.4 MembBEr fUNCHIONS........ccouiiiee ettt sttt b e e re s 308
16.5.5 Data MEMDEIS......cccieieieeicieieee et re e et se e e e e e e e ereesessesresrennesrens 309
16.6 UVIML_IEO_SEOUEIICE. .. .coueitiirirertieresre st ss e s ss e e e seese s st s seeresr e s bt saeen e b se e r e b e e e se e s e e e n e eneas 309
16.6.1 Class defiNitiON......cc.cceiierieieiececire e e e re e s resresnesrens 309
16.6.2 CONSITUCTON.......ceeiieeiieeiie st stee et e e e ste e esee e sre e s ae e e teesse e et e e sseeenteessaeenseesraeeseensenan 311
16.6.3 SEUUENCE APl....cueieeiece ettt st st s r et se et et e e e neeneene e 311
16.6.4 Convenience Wrte/REad APl ..o e 312
16.6.5 Data MEMDEIS.....cc.eiveieieeicieieee et re e e se e e e e e eseesessesseeresresnesnens 314
16.7 UVIM_IEQ fIONLAOON.cviuiieiierieistereete ettt sttt s eb e st s eb e snenennene 314
16.7.1 Class defiNitiON......cccoeieeieieieee e e e e e s resresnesnens 315
T A @0 1 1 (o) SRS 315
AT DT v= W 101 10101 £ SR 315
GlODaA FUNCHIONAIITY.....ceeveeeeiieeie ettt bbbt e 316
XViii

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

171 GlODE FUNCHONS.... .ot sttt et se e ne e enen 316
17.1.1 UVIM_SEL CONTIG NS ooeoeeeeeeeeeeseeeeesee oo eeseeesesseeeesse s s sesseesse e s ees s sessseseneees 316
17.1.2 uvm_set_config_string§ .. 316
L7.0.3 TUN _EES. ittt bbbttt b e 316

172 GlODEl EfINES......ooeeceieecee ettt ene s 317
1721 UVM_MAX_STREAMBITS.....c.coiiiretreeres e 317
17.2.2 UVM_PACKER MAX BYTES......oo oottt e 317
17.2.3 UVM_DEFAULT_TIMEOUTooiiitierrieteeresete e 317

17.3 Global type definitions (tyPEAEFS).......coo i e 317
5 R V1Y o T o1 (= 1 (= o 1 R 317
17.3.2 UVIM_INEEGIEl ..ot 317
17.3.3 UVM_FILE. .ot 317
17.3.4 UVIM_TEPOIT_CD...eoeiiiiieee e 317
RS R U\Y/ oo oo o o T | T 317
17.3.6 UVM_CONFIQ_SIITNG. .ttt 317
17.3.7 uvmM_CONFIQ ODJECL.....c.eciiecice e 317
17.3.8 UVIM_CONFIQG_WIADPEN ...ceiietiietiiei ettt 318

174 GlODEA ENUMEIELION.coiuiiiieiiiriieee ettt n e 318
L1741 UVIM_BOHOMN. ...ttt sttt st e sttt bbbttt b e 318
N V1Y TS =Y/] SRS 318
17.4.3 UVIM_VEIDOSITY ..ottt bbbttt 318
17.4.4 UVM_BCHIVE PESSIVE ENUM.....eciveieuieiieieeteetestesteste e srestesteseeseesaesseseesessessessessessessens 318
1745 UVM_SEQUENCE _SEALE ENMUM.......eiiririiiriiiisre e 319
17.4.6 UVM_PhASE LYPE...uicuiciiciice ettt re et sr e st et ae e e naeneens 319

175 UVIM_COMESEIVICES Toviiiiiiiiiirieiireee sttt sttt st s b et bbb 319
1751 Class defiNitiON......cccoreeerrieieise e 319
17.5.2 MembBEr FUNCHIONS......cciiieiiiesieese ettt s sre e 320

176 UVM_defaUlt_COTESEIVICES L..iiiiiiiiiieiciiiiee ettt st s re b sre s ne et re s 321
17.6.1 Class AefiNitiON.......c.coeieieeeeeeeere e e nne 321
17.6.2 MemBEr fUNCHIONS........cociieieeieerrie et 321

ANNEX A (INFOrMELIVE) GIOSSAIYccueiuiitiiteieiriiiee ettt sttt et st se e b e e e et eaeeb e st sbesbesee e 323
... 326
XiX

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

1. Introduction

UVM-SystemC is a SystemC library extension offering features compatible with the Universal Verification
Methodology (UVM). This library is built on top of the SystemC language standard and defines the
Application Programming I nterface aligned with the UVM standard defined in IEEE Std. 1800.2-2017%2. The
UVM-SystemC library does not cover the entire UVM standard, nor the existing UVM implementation in
SystemVerilog. However, the UVM-SystemC library offers the essential ingredients to create verification
environments which are compliant with the UVM standard.

UVM-SystemC is released as reference implementation that works with any |EEE Std. 1666-20112 compliant
SystemC simulation environment. Note that UVM-SystemC uses certain specialized SystemC features
introduced since the revision in 2011, such as process control constructs, which are not implemented in
al SystemC simulators. The UVM-SystemC functionality can be used together with the Accellera Systems
Initiative SystemC reference implementation®.

UVM-SystemC uses existing SystemC functionality wherever suitable, and introduces new UVM classes on
top of the SystemC base classes to facilitate the creation of modular, configurable and reusable verification
environments. Certain UVM in SystemV erilog functionality is available as native SystemC language features,
and therefore UVM-SystemC uses the existing SystemC classes as foundations for the UVM extensions. Also
the transaction-level modeling (TLM) concepts natively exist in SystemC and | EEE Std. 1666-2011, so UV M-
SystemC uses the original SystemC TLM definitions and base classes.

Elements which are part of the UVM-SystemC library and language definition and which are not part of the
UVM-SystemVerilog standard are marked with the superscript section symbol 8 Elements marked with the
superscript degree symbol ° are renamed in UVM-SystemC, in contrast to the UVM-SystemV erilog standard,
due to their incompatibility due to reserved keywords in C/C++ or an inappropriate name in the context of
SystemC base class of member function definitions. The reference to the original UV M-SystemVerilog name

is given in brackets and marked with the superscript dagger symbol T, Note that these original names are not
defined in UVM-SystemC.

! The IEEE standards or products referred to in this standard are trademarks of The Institute of Electrical and Electronics Engineers, Inc.

2 |EEE Standard for Universal Verification Methodology L anguage Reference Manual, https.//standards.ieee.org/
standard/1800_2-2017.html

3 |EEE Standard for Standard SystemC L anguage Reference Manual, https://standards.ieee.org/standard/1666-2011.html

4 Accellera Systems I nitiative SystemC reference implementation version 2.3.0 or newer is required, https://accellera.org/downloads/

standards/systemc

1

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

https://standards.ieee.org/standard/1800_2-2017.html
https://standards.ieee.org/standard/1800_2-2017.html
https://standards.ieee.org/standard/1666-2011.html
https://accellera.org/downloads/standards/systemc
https://accellera.org/downloads/standards/systemc

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

2. Terminology

2.1 Shall, should, may, can

The word shall is used to indicate a mandatory requirement.

The word should is used to recommend a particular course of action, but it does not impose any obligation.
The word may is used to mean shall be permitted (in the sense of being legally allowed).

The word can is used to mean shall be able to (in the sense of being technically possible).

In some cases, word usage is qualified to indicate on whom the obligation fals, such as an application may
or an implementation shall.

2.2 Implementation, application

Theword implementation is used to mean any specific implementation of the full UVM-SystemC classlibrary
as defined in this standard, only the public interface of which need be exposed to the application.

The word application is used to mean a C++ program, written by an end user, that uses the UVM-SystemC
classlibrary, that is, uses classes, functions, or macros defined in this standard.

2.3 Call, called from, derived from

The term call is taken to mean call directly or indirectly. Call indirectly means call an intermediate function
that in turn calls the function in question, where the chain of function calls may be extended indefinitely.

Similarly, called from means called from directly or indirectly.

Except where explicitly qualified, the term derived fromis taken to mean derived directly or indirectly from.
Derived indirectly from means derived from one or more intermediate base classes.

2.4 Implementation-defined

Theitalicized term implementation-defined is used where part of aC++ definition isomitted from this standard.
In such cases, an implementation shall provide an appropriate definition that honors the semantics defined in
this standard.

2

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

3. Overview

3.1 Namespace

All UVM-SystemC classes and functions shall reside inside the namespace uvm.

3.2 Header files

An application shall include the C++ header file uvm or uvm.h to make use of the UVM-SystemC classlibrary
functions. The header file named uvm shall only add the name uvm to the declarative region in which it is
included, whereas the header file named uvm.h shall add all of the names from the namespace uvm to the
declarative region in which it isincluded.

NOTE—It is recommended that an application includes the header file uvm rather than the header file
uvm.h. This means the namespace uvm has to be mentioned explicitly when using UVM-SystemC classes
and functions. Alternatively, an application may use the C++ using directive at the global and local scopeto
gain access to these classes and functions.

3.3 Global functions

A minimal set of global functionality is defined offering generic UVM capabilities and convenience functions
for configuration and printing. The global functions, enums, type defintions, and classes uvm_coreservice t
and uvm_default_coreservice_t are specified in Chapter 17.

3.4 Base classes

These classes define the base UVM class for all other UVM classes, and the base class for data objects:
— uvm_void
— uvm_object
— uvm_root
— uvm_port_base
— uvm_export_base§

— uvm_component_name®

The base classes are specified in Chapter 4.

3.5 Policy classes

These classes include policy objects for various operations based on class uvm_object:

— The class uvm_printer provides an interface for printing objects of type uvm_object in various
formats. Classes derived from class uvm_printer implement pre-defined printing formats or policies:
— Theclassuvm_table printer printsthe object in atabular form.
— Theclassuvm_tree printer printsthe object in atree form.

3

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— Theclassuvm_line printer printsthe information on a single line, but uses the same
object separators as the tree printer.
These printer classes have ‘knobs' that an application may use to control what and how information is
printed. These knobs are contained in a separate knob class uvm_printer_knobs

— uvm_comparer: performs deep comparison of objects derived from uvm_object. An application may
configure what is compared and how miscompares are reported.

— uvm_packer: performs packing (serialization) and unpacking of properties.

The policy classes are specified in Chapter 5.

3.6 Registry and factory classes

The registry and factory classes include the uvm_factory and associated classes for object and component
registration. The class uvm_factory implements a factory pattern. A singleton factory instance is created for
agiven simulation run. Class types are registered with the factory using the class uvm_object_wrapper and
its derivatives. The class uvm_factory supportstype and instance overrides.

Theregistry and factory classes are:
— uvm_object_wrapper
— uvm_object_registry
— uvm_component_registry
— uvm_factory
— uvm_default_factory

Theregistry and factory classes are specified in Chapter 6.

3.7 Component hierarchy classes

These classes define the base class for hierarchical UVM components and the test environment. The class
uvm_component provides interfaces for:

— Hierarchy—Provides methods for searching and traversing the component hierarchy.

— Configuration—Provides methods for configuring component topology and other parameters before
and during component construction.

— Phasing—Defines a phased test flow that all components follow. Methodsinclude the phase callbacks,
such as run_phase and report_phase, overridden by the derived classes. During simulation, these
callbacks are executed in precise order.

— Factory—Provides a convenience interface to the uvm_factory. The factory is used to create new
components and other objects based on type-wide and instance-specific configuration.

All structural component classes uvm_env, uvm_test, uvm_agent, uvm_driver, uvm_monitor,
uvm_subscriber and uvm_scor eboard are derived from the class uvm_component.

The UVM component classes are specified in Chapter 7.

4

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

3.8 Sequencer classes

The sequencer classes serve as an arbiter for controlling transaction flow from multiple stimulus generators.
More specifically, the sequencer controls the flow of transactions of type uvm_sequence_item generated by
one or more sequences based on type uvm_sequence. The sequencer classes are:

— uvm_sequencer_base
— uvm_sequencer_param_base
— uvm_sequencer

The sequencer classes are specified in Chapter 8.

3.9 Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsul ated
as a sequence or sequence item. The following sequence classes are defined:

— uvm_transaction

— uvm_sequence _item
— uvm_sequence base
— uvm_sequence

The sequence classes are specified in Chapter 9.

3.10 Configuration and resource classes

The configuration and resource classes provide access to the configuration and resource database. The
configuration database is used to store and retrieve both configuration time and run time properties. The
configuration and resource classes are:

— uvm_config_db: Configuration database, which acts as interface on top of the resource database.
— uvm_resource_db: Resource database.

— uvm_resource _options: Provides a namespace for managing options for the resources facility.
— uvm_resource_base: Provides a non-parameterized base class for resources.

— uvm_resource _pool: Provides the global resource database.

— uvm_resource: Defines the parameterized resource.

This configuration and resource classes are specified in Chapter 10.

3.11 Phasing and synchronization classes

The phasing classes define the order of execution of pre-defined callback function and processes, which run
either sequentially or concurrently. In addition, dedicated member functions for synchronization are available
to coordinate the execution of or status of these processes between all UVM components or objects.

The phasing and synchronization classes are:
— uvm_phase: The base class for defining a phase’ s behavior, state, context.
— uvm_domain: Phasing schedule node representing an independent branch of the schedule.
— uvm_bottomup_phase: A phase implementation for bottom up function phases.

5

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm_topdown_phase: A phase implementation for top-down function phases.
uvm_process_phase® (uvm_task J)haseT): A phase implementation for phases which are launched
as spawned process.

uvm_objection: Mechanism to synchronize phases based on passing execution status information
between running processes.

uvm_callbacks: The base class for implementing callbacks, which are typically used to modify or
augment component behavior without changing the component base class for user-defined callback
classes.

uvm_callback_iter: A classfor iterating over callback queues of a specific callback type.
uvm_callback: The base class for user-defined callback classes.

The phasing and synchronization classes are specified in Chapter 11.

3.12 Reporting classes

The reporting classes provide a facility for issuing reports (messages) with consistent formatting and
configurable side effects, such as logging to a file or exiting simulation. An application can also filter out
reports based on their verbosity, identity, or severity.

The following reporting classes are defined:

uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.

uvm_report_handler: The class which acting as implementation for the member functions defined in
the classuvm_report_object.

uvm_report_server and uvm_default_report_server: Theclassacting asglobal server that processes
all of the reports generated by the classuvm_report_handler.

uvm_report_catcher: The class which captures and counts al reports issued by the class
uvm_report_server.

The reporting classes are specified in Chapter 12.

3.13 Macros

The UVM-SystemC macros make common code easier to write. It is not imperative to use the macros, but
in many cases the macros can save a substantial amount of user-written code. The macros defined in UVM-
SystemC are:

Macros for component and object registration:
— UVM_OBJECT_UTILS
— UVM_OBJECT_PARAM_UTILS
— UVM_COMPONENT_UTILS
— UVM_COMPONENT_PARAM_UTILS

Sequence execution macros:
— UVM_DO, UVM_DO_ON and UVM_DO_ON_PRI
— UVM_CREATE,UVM_CREATE_ON
— UVM_DECLARE_P_SEQUENCER

Reporting macros:

6

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— UVM_INFO, UVM_ERROR, UVM_WARNING and UVM_FATAL

— Cadllback macros:
— UVM_REGISTER_CB and UVYM_DO _CALLBACKS

Detailed information for the macros or the associated member functions are specified in Chapter 13.

3.14 TLM classes

The UVM TLM library defines several abstract, transaction-level interfaces and the ports and exports that
facilitate their use. Each TLM interface consists of one or more methods used to transport data, typically
whole transactions (objects) at a time. Component designs that use TLM ports and exports to communicate
are inherently more reusable, interoperable, and modular.

The following TLM-1 classes are defined:

— TLM-1 blocking ports uvm_blocking put_port, uvm_blocking_get_port,
uvm_blocking peek_port, and uvm_blocking_get peek port.

— TLM-1 non-blocking ports uvm_nonblocking put port, uvm_nonblocking_get port,
uvm_nonblocking_peek_port, and uvm_nonblocking_get_peek_port.

— TLM analysisportsand exportsuvm_analysis_port, uvm_analysis_export, and uvm_analysis imp.
— Therequest-response channel classuvm_tim_req_rsp_channel.

— The sequencer interface classes: uvm_sqgr_if base, uvm_seq_item_pull_port,
uvm_seq_item_pull_export, and uvm_seq_item_pull_imp.

The TLM classes are specified in Chapter 14.
NOTE—UVM-SystemC does not define the TLM-2.0 blocking and non-blocking transport interfaces, direct

memory interface (DMI), nor a debug transport interface. An application should use the SystemC TLM-2.0
interfaces instead.

3.15 Register abstraction classes

The register abstraction classes, when properly extended, abstract the read/write operations to registers and
memoriesin aDUT.

The register abstraction classes are specified in Chapter 15 and Chapter 16.

3.16 Existing SystemC functionality used in UVM-SystemC

Because SystemVerilog does not support multiple inheritance, UVM-SystemVerilog is constrained to have
only one base class, from which both data elements and hierarchical elementsinherit. As SystemC isbased on
C++, it supports multiple inheritance. As such, UVM-SystemC uses multiple inheritance where suitable.

In UVM-SystemVerilog, the class uvm_component inherits from class uvm_report_object. In UVM-
SystemC, class uvm_component applies multiple inheritance and derives from the SystemC class
sc_core::sc_module and from uvm_report_object. Note that the class uvm_object is not derived from class
sc_core::sc_object, but from class uvm_void.

The class sc_core::sc_module already offer the hierarchical features that uvm_component needs, namely
parent and children, and afull instance name. Therefore the parent of acomponent does not need to beexplicitly

7

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

specified as a constructor argument; instead the class uvm_component_name keeps track of the component
hierarchy.

The class sc_core::sc_module has natural eguivalents to some of the UVM pre-run phases, which can used
in aUVM-SystemC uvm_component. For example:

— The UVM-SystemC calback before end of elaboration is mapped onto the UVM callback
build_phase. Note that UVM-SystemC also provides the callback build_phase as an alternative to
before end_of elaboration. It isrecommended to use this UVM member function.

— The UVM-SystemC calback end of elaboration is mapped onto the UVM calback
end_of elaboration_phase. UVM-SystemC aso provides the callback end_of elaboration_phase
with the argument of type uvm_phase as an aternative to the callback end_of elaboration, which
does give access to the phase information. It is recommended to use this UVM member function.

— The UVM-SystemC callback start of simulation is mapped onto the UVM callback
start_of_simulation_phase. UVM-SystemC also provides the callback start_of simulation_phase
with the argument of type uvm_phase as an alternative to the callback start_of _simulation, which
does give access to the phase information. It is recommended to use this UVM member function.

UVM-SystemC also defines the callback run_phase as a thread process of a uvm_component . This works
because sc_core::sc_modulein SystemC already has the ability to own and spawn thread processes.

UVM-SystemVerilog defines the TLM-1 interfaces like put and get, as well as some predefined TLM-1
channelsliketIm::tim_fifo. These already natively exist in the SystemC standard. UV M-SystemC supportsthe
original SystemC TLM-1 definitions. The same holdsfor theanalysisinterfacein UVM. UV M-SystemC offers
acompatibility and convenience layer on top of the SystemC TLM interface proper tim::tim_analysis if and
analysisport tim::tIm_analysis_port, defining elements such asuvm_analysis port, uvm_analysis export
and uvm_analysis_imp.

The SystemC fork-join constructs SC_FORK and SC_JOIN can be used as a pair to bracket a set of calls
to function sc_core::sc_spawn within a UVM component run_phase, enabling the creation of concurrent
processes.

3.17 Methodology for hierarchy construction

The UVM in SystemVerilog recommends the use of configurations by using the static member function set
of the uvm_config_db in the build phase, followed by hierarchy construction through the factory, in the same
phase.

In UVM-SystemVerilog, it is necessary to make the connections (port binding) in the connect phase, which
happens after hierarchy construction of components, ports and exports in the build phase. This enables
configuration of port/export construction using the configuration database uvm_config_db. In that case, if a
parent creates a child in the build phase, that child’ s port/export does not exist at that point, and it has to wait
for the next phase to bind the child’ s port/export.

Consistent with UVM in SystemVerilog, UVM-SystemC also recommends configurations using
uvm_config_db and hierarchy construction through the factory uvm_factory in the build phase. Thisimplies
that child objects derived from class uvm_component should be declared as pointers inside the parent class,
and these children should be constructed in the UVM callback build_phase through the UVM factory, which
does not contradict the SystemC standard, asthe SystemC standard allows construction activity in the callback
before end_of elaboration, which is equivalent to the UVM build phase.

In SystemC, the portgexports are usually becoming members of a uvm_component and not pointers.
In that case, the portsexports are automatically created and initialized in the constructor of the parent

8
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm_component. This implies that in UVM-SystemC the ports/export construction is not configurable
through uvm_config_db. Because the bulk of the UVM hierarchy construction occursin the build phase, the
port/export bindings that depend on the entire hierarchy being constructed have to be done in a later phase.
Similar as in UVM-SystemVerilog, the connect phase is introduced in UVM-SystemC to perform the port
bindings using the sc_core::sc_port member function bind or operator(). The UVM binding mechanism
using the member function connect of the portsis made available for compatibility purposes.

9

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4. Base classes

4.1 uvm_void

The classuvm_void shall provide the base classfor all UVM classes. It shall be an abstract class with no data
members or functions, to allow the creation of a generic container of objects.

An application may derive directly from this class and inherits none of the UVM functionality, but such classes
may be placed in uvm_void-typed containers along with other UVM objects.

4.1.1 Class definition

namespace uvm {
class uvmyvoid {};
} /1 namespace uvm

4.2 uvm_object

The class uvm_object shall provide the base class for all UVM data and hierarchical classes. Its primary role
isto define aset of member functions for common operations such as create, copy, compare, print, and record.
Classesderiving from uvm_abject shall implement the member functions such ascreateand get_type name.

4.2.1 Class definition

nanmespace uvm {

class uvmobject : public uvmvoid

{
public:

/1 Group: Construction
uvm obj ect () ;
explicit uvmobject(const std::string& name);

/1 Goup: ldentification

virtual void set_nanme(const std::string& nane);

virtual const std::string get_nane() const;

virtual const std::string get_full_nane() const;

virtual int get_inst_id() const;

static int get_inst_count();

static const uvm object_w apper* get_type();

virtual const uvm object_w apper* get_object_type() const;
virtual const std::string get_type_nane() const;

/1 Goup: Creation
virtual uvmobject* create(const std::string& name = "");
virtual uvmobject* clone();

/1 Group: Printing

void print(uvmprinter* printer = NULL) const;
std::string sprint(uvmprinter* printer = NULL) const;
virtual void do_print(const uvmeprinter& printer) const;
virtual std::string convert2string() const;

/'l Group: Recording
void record(uvmrecorder* recorder = NULL);
virtual void do_record(const uvmrecorderé& recorder);

/1 G oup: Copying
voi d copy(const uvmobject& rhs);
virtual void do_copy(const uvmobject& rhs);

/1 G oup: Conparing
bool conpare(const uvm object& rhs,

10
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

const uvm conparer* conmparer = NULL) const;

virtual bool do_conpare(const uvmobject& rhs,
const uvm conparer* comparer = NULL) const;

/'l Group: Packing
int pack(std::vector<bool >& bitstream uvm packer* packer = NULL);
int pack_bytes(std::vector<unsigned char>& bytestream uvm packer* packer = NULL);
int pack_ints(std::vector<unsigned int>& intstream uvm packer* packer = NULL);
virtual void do_pack(uvm packer& packer) const;
/1 Group: Unpacking
int unpack(const std::vector<bool >& v, uvm packer* packer = NULL);
int unpack_bytes(const std::vector<unsigned char>& v, uvm packer* packer = NULL);
int unpack_ints(const std::vector<unsigned int>& v, uvm packer* packer = NULL);
virtual void do_unpack(uvm packer& packer);

}; /1 class uvm object

} /1 namespace uvm

4.2.2 Constructors

uvm obj ect () ;
explicit uvmobject(const std::string& name);

The constructor shall create a new uvm_object with the given instance name passed as argument. If no
argument is given, the default constructor shall call function sc_core::sc_gen_unique_name (“object”) to
generate a unique string name as instance name of this object.

4.2.3 Identification

4.2.3.1 set_name

virtual void set_nanme(const std::string& nane);

The member function set_name shall set the instance name of this object passed as argument, overwriting any
previously given name. It shall be an error if the nameis aready in use for another object.

4.2.3.2 get_name

virtual const std::string get_name() const;

The member function get_name shall return the name of the object, as provided by the argument name via
the constructor or member function set_name.

4.2.3.3 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of this object. The default
implementation is the same as get_name, as objects of type uvm_object do not inherently possess hierarchy.

NOTE—ODbjects possessing hierarchy, such as objects of type uvm_component, override the default
implementation. Other objects might be associated with component hierarchy, but are not themselves
components. For example, sequence classes of type uvm_sequence are typically associated with a sequencer
class of type uvm_sequencer. In this case, it is useful to override get_full_name to return the sequencer’s

11

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

full name concatenated with the sequence’s name. This provides the sequence a full context, which is useful
when debugging.

4.2.3.4 get_inst_id
virtual int get_inst_id() const;

The member function get_inst_id shall return the object’ s unique, numeric instance identifier.
4.2.3.5get_inst_count

static int get_inst_count();

The member function get_inst_count shall return the current value of the instance counter, which represents
the total number of objects of type uvm_object that have been alocated in ssimulation. The instance counter
is used to form a unique numeric instance identifier.

4.2.3.6 get_type

static const uvm object_w apper* get_type();

The member function get_type shall return the type-proxy (wrapper) for this object. The uvm_factory’s
type-based override and creation member functions take arguments of uvm_object_wrapper. The default
implementation of this member function shall produce an error and return NULL.

4.2.3.7 get_object_type

virtual const uvm object_w apper* get_object_type() const;

The member function get_object_type shall the return the type-proxy (wrapper) for this object. The
uvm_factory’ stype-based override and creation member functionstake arguments of uvm_object_wrapper.
The default implementation of this member function does afactory lookup of the proxy using the return value
from get_type name. If the type returned by get_type name is not registered with the factory, then the
member function shall return NULL.

This member function behaves the same as the static member function get_type, but uses an already allocated
object to determine the type-proxy to access (instead of using the static object).

4.2.3.8 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type name shall return the type name of the object, which is typically the type
identifier enclosed in quotes. It is used for various debugging functions in the library, and it is used by the
factory for creating objects.

4.2.4 Creation

4.2.4.1 create

virtual uvmobject* create(const std::string& name = "");

12

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function create shall allocate a new object of the same type as this object and returnsit by abase
handle of type uvm_object. Every class deriving from uvm_object, directly or indirectly, shall implement
the member function create.

4.2.4.2 clone

virtual uvmobject* clone();

The member function clone shall create and return a pointer to an exact copy of this object.
NOTE—Asthe member function cloneisvirtual, derived classes may override thisimplementation if desired.
4.2.5 Printing

4.2.5.1 print
void print(uvmprinter* printer = NULL) const;

The member function print shall deep-print this object’s propertiesin aformat and manner governed by the
given argument printer. If the argument printer isnot provided, the global uvm_default_printer shall be used
(see Section 5.7.4).

The member function print is not virtual and shall not be overloaded. To include custom information in the
print and sprint operations, derived classes shall override the member function do_print and can use the
provided printer policy class to format the output.

4.2.5.2 sprint
std::string sprint(uvmprinter* printer = NULL) const;

Themember function sprint shall return the object’ spropertiesasastring and in aformat and manner governed
by the given argument printer. If the argument printer is not provided, the global uvm_default_printer shall
be used (see Section 5.7.4).

The member function sprint is not virtual and shall not be overloaded. To include additional fields in the
print and sprint operation, derived classes shall override the member function do_print and use the provided
printer policy classto format the output. The printer policy shall manage all string concatenations and provide
the string to sprint to return to the caller.

4.2.5.3 do_print

virtual void do_print(const uvmeprinter& printer) const;

The member function do_print shall provide a context called by the member functions print and sprint that
allows an application to customize what gets printed. The argument printer is the policy object that governs
the format and content of the output. To ensure correct print and sprint operation, and to ensure a consistent
output format, the printer shall be used by al do_print implementations.

4.2.5.4 convert2string

virtual std::string convert2string() const;

13

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function convert2string shall provide a context which may be called directly by the application,
to provideobject informationin theform of astring. Unlikethe member function sprint, thereisno requirement
touseauvm_printer policy object. Assuch, the format and content of the output isfully customizable, which
may be suitable for applications not requiring the consistent formatting offered by the print/sprint/do_print
API.

4.2.6 Recording

4.2.6.1record

void record(uvmrecorder* recorder = NULL);

The member function record shall deep-records this object’s properties according to an optional recorder
policy. The member function is not virtual and shall not be overloaded. To include additional fields in the
record operation, derived classes should override the member function do_record.

The optional argument recorder specifies the recording policy, which governs how recording takes place. If a
recorder policy is not provided explicitly, then the global uvm_default_recorder policy is used (see Section
5.7.7).

NOTE—The recording mechanism is implementation-defined. The uvm_recorder policy provides a
standardized interface to a simulator’ s recording capabilities.

4.2.6.2do_record

virtual void do_record(const uvmrecorder& recorder);

The member function do_record shall provide a context called by the member function record. A derived
class should overload this member function to include its fields in a record operation.

The argument recorder is policy object for recording this object. A do_record implementation should call
the appropriate recorder member function for each of itsfields.

NOTE—The actua recording mechanism is implementation defined, thereby insulating the application from
the implementation.

4.2.7 Copying

4.2.7.1 copy

voi d copy(const uvmobject& rhs);

The member function copy shall make a copy of the specified object passed as argument.

The member function is not virtual and shall not be overloaded in derived classes. To copy the fields of a
derived class, that class shall overload the member function do_copy.

4.2.7.2do_copy

virtual void do_copy(const uvmobject& rhs);

14

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function do_copy shall provide a context called by the member function copy. A derived class
should overload this member function to include its fields in a copy operation.

4.2.8 Comparing

4.2.8.1 compare

bool conpare(const uvm object& rhs,
const uvm conparer* conparer = NULL) const;

The member function compar e shall compare members of this data object with those of the object provided
in the rhs (right-hand side) argument. It shall return true on amatch; otherwise it shall return false.

The optional argument comparer specifies the comparison policy. It alows an application to control some
aspects of the comparison operation. It also stores the results of the comparison, such as field-by-field
miscompare information and the total number of miscompares. If a comparer policy is not provided or set to
NULL, then the global uvm_default_comparer policy isused (see Section 5.7.6).

The member function is not virtual and shall not be overloaded in derived classes. To compare the fields of a
derived class, that class shall overload the member function do_compare.

4.2.8.2do_compare

virtual bool do_conpare(const uvmobject& rhs,
const uvm conparer* comparer = NULL) const;

The member function do_compar e shall provide a context called by the member function compare. A derived
class should overload this member function to include its fields in a compare operation. The member function
shall return true if the comparison succeeds; otherwise it shall return false.

4.2.9 Packing

4.2.9.1 pack

int pack(std::vector<bool >& bitstream uvm packer* packer = NULL);

The member function pack shall concatenate the object propertiesinto avector of bits. The member function
shall return the total number of bits packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer
policy isnot provided or set to NULL, theglobal uvm_default_packer policy shall be used (see Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the pack operation, derived classes shall overload the member function do_pack.

4.2.9.2 pack_bytes

int pack_bytes(std::vector<char>& bytestream uvm packer* packer = NULL);

The member function pack_bytes shall concatenate the object properties into a vector of bytes. The member
function shall return the total number of bytes packed into the given vector.

15
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer
policy isnot provided or set to NULL, theglobal uvm_default_packer policy shall be used (see Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the pack operation, derived classes shall overload the member function do_pack.

4.2.9.3 pack_ints
int pack_ints(std::vector<int>& intstream uvm packer* packer = NULL);

The member function pack_ints shall concatenate the object propertiesinto a vector of integers. The member
function shall return the total number of integers packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer
policy isnot provided or set to NULL, theglobal uvm_default_packer policy shall be used (see Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the pack operation, derived classes shall overload the member function do_pack.

4.2.9.4 do_pack

oid do_pack(uvm packer & packer) const;

The member function do_pack shall provide a context called by the member functions pack, pack_bytesand
pack_ints. A derived class should overload this member function to include its fields in a packing operation.

The argument packer isthe policy object for packing and should be used to pack objects.
4.2.10 Unpacking

4.2.10.1 unpack

int unpack(const std::vector<bool >& bitstream uvm packer* packer = NULL);

The member function unpack shall extract the values from avector of bits. The member function shall return
the total number of bits unpacked from the given vector.

The optional argument packer specifiesthe packing policy, which governs both the pack and unpack operation.
If a packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see
Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the unpack operation, derived classes shall overload the member function do_unpack.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. Thisisassured if (a) the same packer policy isused to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior isundefined in
case a different packer policy or ordering is applied for packing and unpacking.

4.2.10.2 unpack_bytes

int unpack_bytes(const std::vector<char>& bytestream uvm packer* packer = NULL);

16

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function unpack_bytes shall extract the values from a vector of bytes. The member function
shall return the total number of bytes unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If
a packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see
Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the unpack operation, derived classes shall overload the member function do_unpack.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. Thisisassured if (a) the same packer policy isused to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior isundefined in
case a different packer policy or ordering is applied for packing and unpacking.

4.2.10.3 unpack_ints

int unpack_ints(const std::vector<int>& intstream uvm packer* packer = NULL);

The member function unpack_ints shall extract the values from a vector of integers. The member function
shall return the total number of integers unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If
a packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see
Section 5.7.5).

The member function is not virtual and shall not be overloaded in derived classes. To include additional fields
in the unpack operation, derived classes shall overload the member function do_unpack.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. Thisisassured if (a) the same packer policy isused to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior is undefined in
case adifferent packer policy or ordering is applied for packing and unpacking.

4.2.10.4 do_unpack

>virtual void do_unpack(uvm packer & packer) const;

The member function do_unpack shall provide a context called by the member functions unpack,
unpack_bytes and unpack_ints. A derived class should overload this member function to include its fields
in a unpacking operation. The member function shall return true if the unpacking succeeds; otherwise it shall
return false.

The argument packer isthe policy object for unpacking and should be used to unpack objects.

NOTE—The application of the member function for unpacking shall exactly correspond to the member
function for packing. Thisisassured if (a) the same packer policy is used to pack and unpack, and (b) the order
of unpacking is the same as the order of packing used to create the input vector. The behavior isundefined in
case a different packer policy or ordering is applied for packing and unpacking.

4.2.11 Object macros

UVM-SystemC provides the following macros for auvm_object:

17

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— utility macroUVM_OBJECT _UTIL S(classname) isto be used insidethe class definition that expands
to:

— The declaration of the member function get_type name, which returns the type of aclass as
string.

— Thedeclaration of the member function get_type, which returns a factory proxy object for the
type.

— Thedeclaration of the proxy class uvm_object_registry< classname> used by the factory.

— Template classes shall use the macro UVM_OBJECT_PARAM _UTILS, to guarantee correct
registration of one or more parameters passed to the class template. Note that template classes are not
evaluated at compile-time, and thus not registered with thefactory. Dueto this, name-based lookup with
the factory for template classes is not possible. Instead, an application shall use the member function
get_type for factory overrides.

4.3 uvm_root

The class uvm_root serves as the implicit top-level and phase controller for all UVM components. An
application shall not directly instantiate uvm_root. A UVM implementation shall create a single instance of
uvm_root that an application can access viathe global variable uvm_top.

4.3.1 Class definition

namespace uvm {

class uvmroot : public uvm conponent

{
public:
static uvmroot* get();

/1 Group: Sinmulation control

virtual void run_test(const std::string& test_name = "");

virtual void die();

voi d set_tineout(const sc_core::sc_tine& tineout, bool overridable = true);
voi d set _finish_on_conpletion(bool enable);

bool get_finish_on_conpletion();

/1 Goup: Topol ogy
uvm conponent* find(const std::string& conp_match);
void find_all(const std::string& conp_natch,
st d: : vect or <uvm conponent *>& conps,
uvm conponent* conp = NULL);
void print_topology(uvmprinter* printer = NULL);
voi d enabl e_print _t opol ogy(bool enable = true);

/'l dobal variable
const uvmroot* uvmtop;

}; /1 class uvmroot
} // namespace uvm

4.3.2 Simulation control

4.3.2.1 run_test

virtual void run_test(const std::string& test_name = "");

Themember functionrun_test shall register the UVM phasing mechanism. If the optional argument test_name
is provided, then the specified test component is created just prior to phasing, if and only if this component is
derived from class uvm_test. Otherwiseit shall be an error.

18
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The phasing mechanism is used during test execution, where al components are called following a defined
set of registered phases. The member function run_test shall register both the common phases as well as the
UVM run-time phases. (See Chapter 11).

NOTE 1—Selection of the test viathe command line interface is not yet available.

NOTE 2—Thetest execution is started using the SystemC function sc_core::sc_start. It isrecommended not
to specify the simulation stop time, as the end-of-test is automatically managed by the phasing mechanism.

4.3.2.2 die

virtual void die();

The member function die shall be called by the report server if areport reaches the maximum quit count or has
aUVM_EXIT action associated with it, e.g., aswith fatal errors. The member function shall call the member
function uvm_component::pre _abort on the entire UVM component hierarchy in a bottom-up fashion. It
then shall call uvm_report_server::report_summarize and terminate the simulation.

4.3.2.3 set_timeout

voi d set_tineout(const sc_core::sc_tinme& tinmeout, bool overridable = true);

The member function set_timeout shall define the timeout for the run phases. If not called, the default timeout
shall be set to UVYM_DEFAULT_TIMEOUT (see Section 17.2.3).

4.3.2.4 set_finish_on_completion

voi d set_finish_on_conpletion(bool enable);

The member function set_finish_on_completion shall define how simulation is finalized. If the application
did not call this member function or if the argument enable is set to true, it shall terminate the simulation
after execution of the UVM phases. If the argument enableis set to false, the simulation shall be paused after
execution of the UVM phases.

NOTE—An implementation may call the function sc_core::sc _stop to terminate the simulation. An
implementation may call the function sc_core::sc_pause to pause the simulation.

4.3.2.5 get_finish_on_completion

bool get_finish_on_conpletion();

The member function get_finish_on_completion shall return true if the application has not called member
function set_finish_on_completion or if the member function was called with the argument enable as true;
otherwise it shall return false. (See also Section 4.3.2.4.)

4.3.3 Topology

4.3.3.1find

uvm conponent* find(const std::string& conp_match);

19

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function find shall return acomponent handle matching the given string comp_match. The string
may contain the wildcards ‘*’ and ‘7. Strings beginning with character ‘." are absolute path names.

4.3.3.2 find_all

void find_all(const std::string& conp_natch,
st d: : vect or <uvm conponent *>& conps,
uvm conponent* conmp = NULL);

The member function find_all shall return a vector of component handles matching the given string
comp_match. Thestring may containthewildcards‘*’ and *? . Strings beginning with character ‘.’ are absolute
path names. If the optional component argument comp isprovided, then the search beginsfrom that component
down; otherwise it searches al components.

4.3.3.3 print_topology
voi d print_topology(uvmprinter* printer = NULL);

The member function print_topology shall print the verification environment’s component topology. The
argument printer shall be an object of class uvm_printer that controls the format of the topology printout; a
NULL printer prints with the default output.

4.3.3.4 enable_print_topology

voi d enabl e_print_topol ogy(bool enable = true);

The member function enable print_topology shall print the entire testbench topology just after completion
of theend_of_elaboration phase, if enabled. By default, the testbench topology is not printed, unless enabled
by the application by calling this member function.

4.3.4 Global variable
4.3.4.1 uvm_top

const uvmroot* uvmtop;

The data member uvm_top is a handle to the top-level (root) component that governs phase execution and
provides the component search interface. By default, this handleis provided by the uvm_root singleton.

The uvm_top instance of uvm_root plays several key rolesin the UVM:

— Implicit top-level: The uvm_top serves as an implicit top-level component. Any UVM component
which is not instantiated in another UVM component (e.g. when instantiated in asc_core::sc_module
orinsc_main) becomesachild of uvm_top. Thus, all UVM componentsin simulation are descendants
of uvm_top.

— Phase control: uvm_top manages the phasing for all components.
— Search: An application may use uvm_top to search for components based on their hierarchical name.
See member functions find (Section 4.3.3.1) and find_all (Section 4.3.3.2).

— Report configuration: An application may use uvm_top to globally configure report verbosity, log
files, and actions. For example, uvm_top.set_report_verbosity level_hier(UVM_FULL) would set
full verbosity for all componentsin simulation.

20

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— Global reporter: Because uvm_top isglobally accessible, the UVM reporting mechanismisaccessible
from anywhere outside uvm_component, such asin modules and sequences. Seeuvm_report_error,
uvm_report_war ning, and other global methods.

The uvm_top instance checks during the end_of elaboration_phase if any errors have been generated so
far. If errorsarefound aUVM_FATAL error is generated as result so that the simulation shall not continue
tothestart_of simulation_phase.

4.4 uvm_port_base

The class uvm_port_base shall provide methods to bind ports to interfaces or to other ports, and to forward
interface method calls to the channel to which the port is bound, according to the same mechanism as defined
in SystemC. Therefore this class shall be derived from the class sc_core::sc_port.

4.4.1 Class definition

namespace uvm {
tenpl ate <class | F>

class uvm port_base : public sc_core::sc_port<lF>

{

public:

uvm port _base();

explicit uvmport_base(const std::string& nane);
virtual const std::string get_name() const;
virtual const std::string get_full_name() const;
virtual uvm conponent* get_parent() const;

virtual const std::string get_type_nanme() const;

virtual void connect(IF&);
virtual void connect(uvm port_base<lF>&);

/1l class uvm port_base

} /1 namespace uvm

4.4.2 Template parameter IF

The template parameter IF shall specify the name of the interface type used for the port. The port can only be
bound to a channel which is derived from the same type, or to ancther port which is derived from this type.

4.4.3 Constructor

uvm port_base();
explicit uvmport_base(const std::string& name);

The constructor shall create and initialize aninstance of the classwith the name name, if passed asan argument.
4.4.4 Member functions

4.4.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the leaf name of this port.

21
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4.4.4.2 get_full_name

virtual const std::string get_full_nane() const;

The member function get_full_name shall return the full hierarchical name of this port.
4.4.4.3 get_parent

virtual uvm conponent* get_parent() const;

The member function get_parent shall return the handle to this port’s parent, or NULL if it has no parent.
4.4.4.4 get_type_name

virtual const std::string get_type_name() const;

The member function get_type name shall return the type name to this port. Derived port classes shall
implement this member function to return the concrete type.

4.4.4,5 connect

virtual void connect(IF&);
virtual void connect(uvm port_base<l F>&);

The member function connect shall bind this port to the interface given as argument.

NOTE—The member function connect implements the same functionality as the SystemC member function
bind.

4.5 uvm_export_base§

The class uvm_export_base§ shall provide methods to bind exports to interfaces or to other exports, and to
forward interface method callsto the channel to which the export is bound, according to the same mechanism
as defined in SystemC. Therefore this class shall be derived from the class sc_core::sc_export.

4.5.1 Class definition

namespace uvm {

tenpl ate <class | F>
cl ass uvm_export_base§ . public sc_core::sc_export<l|F>

{
public:
uvm export_base();
explicit uvmexport_base(const std::string& name);

virtual const std::string get_nanme() const;
virtual const std::string get_full_name() const;
virtual uvm conponent* get_parent() const;
virtual const std::string get_type_name() const;

virtual void connect(IF&);
virtual void connect(uvm export_base<IF>&);

/1 class uvm export_base

} // namespace uvm

22

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4.5.2 Template parameter IF

Thetemplate parameter IF shall specify the name of the interface type used for the export. The export can only
be bound to achannel whichisderived from the sametype, or to another export whichisderived from thistype.

4.5.3 Constructor

uvm export_base();
explicit uvmexport_base(const std::string& name);

The constructor shall create and initialize an instance of the classwith the name name, if passed asan argument.
4.5.4 Member functions

4.5.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the leaf name of this export.

4.5.4.2 get_full_name

virtual const std::string get_full _name() const;

The member function get_full_name shall return the full hierarchical name of this export.

4.5.4.3 get_parent

virtual uvm conponent* get_parent() const;

The member function get_parent shall return the handle to this export’s parent, or NULL if it has no parent.
4.5.4.4 get_type_name

virtual const std::string get_type_name() const;

The member function get_type _name shall return the type name to this export. Derived export classes shall
implement this member function to return the concrete type.

4.5.4.,5 connect

virtual void connect(IF&);
virtual void connect(uvm export_base<lIF>&);

The member function connect shall bind this export to the interface given as argument.

NOTE—The member function connect implements the same functionality as the SystemC member function
bind.

23

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

4.6 uvm_component_name®

The class uvm_component_name§ is shall provide the mechanism for building the hierarchical names of
component instances and component hierarchy during elaboration.

An implementation shall maintain the UVM component hierarchy, that is, it shall build alist of hierarchical
component hames, where each component instance is named as if it were a child of another component (its
parent). The mechanism to implement such component hierarchy is implementation-defined.

NOTE 1—The hierarchical name of an instance in the component hierarchy isreturned from member function
get_full_name of class uvm_component, which is the base class of al component instances.

NOTE 2—An object of type uvm_object may have a hierarchical name and may have a parent in the
component hierarchy, but such object is not part of the component hierarchy.

4.6.1 Class definition

nanmespace uvm {

cl ass uvm conponent _nane$

{
public:
uvm conponent _nanme(const char* nane);
uvm conponent _name(const uvm conmponent _nane& nane);
~uvm conponent _nane() ;
operator const char*() const;

private:

/1 Disabled

uvm conponent _nane();

uvm conponent _nanme& operator= (const uvm conponent_nanme& nane);
}; // class uvm conponent _nane

} // namespace uvm

4.6.2 Constraints on usage

The class uvm_component_name shall only be used as argument in a constructor of a class derived from
class uvm_component. Such constructor shall only contain this argument of type uvm_component_name.

4.6.3 Constructor

uvm conponent _nanme(const char* name);

The constructor uvm_component_name(const char* name) shall store the namein the component hierarchy.
The constructor argument name shall be used as the string name for that component being instantiated within
the component hierarchy.

NOTE—An application shall define for each class derived directly or indirectly from class uvm_component
a constructor with a single argument of type uvm_component_name, where the constructor
uvm_component_name(const char*) is called as an implicit conversion.

uvm conponent _name(const uvm conponet _nanme& name);

The constructor uvm_component_name(const uvm_component_name& name) shall copy the constructor
argument but shall not modify the component hierarchy.

24
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

NOTE—When an application derives a class directly or indirectly from class uvm_component, the derived
class constructor calls the base class constructor with an argument of class uvm_component_name and thus
this copy constructor is called.

4.6.4 Destructor

~uvm conponent _nane() ;

Thedestructor shall remove the object from the component hierarchy if, and only if, the object being destroyed
was constructed by using the constructor signature uvm_component_name(const char* name).

4.6.5 operator const char*

operator const char*() const;

This conversion function shall return the string name (not the hierarchical name) associated with the
uvm_component_name.

25
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5. Policy classes

The UVM policy classes provide specific tasks for printing, comparing, recording, packing, and unpacking of
objects derived from class uvm_object. They are implemented separately from class uvm_object so that an
application can plug in different waysto print, compare, etc. without modifying the object class being operated
on. The user can ssimply apply a different printer or compare “policy” to change how an object is printed or
compared.

Each policy classincludes several user-configurable parametersthat control the operation. An application may
also customize operations by deriving new policy subtypes from these base types. For example, the UVM
provides four different printer policy classes derived from the policy base class uvm_printer, each of which
print objectsin a different format.

The following policy classes are defined:
— uvm_packer
— uvm_printer, uvm_table printer, uvm_tree printer, uvm_line printer and uvm_printer_knaobs.
— uvm_recorder
— uvm_comparer

5.1 uvm_packer

The class uvm_packer provides a policy object for packing and unpacking objects of type uvm_object. The
policies determine how packing and unpacking should be done. Packing an object causes the object to be
placed into a packed array of type byte or int. Unpacking an object causes the abject to befilled from the pack
array. The logic values X and Z are lost on packing. The maximum size of the packed array is defined by
UVM_PACKER_MAX_BYTES (see Section 17.2.2).

5.1.1 Class definition

nanmespace uvm {

cl ass uvm packer

{
public:

/'l Group: Packing

virtual void pack_field(const uvmbitstreamt& value, int size);
virtual void pack_field_int(const uvmintegral _t& value, int size);
virtual void pack_string(const std::string& value);

virtual void pack_tine(const sc_core::sc_tine& value);

virtual void pack_real (double value);

virtual void pack_real (float value);

virtual void pack_object(const uvm objecté& val ue);

virtual uvm packer & oper at or << bool val ue);

virtual uvm packer & oper at or << doubl e& val ue);

virtual uvm packer & oper at or << floaté& value);

virtual uvm packer & oper at or << char value);

virtual uvm packer & oper at or << unsi gned char val ue);

virtual uvm packer & oper at or << short value);

virtual uvm packer & oper at or << unsi gned short value);

virtual uvm packer & oper at or << int value);

virtual uvm packer & oper at or << unsi gned int value);

virtual uvm packer & oper at or << | ong val ue);

virtual uvm packer & oper at or << unsi gned | ong val ue);

virtual uvm packer & oper at or << long I ong value);

virtual uvm packer & oper at or << unsi gned | ong | ong val ue);
virtual uvm packer & oper at or << const std::string& value);
virtual uvm packer & oper at or << const char* value);

virtual uvm packer & oper at or << const uvm obj ect & val ue);
virtual uvm packer & oper at or << const sc_dt::sc_logic& value);
virtual uvm packer & oper at or << const sc_dt::sc_bv_base& val ue);

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

26

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual uvm packer& operator<< (const sc_dt::sc_|lv_base& value);
virtual uvm packer& operator<< (const sc_dt::sc_int_base& value);
virtual uvm packer& operator<< (const sc_dt::sc_uint_base& val ue);
virtual uvm packer& operator<< (const sc_dt::sc_signed& value);
virtual uvm packer& operator<< (const sc_dt::sc_unsigned& val ue);

tenpl ate <class T>
uvm packer & operator<< (const std::vector<T>& value);

/1 Group: Unpacking

virtual bool is_null();

virtual uvm.integral _t unpack_field_int(int size);
virtual uvmbitstreamt unpack_field(int size);
virtual std::string unpack_string(int numchars = -1);
virtual sc_core::sc_tinme unpack_tine();

virtual doubl e unpack_real ();

virtual float unpack_real ();

virtual void unpack_object(uvm object& value);

virtual unsigned int get_packed_size() const;

virtual uvm packer & operator>> (bool & val ue);

virtual uvm packer & operator>> (doubl e& val ue);

virtual uvm packer& operator>> (float& value);

virtual uvm packer & operator>> (char& value);

virtual uvm packer & operator>> (unsigned charé& val ue);
virtual uvm packer& operator>> (short& value);

virtual uvm packer & operator>> (unsigned short& value);
virtual uvm packer& operator>> (int& value);

virtual uvm packer& operator>> (unsigned int& value);
virtual uvm packer & operator>> (|ong& value);

virtual uvm packer & operator>> (unsigned | ong& val ue);
virtual uvm packer& operator>> (long | ong& val ue);

virtual uvm packer & operator>> (unsigned | ong | ong& val ue);
virtual uvm packer& operator>> (std::string& value);
virtual uvm packer & operator>> (uvm.object& value);

virtual uvm packer& operator>> (sc_dt::sc_|l ogic& value);
virtual uvm packer& operator>> (sc_dt::sc_bv_base& val ue);
virtual uvm packer& operator>> (sc_dt::sc_|lv_base& val ue);
virtual uvm packer& operator>> (sc_dt::sc_int_base& value);
virtual uvm packer& operator>> (sc_dt::sc_uint_base& val ue);
virtual uvm packer& operator>> (sc_dt::sc_signed& value);
virtual uvm packer& operator>> (sc_dt::sc_unsigned& val ue);

tenpl ate <class T>
virtual uvm packer & operator>> (std::vector<T>& val ue);

/| Data menbers (variabl es)
bool physical;

bool abstract;

bool use_net adat a;

bool big_endi an;

private:
/1 Disabl ed
uvm packer () ;

/1 class uvm packer

} /1 namespace uvm

5.1.2 Constraints on usage

An application shall not explicitly create an instance of the classuvm_packer.

5.1.3 Packing

5.1.3.1 pack_field

virtual void pack_field(const uvmbitstreamt& value, int size);

27

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function pack field shall pack an integra value (less than or equa to
UVM_MAX_STREAMBITY) intothe packed array. The argument sizeisthe number of bits of valueto pack.

5.1.3.2 pack_field_int

virtual void pack_field_int(const uvmintegral _t& value, int size);

Themember function pack_field_int shall pack theintegral value (lessthan or equal to 64 bits) into the packed
array. The argument size is the number of bits of value to pack.

NOTE—This member function is the optimized version of pack field is useful for sizes up to 64 bits.
5.1.3.3 pack_string

virtual void pack_string(const std::string& value);

Themember function pack_string shall pack astring valueinto the packed array. When the variable metadata
is set, the packed string isterminated by a NULL character to mark the end of the string.

5.1.3.4 pack_time

virtual void pack_tinme(const sc_core::sc_tinme& value);

The member function pack_time shall pack atime value as 64 bits into the packed array.

5.1.3.5 pack_real

virtual void pack_real (double value);
virtual void pack_real (float value);

The member function pack_real shall pack a real value as binary vector into the packed array. When the
argument is adouble precision floating point value of type double, a 64 bit binary vector shall be used. When
the argument is a single precision floating point value of type float, a 32 bit binary vector shall be used. The
convertion of the floating point representation to binary vector shall be according to IEEE Std. 754-2019°.

5.1.3.6 pack_object

virtual void pack_object(const uvm objecté& val ue);

The member function pack_object shall pack an object value into the packed array. A 4-bit header isinserted
ahead of the string to indicate the number of bits that was packed. If a NULL object was packed, then this
header shall be 0.

5.1.4 Unpacking

5.1.4.1is_null

virtual bool is_null();

5 |EEE Standard for Floating-Point Arithmetic, https://standards.ieee.org/content/i eee-standards/en/standard/754-2019.html

28

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

https://standards.ieee.org/content/ieee-standards/en/standard/754-2019.html

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function is_null shall be used during unpack operations to peek at the next 4-bit chunk of the
pack dataand determineif it is zero. If the next four bitsare al zero, then the return value is atrue; otherwise
it returns false.

NOTE—This member function is useful when unpacking objects, to decide whether a new object needs to
be allocated or not.

5.1.4.2 unpack_field_int
virtual uvm.integral _t unpack_field_int(int size);

The member function unpack_field_int shall unpack bits from the packed array and returns the bit-stream
that was unpacked. The argument size the number of bits to unpack; the maximum is 64 bits.

NOTE—This member function is a more efficient variant than unpack_field when unpacking into smaller
vectors.

5.1.4.3 unpack_field

virtual uvmbitstreamt unpack_field(int size);

The member function unpack_field shall unpack bits from the packed array and returns the bit-stream
that was unpacked. The argument size is the number of bits to unpack; the maximum is defined by
UVM_MAX_STREAMBITS.

5.1.4.4 unpack_string

virtual std::string unpack_string(int numchars = -1);

The member function unpack_string shall unpack astring. The argument num_char s specifies the number of
bytes that are unpacked into a string. If hum_charsis -1, then unpacking stops on at the first NULL character
that is encountered.

5.1.4.5 unpack_time
virtual sc_core::sc_tinme unpack_tine();

The member function unpack_time shall unpack the next 64 bits of the packed array and places them into
atimevariable.

5.1.4.6 unpack_real

virtual doubl e unpack_real ();
virtual float unpack_real ();

Themember function unpack_real shall unpack the next 64 bits of the packed array and placesthemintoareal
variable. The 64 bits of packed data shall be converted to double precision floating point notation according
to IEEE Std. 754-2019.

5.1.4.7 unpack_object

virtual void unpack_object(uvmobject& value);

29
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function unpack_object shall unpack an object and stores the result into value. Argument value
shall be an alocated object that has enough space for the data being unpacked. The first four bits of packed
data are used to determine if anull object was packed into the array. The member functionis_null can be used
to peek at the next four bitsin the pack array before calling this member function.

5.1.4.8 get_packed_size
virtual unsigned int get_packed_size() const;

The member function get_packed_size returns the number of bits that were packed.
5.1.5 operator<<, operator>>

The class uvm_packer defines operator<< for packing, and operator >> for unpacking basic C++ types,
SystemC types, the type uvm_object, and std::vector types. The supported data types are:

— Basic C++ types: bool, double, float, char, unsigned char, short, unsigned short, int, unsigned int, long,
unsigned long, long long, and unsigned long long.

— SystemC types: sc dt::isc logic, sc dt:sc bv, sc dtisc Iv, sc dt:sc int, sc dt::isc_uint,
sc_dt::sc_signed, and sc_dt::sc_unsigned.

— String of type std::string and const char*
When packing, an additional NULL byte is packed after the string is packed when use_metadata is
Set to true (see Section 5.1.6.3).

— Any typethat derives from class uvm_object

— Vector types. std::vector<T>, where T is one of the supported data types listed above, and has an
operator << defined for it:
When packing, additional 32 bitsare packed indicating the size of the vector, prior to packing individual
elements.

An application may use oper ator << or oper ator>> for the implementation of the member function do_pack
and do_unpack as part of an application-specific object definition derived from class uvm_aobject.

5.1.6 Data members (variables)
5.1.6.1 physical
bool physical;

The data member physical shall provides a filtering mechanism for fields. The abstract and physical settings
allow an object to distinguish between two different classes of fields. An application may, in the member
functionsuvm_object::do_pack and uvm_object::do_unpack, test the setting of thisfield, to useit asafilter.
By default, the data member physical is set to true in the constructor of uvm_packer.

5.1.6.2 abstract

bool abstract;

The data member abstract shall provides a filtering mechanism for fields. The abstract and physical settings
allow an object to distinguish between two different classes of fields. An application may, in the member

30

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

functionsuvm_object::do_pack and uvm_object::do_unpack, test the setting of thisfield, to useit asafilter.
By default, the data member abstract is set to false in the constructor of uvm_packer.

5.1.6.3 use_metadata
bool use_net adat a;

The datamember use_metadata shall indicate whether to encode metadata when packing dynamic data, or to
decode metadata when unpacking. Implementations of uvm_object::do_pack and uvm_object::do_unpack
should regard thisbit when performing their respective operation. When set to true, metadata should be encoded
asfollows:

— For strings, pack an additional NULL byte after the string is packed.

— For objects, pack 4 bits prior to packing the object itself. Use 0b0000 to indicate the object being packed
is null, otherwise pack 0b0001 (the remaining 3 bits are reserved).

— For queues, dynamic arrays, and associative arrays, pack 32 bits indicating the size of the array prior
to to packing individual elements.

By default, use metadata is set to false.

5.1.6.4 big_endian

bool big_endi an;

Thedatamember big_endian shall determinetheorder that integral dataispacked (using the member functions
pack field, pack_field_int, pack_time, or pack_real) and how the data is unpacked from the pack array
(using the member functions unpack_field, unpack_field_int, unpack_time, or unpack_real). By default,
thedatamember is set to truein the constructor of uvm_packer . When thedatamember is set, dataisassociated
msb to Isb; otherwise, it is associated Isb to msb.

5.2 uvm_printer

The class uvm_printer shall provide the basic printer functionality, which shall be overloaded by derived
classes to support various pre-defined printing formats.

5.2.1 Class definition

namespace uvm {

class uvm printer
{
public:
/1 Group: Printing types
virtual void print_field(const std::string& nane,
const uvm bitstreamt& val ue,
int size = -1,
uvm radi x_enum radi x = UVM_NORADI X,
const char* scope_separator = "."
const std::string& type_name = "") const;

virtual void print_field_int(const std::string& nane,
const uvm.integral _t& val ue,
int size = -1,
uvm radi x_enum radi x = UVM_NORADI X,
const char* scope_separator = "."
const std::string& type_name = "") const;

virtual void print_real (const std::string& nane,
doubl e val ue,

31

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

const char* scope_separator = ".") const;

virtual void print_real (const std::string& nane,
float val ue,

const char* scope_separator = ".") const;

virtual void print_object(const std::string& nane,
uvm obj ect * val ue,

const char* scope_separator = ".") const;

virtual void print_object_header(const std::string& nane,
uvm obj ect* val ue,

const char* scope_separator = ".") const;

virtual void print_string(const std::string& nane,
const std::string& val ue,

const char* scope_separator = ".") const;

virtual void print_time(const std::string& nane,
const sc_core::sc_tine& val ue,

const char* scope_separator = ".") const;

virtual void print_generic(const std::string& nane,

const std::string& type_nane,

int size,
const std::string& val ue,
const char* scope_separator = ".") const;

/1 Group: Printer subtyping

virtual std::string emt();

virtual std::string format_row(const uvmoprinter_row_info& row);
virtual std::string fornmat_header();

virtual std::string format_footer();

std::string adjust_nane(const std::string& id,
const char* scope_separator = ".") const;

virtual void print_array_header(const std::string& nane,

int size,
const std::string& arraytype = "array",
const char* scope_separator = ".") const;

void print_array_range(int mn, int max) const;
void print_array_footer(int size = 0) const;

/1 Data nenbers
uvm print er _knobs knobs;

prot ect ed:
/1 Disabl ed
uvmoprinter();

}; /1 class uvmprinter

} /1 namespace uvm

5.2.2 Constraints on usage
An application shall not explicitly create an instance of the classuvm_printer.
5.2.3 Printing types

5.2.3.1 print_field

virtual void print_field(const std::string& nane,
const uvmbitstreamt& val ue,
int size = -1,
uvm radi x_enum radi x = UVM_NORADI X,
const char* scope_separator = ".",
const std::string& type_name = "");

32
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function print_field shall print afield of type uvm_bitstream_t. The argument name definesthe
name of the field. The argument value contains the value of the field. The argument size defines the number of
bits of the field. The argument radix defined radix to use for printing. The printer knob for radix isused if no
radix is specified. The argument scope_separator is used to find the leaf name since many printers only print
the leaf name of afield. Typical valuesfor the separator area“.” (dot) or “[” (open bracket).

5.2.3.2 print_field_int

virtual void print_field_int(const std::string& nane,
const uvm.integral _t& val ue,
int size = -1,
uvm radi x_enum radi x = UVM_NORADI X,
const char* scope_separator = "."
const std::string& type_name = "");

The member function print_field_int shall print an integer field. The argument name defines the name of the
field. The argument value contains the value of the field. The argument size defines the number of bits of the
field. The argument radix defined radix to use for printing. The printer knob for radix is used if no radix is
specified. The argument scope_separator is used to find the leaf name since many printers only print the leaf
name of afield. Typical valuesfor the separator area“.” (dot) or “[" (open bracket).

5.2.3.3 print_real

virtual void print_real (const std::string& nane,
doubl e val ue,
const char* scope_separator = ".");

The member function print_real shall print areal (double) field. The argument name defines the name of the
field. The argument value contains the value of the field. The argument scope _separator is used to find the
leaf name since many printers only print the leaf name of afield.

5.2.3.4 print_double

virtual void print_double(const std::string& nane,
doubl e val ue,
const char* scope_separator = ".");

The member function print_double shall print areal (double) field. The argument name defines the name of
the field. The argument value contains the value of the field. The argument scope_separator is used to find
the leaf name since many printers only print the leaf name of afield.

NOTE—This member function has been introduced to be more compatible with C++/SystemC coding styles
and types. The member function hasidentical functionality to print_real.

5.2.3.5 print_object

virtual void print_object(const std::string& nane,
const uvm obj ect & val ue,
const char* scope_separator = ".") const;

The member function print_object shall print an object. The argument name defines the name of the object.
The argument val ue contains the reference to the object. The argument scope_separator isused to find the leaf
name since many printers only print the leaf name of the object.

Whether the object is recursed depends on a variety of knobs, such as the depth knob; if the current depth
is a or below the depth setting, then the object is not recursed. By default, the children of objects of type

33

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm_component are printed. To disable automatic printing of these objects, an application can set the member
function uvm_component::print_enabled to false for the specific children to be excluded from printing.

5.2.3.6 print_object_header

virtual void print_object_header(const std::string& nane,
const uvm obj ect & val ue,
const char* scope_separator = ".") const;

The member function print_object_header shall print an object header. The argument name definesthe name
of the object. The argument val ue contains the reference to the object. The argument scope_separator is used
to find the leaf name since many printers only print the leaf name of afield.

5.2.3.7 print_string

virtual void print_string(const std::string& nane,
const std::string& val ue,
const char* scope_separator = ".");

The member function print_string shall print astring field. The argument name defines the name of thefield.
The argument value contains the value of the field. The argument scope_separator is used to find the leaf
name since many printers only print the leaf name of afield.

5.2.3.8 print_time

virtual void print_time(const std::string& nane,
const sc_core::sc_tinme& val ue,
const char* scope_separator = ".");

The member function print_time shall print the time. The argument name defines the name of the field. The
argument value contains the value of the field. The argument scope_separator is used to find the leaf name
since many printers only print the leaf name of afield.

5.2.3.9 print_generic

virtual void print_generic(const std::string& nane,
const std::string& type_nane,

int size,
const std::string& val ue,
const char* scope_separator = ".");

The member function print_generic shall print afield using the arguments name, type_name, size, and value.
The argument scope_separator is used to find the leaf name since many printers only print the leaf name of
afield.

5.2.4 Printer subtyping

5.2.4.1 emit
virtual std::string emt();

Themember emit shall return a string representing the contents of an object in aformat defined by an extension
of this object.

34

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.2.4.2 format_row
virtual std::string format_row(const uvmprinter_row_ i nfo& row);

The member format_row shall offer ahook for producing custom output of asinglefield (row).

5.2.4.3 format_header

virtual std::string fornat_header();

The member function format_header shall offer ahook to override the base header with a custom header.
5.2.4.4 format_footer

virtual std::string format_footer();

The member format_footer shall offer a hook to override the base footer with a custom footer.

5.2.4.5 adjust_name

std::string adjust_name(const std::string& id,
const char* scope_separator = ".") const;

The member function adjust_name shall print a field’s name, or id , which is the full instance name. The
intent of the separator is to mark where the leaf name starts if the printer is configured to print only the leaf
name of the identifier.

5.2.4.6 print_array_header

virtual void print_array_header(const std::string& nane,

int size,
const std::string& arraytype = "array",
const char* scope_separator = ".") const;

The member function print_array_header shall print the header of an array. This member function shall be
called before each individual element is printed. The member function print_array footer shall be called to
mark the completion of array printing.

5.2.4.7 print_array_range
void print_array_range(int mn, int max) const;

The member function print_array range shal print a range using ellipses for values. This
member function is used when honoring the array knobs for partia printing of large
arrays, uvm_printer_knobs:begin_elements and uvm_printer_knobs::end_elements. This member
function should be called after uvm_printer_knobs::begin_elements have been printed and before
uvm_printer_knaobs::end_elements have been printed.

5.2.4.8 print_array_footer

void print_array_footer(int size = 0) const;

35

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function print_array footer shall print the footer of an array. This member function marks the
end of an array print. Generaly, there is no output associated with the array footer, but this member function
lets the printer know that the array printing is complete.

5.2.5 Data members

5.2.5.1 knobs

uvm printer_knobs knobs;

The data member knobs shall provide accessto the variety of knobs associated with a specific printer instance.

5.3 uvm_table_printer
The classuvm_table printer shall provide a pre-defined printing output in atabular format.

5.3.1 Class definition

namespace uvm {
class uvmtable_printer : public uvmprinter
{
public:
/1 Constructor
uvmtable_printer();

/1 Menber function
virtual std::string emt();

}; // class uvmtable_printer

} // namespace uvm

5.3.2 Constructor
uvm table_printer();

The constructor shall create a new instance of type uvm_table printer.
5.3.3 emit

The member function emit shall format the collected information for printing into atable format.

5.4 uvm_tree_printer
Theclassuvm_tree printer shall provide a pre-defined printing output in atree format.

5.4.1 Class definition

namespace uvm {

class uvmtree_printer : public uvmprinter

{
public:
/'l Constructor
uvmtree_printer();

36

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

/1 Menber function
virtual std::string emt();

}; /1 class uvmtree_printer

} /1 namespace uvm

5.4.2 Constructor

uvmtree_printer();

The constructor shall create a new instance of type uvm_tree printer.
5.4.3 emit

The member function emit shall format the collected information for printing into a hierarchical tree format.

5.5uvm_line_printer
The classuvm_line_printer shall provide a pre-defined printing output in aline format.

5.5.1 Class definition

namespace uvm {
class uvmline_printer : public uvmprinter
{
public:
/1 Constructor
uvmline_printer();

/1 Menber function
virtual std::string emt();

}; /1 class uvmline_printer

} /1 namespace uvm

5.5.2 Constructor
uvm line_printer();

The constructor shall create a new instance of type uvm_line_printer.
5.5.3 emit

The member function emit shall format the collected information for printing into alineformat, which contains
no line-feeds and indentation.

5.6 uvm_comparer

The class uvm_comparer shall provide a policy object for doing comparisons. The policies determine how
miscompares are treated and counted. Results of a comparison are stored in the comparer object. The member
functions uvm_object::compareand uvm_object::do_compareare passed auvm_compar er policy object.

37

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.1 Class definition

namespace uvm {

cl ass uvm conpar er

{
public:

/1 Menber functions

vi rtual

vi rtual

vi rtual

vi rtual

vi rtual

vi rtual

bool

bool

bool

bool

bool

bool

conpare_field(const std::string& nane,
const uvmbitstreamt& | hs,
const uvmbitstreamt& rhs,
int size,
uvmradi x_enumradi x = UYM_NORADI X) const;

conpare_field_int(const std::string& nane,
const uvm.integral _t& | hs,
const uvm.integral _t& rhs,
int size,
uvmradi x_enumradi x = UYM_NORADI X) const;

conpare_field_real (const std::string& nane,
doubl e | hs,
doubl e rhs) const;

conpare_field_real (const std::string& nane,
float |hs,
float rhs) const;

conpar e_obj ect (const std::string& nane,
const uvm object& | hs,
const uvmobject& rhs) const;

conpare_string(const std::string& nane,
const std::string& |hs,
const std::string& rhs) const;

void print_nsg(const std::string& nsg) const;

/1 Goup: Conparer settings

voi d set_policy(uvmrecursion_policy_enumpolicy = U/M DEFAULT_POLI CY);
uvm recursi on_pol i cy_enum get_policy() const;

voi d set _max_nessages(unsigned int num=1);

unsi gned int get_max_nessages() const;

voi d set_verbosity(unsigned int verbosity = UUM LOW);

unsigned int get_verbosity() const;

voi d set_severity(uvmseverity sev = WM INFO);

uvm severity get_severity () const;

voi d set_m sconpare_string(const std::string& m sconpares = "");
std::string get_m sconpare_string() const;

void set_field attribute(uvmfield_enumattr = U/M PHYSICAL);
uvm field_enumget_field_ _attribute() const;

voi d conpare_type(bool enable = true);

unsigned int get_result() const;

private:

/1 Disabled
uvm conparer ();

}; /1 class uvm conparer

} // namespace uvm

5.6.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_comparer.

5.6.3 Member functions

38

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.3.1 compare_field

virtual bool conpare_field(const std::string& nane,
const uvmbitstreamt& | hs,
const uvmbitstreamt& rhs,
int size,
uvmradi x_enumradi x = UWM_NORADI X) const;

The member function compare field shall compare two integral values. The argument name is used for
purposes of storing and printing a miscompare. The left-hand-side Ihs and right-hand-side rhs objects are the
two objects used for comparison. The argument size indicates the number of bits to compare. size shall be
less than or equal to UVM_MAX_STREAMBITS. The argument radix is used for reporting purposes, the
default radix is hex.

5.6.3.2 compare_field_int

virtual bool conpare_field_int(const std::string& nane,
const uvm.integral _t& | hs,
const uvm.integral _t& rhs,
int size,
uvm radi x_enum radi x = UWM_NORADI X) const;

The member function compare field_int shall compare two integral values. This member function issame as
compare _field except that the arguments are small integers, less than or equal to 64 bits. It is automatically
called by compare field if the operand size isless than or equal to 64.

The argument name is used for purposes of storing and printing a miscompare. The left-hand-side lhs and
right-hand-side rhs objects are the two objects used for comparison. The argument size indicates the number
of bits to compare. size shall be less than or equal to 64. The argument radix is used for reporting purposes,
the default radix is hex.

5.6.3.3 compare_field_real

virtual bool conpare_field_real (const std::string& nane,
doubl e | hs,
doubl e rhs) const;

virtual bool conpare_field_real (const std::string& nane,
float |hs,
float rhs) const;

The member function compare field_real shall compare two real numbers, represented by type double or
float, respetively. The left-hand-side lhs and right-hand-side rhs arguments are used for comparison.

5.6.3.4 compare_object

virtual bool conpare_object(const std::string& nang,
const uvm obj ect& | hs,
const uvmobject& rhs) const;

The member function compare object shall compare two class objects using the data member policy to
determine whether the comparison should be deep, shallow, or reference. The argument name is used for
purposes of storing and printing amiscompare. The lhsand rhs objects are the two obj ects used for comparison.
The data member check_type determines whether or not to verify the object types match (the return from
Ihs.get_type name() matchesrhs.get_type name()).

39

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.3.5 compare_string

virtual bool conpare_string(const std::string& nang,
const std::string& |hs,
const std::string& rhs) const;

The member function compare_string shall compare two two string variables. The argument nameis used for
purposes of storing and printing amiscompare. The lhsand rhs objects are the two obj ects used for comparison.

5.6.3.6 print_msg

void print_nsg(const std::string& nsg) const;

The member function print_msg shall cause the error count to be incremented and the message passed as
argument to be appended to the miscompares string (a newline is used to separate messages). |f the message
count is less than the data member show_max setting, then the message is printed to standard-out using the
current verbosity (see Section 5.6.4.5) and severity (see Section 5.6.4.7) settings.

5.6.4 Comparer settings

5.6.4.1 set_policy

voi d set_policy(uvmrecursion_policy_enum policy = U/M DEFAULT_POLI CY);

The member function set_policy shal set the comparison policy. The following arguments are
valid: UVM_DEEP, UVM_REFERENCE, or UVM_SHALLOW. The default policy shall be set to
UVM_DEFAULT_POLICY.

5.6.4.2 get_policy

uvm recursi on_pol i cy_enum get_policy() const;

The member function get_policy shall return the comparison policy.

5.6.4.3 set_max_messages

voi d set_max_nessages(unsigned int num=1);

The member function set_max_messages sets the maximum number of messages to send to the printer for
miscompares of an object. The default number of messages shall be set to one.

5.6.4.4 get_max_messages

unsigned int get_max_nessages() const;

The member function get_max_messages shall return the maximum number of messagesto send to the printer
for miscompares of an object.

5.6.4.5 set_verbosity

voi d set_verbosity(unsigned int verbosity = UUM LOW);

40

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_verbosity shall set the verbosity for printed messages. The verbosity setting is used
by the messaging mechanism to determine whether messages should be suppressed or shown. The default
verbosity shall be set to UVM_LOW.

5.6.4.6 get_verbosity

unsigned int get_verbosity() const;

The member function get_verbosity shall return the verbosity for printed messages.
5.6.4.7 set_severity

voi d set_severity(uvmseverity sev = WM.INFO;

The member function set_severity shall set the severity for printed messages. The severity setting is used by
the messaging mechanism for printing and filtering messages. The default severity shall besettoUVM _INFO.

5.6.4.8 get_severity

uvm severity get_severity() const;

The member function get_severity shall return the severity for printed messages.

5.6.4.9 set_miscompare_string
voi d set_m sconpare_string(const std::string& m sconpares = "");

The member function set_miscompare_string shall set the miscompare string. Thisstring isreset to an empty
string when a comparison is started. The string holds the last set of miscompares that occurred during a
comparison. The default miscompare string shall be empty.

5.6.4.10 get_miscompare_string

std::string get_m sconpare_string() const;

The member function get_miscompare _string shall return the last set of miscompares that occurred during
a comparison.

5.6.4.11 set_field_attribute

void set_field_attribute(uvmfield_enumattr = UYM PHYSI CAL);

The member function set field attribute shall set the field attribute to UVM_PHYSICAL or
UVM_ABSTRACT. The physical and abstract settings allow an object to distinguish between these two
different classes of fields.

NOTE—An application can use the callback uvm_object::do_compar eto check thefield attributeif it wants
touseit asafilter.

41
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.6.4.12 get_field_attribute

uvm field_enumget_field_ attribute() const;

The member function get field attribute shal return the field attribute being UVM_PHYSICAL or
UVM_ABSTRACT.

5.6.4.13 compare_type

voi d conpare_type(bool enable = true);

The member function compare type shal determine whether the type, given by
uvm_object::get_type name, is used to verify that the types of two objects are the same. If enabled, the
member function compare_object is called. By default, type checking shall be enabled.

NOTE—In some cases an application may disable type checking, when the two operands are related by
inheritance but are of different types.

5.6.4.14 get_result

unsigned int get_result() const;

The member function get_result shall return the number of miscompares for a given compare operation. An
application can use the result to determine the number of miscompares that were found.

5.7 Default policy objects

5.7.1 uvm_default_table printer

extern uvmtable_printer* uvmdefault_table_printer;

The global object uvm_default_table printer shall define ahandle to an object of type uvm_table printer,
which can be used with uvm_object::do_print to get tabular style printing.

5.7.2 uvm_default_tree_printer

extern uvmtree_printer* uvmdefault_tree_printer;

The global object uvm_default_tree printer shall define a handle to an object of type uvm_tree printer,
which can be used with uvm_object::do_print to get amulti-line tree style printing.

5.7.3 uvm_default_line_printer

extern uvmline_printer* uvmdefault_line_printer;

The global object uvm_default_line printer shal define a handle to an object of type uvm_line printer,
which can be used with uvm_object::do_print to get asingle-line style printing.

42
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

5.7.4 uvm_default_printer

extern uvmprinter* uvmdefaul t_printer;

The globa object uvm_default_printer shall define the default printer policy, which shall be set to
uvm_default_table printer. An application can redefine the default printer, by setting it to any legal
uvm_printer derived type, including the global line, tree, and table printersin the previous sections.

5.7.5 uvm_default_packer

extern uvmprinter* uvm defaul t _packer;

The global object uvm_default_packer shall define the default packer policy. It shall be used when calls to
uvm_object::pack and uvm_object::unpack do not specify a packer policy.

5.7.6 uvm_default_comparer

extern uvm conparer* uvm defaul t _conparer;

The global object uvm_default_comparer shall define the default comparer policy. It shall be used when
callsto uvm_object::compar e do not specify a comparer policy.

5.7.7 uvm_default_recorder

extern uvmrecorder* uvmdefaul t _recorder;

The global object uvm_default_recorder shall define the default recorder policy. It shall be used when calls
to uvm_object::record do not specify arecorder policy.

43

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6. Registry and factory classes

The registry and factory classes offer the interface to register and use UVM objects and components via the
factory.

The following classes are defined:
— uvm_object_wrapper
— uvm_object_registry
— uvm_component_registry
— uvm_factory
— uvm_default_factory

The class uvm_object_wrapper forms the base class for the registry classes uvm_object_registry and
uvm_component_registry, which act as lightweight proxies for UVM objects and components, respectively.

UVM object and component types are registered with the factory via typedef or macro invocation. When the
application requests anew object or component from the factory, the factory determines what type of object to
create based on its configuration, and asks that type’ s proxy to create an instance of the type, whichisreturned
to the application.

6.1 uvm_object_wrapper

Theclassuvm_object_wrapper shall provide an abstract interface for creating object and component proxies.
Instances of these lightweight proxies, representing every object or component derived from uvm_object or
uvm_component respectively in the test environment, are registered with theuvm_factory. When the factory
is called upon to create an object or component, it shall find and delegate the request to the appropriate proxy.

6.1.1 Class definition

namespace uvm {

cl ass uvm obj ect _wr apper

{

public:

virtual uvmobject* create_object(const std::string& name = "");

virtual uvm conponent* create_conponent(const std::string& nane,
uvm conponent* parent);

virtual const std::string get_type_name() const = O;

b

} // namespace uvm

6.1.2 Member functions

6.1.2.1 create_object

virtual uvmobject* create_object(const std::string& nane = "");

The member function create_object shall create a new object with the optional name passed as argument.
An object proxy (e.g., uvm_object_registry<T>) implements this member function to create an object of a
specific type, T (see Section 6.2).

44

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.1.2.2 create_component

virtual uvm conponent* create_conponent(const std::string& nang,
uvm conponent* parent);

The member function create_component shall create a new component, by passing to its constructor the
given name and parent. The component proxy (e.g. uvm_component_registry<T>) implements this member
function to create a component of a specific type, T (see Section 6.3).

6.1.2.3 get_type_name

virtual const std::string get_type_name() const = O;

The implementation of the pure virtual member function get_type name shall return the type name of the
object created by create_component or create object. The factory uses this name when matching against the
requested type in name-based |ookups.

6.2 uvm_object_registry

The class uvm_object_registry shall provide a lightweight proxy for a uvm_aobject of type T. The proxy
enables efficient registration with the uvm_factory. Without it, registration would require an instance of the
object itself.

The macros UVM_OBJECT_UTILS or UVYM_OBJECT_PARAM _UTILS shall create the appropriate
classuvm_abject_registry necessary to register that particular object with the factory.

6.2.1 Class definition

nanmespace uvm {

tenpl ate <typenane T = uvm object>
class uvm obj ect _regi stry<T> : public uvm object_w apper
{
public:
virtual uvmobject* create_object(const std::string& nane = "");
virtual const std::string get_type_nane() const;
static uvm obj ect_registry<T>* get();

static T* create(const std::string& name = "",
uvm conponent* parent = NULL,
const std::string& contxt = "");

static void destroy§(T* obj);

static void set_type_override(uvm object_w apper* override_type,
bool replace = true);

static void set_inst_override(uvmobject_w apper* override_type,
const std::string& inst_path,
uvm conponent* parent = NULL);
}; // class uvmobject_registry

} // namespace uvm

6.2.2 Template parameter T

The template parameter T specifies the object type of the objects being registered. The object type shall be
aderivative of classuvm_object.

45

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.2.3 Member functions

6.2.3.1 create_object

virtual uvmobject* create_object(const std::string& nane = "");

The member function create_object shall create an object of type T and returnsit asahandleto auvm_object.
This is an overload of the member function in uvm_object wrapper. It is called by the factory after
determining the type of object to create. An application shall not call this member function directly. Instead,
an application shall call the static member function create.

6.2.3.2 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type name shall return the type name of the object. This member function
overloads the member function in uvm_object_wrapper.

6.2.3.3 get
static uvm obj ect_regi stry<T>* get();

The member function get shall return the singleton instance of thistype. Type-based factory operation depends
on there being asingle proxy instance for each registered type.

6.2.3.4 create

static T* create(const std::string& name = "",
uvm conponent* parent = NULL,
const std::string& contxt = "");

Themember function create shall return anew instance of the object type, T, represented by thisproxy, subject
to any factory overrides based on the context provided by the parent’ s full name. The new instance shall have
the given leaf name name, if provided as argument. The argument contxt, if supplied, supersedes the parent’s
context.

6.2.3.5 destroy§
static void destroy$(T* obj);

The member function destroy shall remove the object given as argument from the UVM object registry and
deallocates its memory location. A warning shall be generated if the object does not exist in the registry.

NOTE—An application should always call the static member function destr oy when using the static member
function create to avoid memory leakage.

6.2.3.6 set_type_override

static void set_type_override(uvm.object_w apper* override_type,
bool replace = true);

46

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_type_override shall configurethe factory to create an object of the type represented
by override_typewhenever arequest ismadeto create an object of thetype represented by this proxy, provided
no instance override applies. The original type, T, istypicaly a super class of the override type.

When argument replace is set to true, a previous override on original_type is replaced, otherwise a previous
override, if any, remains intact.

6.2.3.7 set_inst_override

static void set_inst_override(uvmobject_w apper* override_type,
const std::string& inst_path,
uvm conponent* parent = NULL);

The member function set_inst_override shall configure the factory to create an object of the type represented
by argument override type whenever a request is made to create an object of the type represented by this
proxy, with matching instance paths. The origina type, T, istypically a super class of the override type.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which
enablesinstance overridesto be set from outside component classes. If argument parent is specified, argument
inst_path is interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path
may contain wildcards for matching against multiple contexts.

6.3 uvm_component_registry

The classuvm_component_registry shall provide alightweight proxy for auvm_component of type T. The
proxy enables efficient registration with the uvm_factory. Without it, registration would require an instance
of the component itself.

The macros UVYM_COMPONENT_UTILS and UVM_COMPONENT_PARAM _UTIL S shall create the
appropriate class uvm_component_registry necessary to register that particular component with the factory.

6.3.1 Class definition

namespace uvm {

tenpl ate <typename T = uvm conponent >
cl ass uvm conponent _registry : public uvm object_w apper
{
public:
virtual uvm conponent* create_conponent(const std::string& nane,
uvm conponent* parent);

virtual const std::string get_type_name() const;
static uvm conponent _regi stry<T>* get();

static T* create(const std::string& name = "",
uvm conponent * parent = NULL,
const std::string& contxt ="");

static void destroy$(T* obj);

static void set_type_override(uvm object_w apper* override_type,
bool replace = true);

static void set_inst_override(uvm.object_w apper* override_type,
const std::string& inst_path,
uvm conponent* parent = NULL);
}; // class uvm conponent_registry

} // namespace uvm

47
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.3.2 Template parameter T

The template parameter T specifies the object type of the components being registered. The object type shall
be a derivative of classuvm_component.

6.3.3 Member functions

6.3.3.1 create_component

virtual uvm conponent* create_conponent(const std::string& nang,
uvm conponent* parent);

The member function create_component shall create an object of type T having the provided name and
parent, and returns it as a handle to a uvm_component. This is an overload of the member function in
uvm_object_wrapper. It is called by the factory after determining the type of component to create. An
application shall not call this member function directly. Instead, an application shall call the static member
function create.

6.3.3.2 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type name shall return the type name of the component. This member function
overloads the member function in uvm_object_wrapper.

6.3.3.3 get
static uvm conponent _regi stry<T>* get();

The member function get shall return the singleton instance of thistype. Type-based factory operation depends
on there being a single proxy instance for each registered type.

6.3.3.4 create

static T* create(const std::string& name = "",
uvm conponent* parent = NULL,
const std::string& contxt = "");

The member function create shall return a new instance of the component type, T, represented by this proxy,
subject to any factory overrides based on the context provided by the parent’s full name. The new instance
shall have the given leaf name name, if provided as argument. The argument contxt, if supplied, supersedes
the parent’ s context.

6.3.3.5 destroy§
static void destroy$(T* obj);

The member function destroy shall remove the object given as argument from the UVM component registry
and deallocates its memory location. A warning shall be generated if the component does not exist in the

registry.

NOTE—An application should always call the static member function destr oy when using the static member
function create to avoid memory leakage.

48
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.3.3.6 set_type_override

static void set_type_override(uvm object_w apper* override_type,
bool replace = true);

The member function set_type override shall configure the factory to create a component of the type
represented by argument override type whenever a request is made to create a component of the type
represented by this proxy, provided no instance override applies. The override type shall be derived from the
original type, T.

When argument replace is set to true, a previous override on original_type is replaced, otherwise a previous
override, if any, remains intact.

6.3.3.7 set_inst_override

static void set_inst_override(uvmobject_w apper* override_type,
const std::string& inst_path,
uvm conponent* parent = NULL);

The member function set_inst_override shall configure the factory to create a component of the type
represented by argument override type whenever a request is made to create a component of the type
represented by this proxy, with matching instance paths. The override type shall be derived from the original
type, T.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which
enablesinstance overridesto be set from outside component classes. If argument parent is specified, argument
inst_path is interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path
may contain wildcards for matching against multiple contexts.

6.4 uvm_factory

The class uvm_factory implements a factory pattern. A singleton factory instance is created for a given
simulation run. Object and component types are registered with the factory using proxies to the actual objects
and components being created. The classesuvm_object_registry<T>and uvm_component_registry<T>are
used to proxy objects of type uvm_object and uvm_component respectively. These registry classes both use
the uvm_object_wrapper as abstract base class.

6.4.1 Class definition

nanmespace uvm {

class uvmfactory {
public:

/1 Goup: Access and registration
static uvmfactory* get();
voi d do_register®°(uvmobject_w apper* obj) = 0;
/1 Group: Type & instance overrides
virtual void set_inst_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
const std::string& full _inst_path) = 0;
virtual void set_inst_override_by_nane(const std::string& original_type_nane,

const std::string& override_type_nane,
const std::string& full_inst_path) = 0;

49
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual

virtual

/'l Group: Creation

virtual

virtual

virtual

virtual

/'l Group: Debug

vi rtual
virtual void debug_create_by_name(
virtual
vi rtual
virtual void print(int all_types

}; /1 class uvmfactory

} /1 namespace uvm

6.4.2 Access and registration

6.4.2.1 get

static uvmfactory* get();

voi d set_type_override_by_nang(

uvm obj ect* create_obj ect_by_nang(

uvm conponent * creat e_conponent _by_t ype(

uvm conponent * creat e_conponent _by_nanme(

const
const

const
const
const

1)

voi d set_type_override_by_type(uvm object_w apper* original _type,

uvm obj ect _wr apper* override_type,
bool replace = true) = 0;

const std::string& original_type_nane,
const std::string& override_type_nane,
bool replace = true) = 0;

uvm obj ect* create_object_by_type(uvm object_w apper* requested_type,

std
std

const
const

;istring& parent_inst_path = "",
cistring& name = ") = 0;

std
std
std

const
const
const

;:string& requested_type_nane,
;istring& parent_inst_path = "",
cistring& nane = ") = 0;

uvm obj ect _wr apper * requested_type,
const std::string& parent_inst_path = ""
const std::string& name = "",
uvm conponent* parent = NULL) = 0;
const std::string& requested_type_nane,
const std::string& parent_inst_path = ""
const std::string& name = "",
uvm conponent * par ent NULL)

= 0;

voi d debug_create_by_type(uvm object_w apper* requested_type,

std::string& parent_inst_path = "",
std::string& nane = "") = 0;
std::string& requested_type_nane,
std::string& parent_inst_path = "",
std::string& nane = "") = 0;

uvm obj ect _wr apper* find_override_by_type(uvm object_w apper* requested_type,

= 0;

const std::string& full_inst_path) = 0;

uvm obj ect _wr apper* find_override_by_name(const std::string& requested_type_nang,

const std::string& full_inst_path) = 0;

The member function get shall return thisuvm_factory.

6.4.2.2 do_register® (registerT)

vi rtual

Themember functiondo_r egister ° shall register the given proxy object, obj, with thefactory. The proxy object
isalightweight substitute for the component or object it represents. When the factory needsto create an object

voi d do_register®(uvm object_w apper* obj

)

0;

of agiven type, it callsthe proxy’s member function create object or create_component to do so.

50

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

When doing name-based operations, the factory calls the proxy’s member function get_type name to
match against the argument requested_type _name in subsequent callsto create_component_by name and
create object_by name. If the proxy object’s member function get_type name returns the empty string,
name-based lookup is effectively disabled.

NOTE—An application needs to invoke the macros UVM_OBJECT_UTILS,
UVM_OBJECT_PARAM_UTILS, UVM_COMPONENT_UTILS, or
UVM_COMPONENT_PARAM _UTIL Sto register a particular object or component respectively with the
factory.

6.4.3 Type and instance overrides

6.4.3.1 set_inst_override_by_type

virtual void set_inst_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
const std::string& full _inst_path) = 0;

The member function set_inst_override by type shall configure the factory to create an object of the
override' stype whenever arequest is made to create an object of the original type using a context that matches
full_inst_path. The override type shall be derived from the original type, T.

Boththeoriginal _typeandoverride typearehandlestothetypes proxy objects. Preregistrationisnot required.

The argument full_inst_path is matched against the concatenation of parent instance path and name (
parent_inst_path.name) providedin future create requests. Theargument full_inst_path may includewildcards
(**" and‘ ?) suchthat asingleinstance override can be applied in multiple contexts. Anargument full_inst_path
of ‘*' iseffectively atype override, asit matches all contexts.

When the factory processes instance overrides, the instance queue is processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides.

6.4.3.2 set_inst_override_by _name

virtual void set_inst_override_by name(const std::string& original_type_nane,
const std::string& override_type_nane,
const std::string& full_inst_path) = 0;

The member function set_inst_override by name shall configure the factory to create an object of the
override’ stype whenever arequest is made to create an object of the original type using a context that matches
full_inst_path. The original typeistypically asuper class of the override type.

Theoriginal_type nametypically refersto apreregistered typeinthefactory. It may, however, beany arbitrary
string. Future calls to any of the member functions create object_by type, create object by name,
create_component_by type or create_component_by name with the same string and matching instance
path shall produce the type represented by override_type _name, which shall be preregistered with the factory.

The argument full_inst_path is matched against the concatenation of parent instance path and name (
parent_inst_path.name) providedin future create requests. Theargument full_inst_path may includewildcards
(‘*" and‘ ?") suchthat asingleinstance override can be applied in multiple contexts. Anargument full_inst_path
of ‘*’ is effectively atype override, asit matches all contexts.

51

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

When the factory processes instance overrides, the instance queue is processed in order of the override call.
Thus, more specific overrides should be set in place first, followed by more general overrides.

6.4.3.3 set_type_override_by_type

virtual void set_type_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
bool replace = true) = 0;

The member function set_type override by type shall configure the factory to create an object of the
override's type whenever a request is made to create an object of the original type, provided no instance
override applies. The override type shall be derived from the original type, T.

Boththeoriginal _typeandoverride typearehandlestothetypes proxy objects. Preregistrationisnot required.

When argument replace is set to true, a previous override on original_type is replaced, otherwise a previous
override, if any, remains intact.

6.4.3.4 set_type_override_by_name

virtual void set_type_override_by name(const std::string& original_type_nane,
const std::string& override_type_nane,
bool replace = true) = 0;

The member function set_type override by name shall configure the factory to create an object of the
override's type whenever a request is made to create an object of the original type, provided no instance
override applies. The override type shall be derived from the original type, T.

Theoriginal_type nametypically refersto apreregistered typeinthefactory. It may, however, beany arbitrary
string. Future calls to any of the member functions create object_by type, create object by name,
create_component_by type or create_component_by name with the same string and matching instance
path shall produce the type represented by override_type _name, which shall be preregistered with the factory.

When argument replace is set to true, a previous override on original_type name is replaced, otherwise a
previous override, if any, remains intact.

6.4.4 Creation
6.4.4.1 create_object_by type

virtual uvmobject* create_object_by_type(uvm object_w apper* requested_type,
const std::string& parent_inst_path = "",
const std::string& nane = "") =0,

The member function create_object_by type shall create and return an object of the requested type, whichis
specified by argument requested type. A requested object shall be derived from the base class uvm_object.

Theargument parent_inst_path isan optional hierarchical anchor for the object being created. If thisargument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to
search for an instance override. Newly created object shall have the given name, if provided.

6.4.4.2 create_object_by_name

virtual uvm object* create_object_by_nane(const std::string& requested_type_nane,
const std::string& parent_inst_path = ""

52

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

const std::string& nane = "") = 0;

Themember function create_object_by nameshall create and return an object of the requested type, whichis
specified by argument requested type name. The requested type shall be registered with the factory with that
name prior to the request. If the factory does not recognize the requested type name, an error is produced and
the member function shall return NULL. A requested object shall be derived from the base class uvm_obj ect.

Theargument parent_inst_path isan optional hierarchical anchor for the object being created. If thisargument
is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to
search for an instance override. If no instance override is found, the factory then searches for atype override.
Newly created object shall have the given name, if provided.

NOTE—The convenience function create object is available in the class uvm_component for the
creation of an object (see Section 7.1.8.2). Alternatively, an application can create an object by using
the static member function create via the uvm_object_registry, which is made available via the macro
UVM_OBJECT_UTILSor UVYM_OBJECT_PARAM_UTILS.

6.4.4.3 create_component_by type

virtual uvm conponent* create_conponent_by_type(uvm object_w apper* requested_type,
const std::string& parent_inst_path = "",
const std::string& nane = "",
uvm conponent* parent = NULL) = O;

The member function create_component_by type shall create and return a component of the requested type,
which is specified by argument requested type. A requested component shall be derived from the base class
uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this
argument is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that
isused to search for an instance override. Newly created components shall have the given name and parent.

6.4.4.4 create_component_by_name

virtual uvm conponent* create_conponent _by_nane(const std::string& requested_type_nane,
const std::string& parent_inst_path = ""
const std::string& name = "",
uvm conponent* parent = NULL) = O;

Themember function create_component_by nameshall create and return acomponent of the requested type,
which is specified by argument requested type name. The requested type shall be registered with the factory
with that name prior to the request. If the factory does not recognize the requested type name, an error is
produced and the member function shall return NULL. A requested component shall be derived from the base
class uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this
argument is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that
isused to search for an instance override. If no instance override is found, the factory then searches for atype
override. Newly created components shall have the given name and parent.

NOTE—The convenience function create_component is available in the class uvm_component for the
creation of a component (see Section 7.1.8.1). Alternatively, an application can create an object by using
the static member function create viathe uvm_component_registry which is made available via the macro
UVM_COMPONENT_UTILSor UVYM_COMPONENT_PARAM _UTILS.

53

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.4.5 Debug

6.4.5.1 debug_create_by_type

virtual void debug_create_by_type(uvm object_w apper* requested_type,
const std::string& parent_inst_path =""
const std::string& name = "") = 0;

Themember functiondebug_create by typeshall perform the same search algorithm asthe member function
create object_by type, but it shall not create a new object. Instead, it provides detailed information about
what type of object it would return, listing each override that was applied to arrive at the result. Interpretation
of the arguments are exactly as with the member function create_object_by_type.

6.4.5.2 debug_create_by name

virtual void debug_create_by_name(const std::string& requested_type_nang,
const std::string& parent_inst_path = "",
const std::string& nane = "") = 0;

The member function debug_create by name shall perform the same search algorithm as the member
function create_object_by name, but it shall not create anew object. Instead, it provides detailed information
about what type of object it would return, listing each override that was applied to arrive at the result.
Interpretation of the arguments are exactly as with the member function create object_by name.

6.4.5.3 find_override_by type

virtual uvm.object_w apper* find_override_by_type(uvm object_w apper* requested_type,
const std::string& full_inst_path) = 0;

The member function find_override by type shall return the proxy to the object that would be created given
the arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf
name of the object to be created.

6.4.5.4 find_override_by name

virtual uvm object_w apper* find_override_by_nane(const std::string& requested_type_nane,
const std::string& full_inst_path) = 0;

Themember functionfind_override by nameshall return the proxy to the object that would be created given
the arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf
name of the object to be created.

6.4.5.5 print
virtual void print(int all_types = 1) = 0;

The member function print shall print the state of the uvm_factory, including registered types, instance
overrides, and type overrides.

When argument all_typesis set to zero, only type and instance overrides are displayed. When all_types is set
to 1 (default), all registered user-defined types are printed as well, provided they have names associated with
them. When all_typesis set to 2, the UVM types (prefixed with uvm_) are included in the list of registered

types.

54

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.5 uvm_default_factory
The classuvm_default_factory shall provide the default implementation of the UVM factory.

6.5.1 Class definition

nanmespace uvm {

class uvmdefault _factory : public uvmfactory

{
public:

/1 Group: Registration
virtual void do_register®°(uvmobject_w apper* obj);
/1 Group: Type & instance overrides

virtual void set_inst_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
const std::string& full _inst_path);

virtual void set_inst_override_by_ nane(const std::string& original_type_nang,
const std::string& override_type_nane,
const std::string& full _inst_path);

virtual void set_type_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
bool replace = true);

virtual void set_type_override_by nane(const std::string& original_type_nane,
const std::string& override_type_nane,
bool replace = true);

/1 Goup: Creation
virtual uvm object* create_object_by_type(uvm object_w apper* requested_type,

const std::string& parent_inst_path =
const std::string& nane = "");

virtual uvm object* create_object_by_nane(const std::string& requested_type_nane,
const std::string& parent_inst_path = ""
const std::string& name = "");

virtual uvm conponent* create_conponent _by_type(uvm object_w apper* requested_type,
const std::string& parent_inst_path =
const std::string& nanme = ""
uvm conponent* parent = NULL);

virtual uvm conponent* create_conponent _by_nane(const std::string& requested_type_nane,
const std::string& parent_inst_path = ""
const std::string& name = "",
uvm conponent* parent = NULL);

/1 G oup: Debug
virtual void debug_create_by_type(uvm object_w apper* requested_type,

const std::string& parent_inst_path =
const std::string& nane = "");

virtual void debug_create_by_name(const std::string& requested_type_nane,
const std::string& parent_inst_path = "",
const std::string& nane = "");

virtual uvm object_w apper* find_override_by_type(uvm object_w apper* requested_type,
const std::string& full_inst_path);

virtual uvm object_w apper* find_override_by_nane(const std::string& requested_type_nane,
const std::string& full_inst_path);

virtual void print(int all_types =1);

}; // class uvmdefaul t_factory

55

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} /1 namespace uvm
6.5.2 Registration

6.5.2.1 do_register® (registerT)
virtual void do_register®°(uvm.object_w apper* obj);

The member function do_register® shall register the given proxy object, obj, with the factory.
6.5.3 Type and instance overrides

6.5.3.1 set_inst_override_by_type

virtual void set_inst_override_by_type(uvmobject_w apper* original _type,
uvm obj ect _wr apper* override_type,
const std::string& full _inst_path);

The member function set_inst_override by type shall configure the factory to create an object of the
override’ stype whenever arequest is made to create an object of the original type using a context that matches
full _inst_path.

6.5.3.2 set_inst_override_by_name

virtual void set_inst_override_by_nane(const std::string& original_type_nane,
const std::string& override_type_nane,
const std::string& full _inst_path);

The member function set_inst_override by name shall configure the factory to create an object of the
override’ stype whenever arequest is made to create an object of the original type using a context that matches
full_inst_path.

6.5.3.3 set_type_override_by type

virtual void set_type_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
bool replace = true);

The member function set_type override by type shall configure the factory to create an object of the
override's type whenever a request is made to create an object of the original type, provided no instance
override applies.

6.5.3.4 set_type_override_by _name

virtual void set_type_override_by name(const std::string& original _type_nane,
const std::string& override_type_nane,
bool replace = true);

The member function set_type override by name shall configure the factory to create an object of the
override' s type whenever a request is made to create an object of the original type, provided no instance
override applies.

56
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

6.5.4 Creation
6.5.4.1 create_object_by_type

virtual uvm object* create_object_by_type(uvm object_w apper* requested_type,
const std::string& parent_inst_path =
const std::string& nane = "");

The member function create_object_by typeshall create and return an object of the requested type, specified
by type.

6.5.4.2 create_object_by name

virtual uvm object* create_object_by_name(const std::string& requested_type_nane,
const std::string& parent_inst_path = "",
const std::string& name = "");

Themember functioncreate object_by nameshall create and return an object of therequested type, specified
by name.

6.5.4.3 create_component_by type

virtual uvm conponent* create_conponent_by_type(uvm object_w apper* requested_type,
const std::string& parent_inst_path = "",
const std::string& name = "",
uvm conponent* parent = NULL);

The member function create_component_by type shall create and return a component of the requested type,
specified by type.

6.5.4.4 create_component_by_name

virtual uvm.conponent* create_conponent_by_name(const std::string& requested_type_nane,
const std::string& parent_inst_path = "",

const std::string& name = s
uvm conponent* parent = NULL);

Themember function create_component_by nameshall create and return acomponent of the requested type,
specified by name.

6.5.5 Debug
6.5.5.1 debug_create_by type

virtual void debug_create_by_type(uvm object_w apper* requested_type,
const std::string& parent_inst_path = "",
const std::string& name = "");

Themember functiondebug_create by typeshall perform the same search algorithm asthe member function
create object_by type, but it shall not create a new object.

6.5.5.2 debug_create_by name

virtual void debug_create_by_name(const std::string& requested_type_nane,
const std::string& parent_inst_path = "",
const std::string& nane = "");

57

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function debug_create by name shall perform the same search algorithm as the member
function create_object_by name, but it shall not create a new object.

6.5.5.3 find_override_by_type

virtual uvm object_w apper* find_override_by_type(uvm object_w apper* requested_type,
const std::string& full_inst_path);

The member function find_override by type shall return the proxy to the object that would be created given
the arguments.

6.5.5.4 find_override_by_name

virtual uvm object_w apper* find_override_by_nane(const std::string& requested_type_nane,
const std::string& full_inst_path);

Themember functionfind_override by nameshall return the proxy to the object that would be created given
the arguments.

6.5.5.5 print
virtual void print(int all_types =1);

The member function print shall print the state of the uvm_factory, including registered types, instance
overrides, and type overrides.

58

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7. Component hierarchy classes

The UVM components form the foundation of the UVM. They are used to assemble the actual verification
environment in a hierarchical and modular fashion, offering a basic set of building blocks such as sequencers,
drivers, monitors, scoreboards, and other components. The UVM class library provides a set of predefined
component types, al derived directly or indirectly from class uvm_component. The following classes are
defined:

— uvm_component

— uvm_agent

— uvm_driver

— uvm_monitor

— uvm_env

— uvm_scoreboard

— uvm_subscriber

— uvm_test

— uvm_sequencer (see Chapter 8)

7.1 uvm_component

The class uvm_component is the root base class for al structural elements. It provides interfaces for:
— Hierarchy: lookup child components
— Phasing: pre-run phases, run phase, and post-run phases
— Factory: convenience interface to uvm_factory
— Process control: to suspend and resume processes
— Objection: to handle raised and dropped objections
— Reporting: hierarchical reporting of messages
— Recording: transaction recording

7.1.1 Class definition

nanmespace uvm {

class uvm conponent : public sc_core::sc_nodul e,
public uvm report_object
{
public:

/1 Constructor
explicit uvm conponent (uvm conponent _nanme nane);

/1 Goup: H erarchy Interface

virtual uvm conponent* get_parent() const;

virtual const std::string get_full_nane() const;

voi d get _children(std::vector<uvm conponent*>& children) const;
uvm conponent* get_child(const std::string& nanme) const;
int get_next_child(std::string& name) const;

int get_first_child(std::string& nanme) const;

int get_numchildren() const;

bool has_child(const std::string& name) const;

uvm conponent * | ookup(const std::string& name) const;
unsi gned int get_depth() const;

/1 Goup: Phasing Interface
virtual void build_phase(uvm phase& phase);
virtual void connect_phase(uvm phase& phase);

59

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void end_of _el aboration_phase(uvm phase& phase);
virtual void start_of_sinul ati on_phase(uvm phase& phase);
virtual void run_phase(uvm phase& phase);

virtual void pre_reset_phase(uvm phase& phase);

virtual void reset_phase(uvm phase& phase);

virtual void post_reset_phase(uvm phase& phase);

virtual void pre_configure_phase(uvm phase& phase);
virtual void configure_phase(uvm phase& phase);

virtual void post_configure_phase(uvm phase& phase);
virtual void pre_nain_phase(uvm phase& phase);

virtual void main_phase(uvm phase& phase);

virtual void post_nai n_phase(uvm phase& phase);

virtual void pre_shutdown_phase(uvm phase& phase);
virtual void shutdown_phase(uvm phase& phase);

virtual void post_shutdown_phase(uvm phase& phase);
virtual void extract_phase(uvm phase& phase);

virtual void check_phase(uvm phase& phase);

virtual void report_phase(uvm phase& phase);

virtual void final_phase(uvm phase& phase);

virtual void phase_started(uvm phase& phase);

virtual void phase_ready_to_end(uvm phase& phase);
virtual void phase_ended(uvm phase& phase);

voi d set_domai n(uvm donmi n* domain, int hier = 1);

uvm donai n* get _domai n() const;

voi d define_domai n(uvm domai n* domain);

voi d set_phase_i np(uvm phase* phase, uvm phase* inp, int hier = 1);

/1 Group: Process control interface
virtual bool suspend();
virtual bool resune();

/'l Group: Configuration Interface

voi d print_config(bool recurse = false, bool audit = false) const;
void print_config_w th_audit(bool recurse = false) const;

voi d print_config_matches(bool enable = true);

/'l Group: Objection Interface

virtual void raised(uvm.objection* objection,
uvm obj ect* source_obj,
const std::string& description,
int count);

virtual void dropped(uvm objection* objection,
uvm obj ect* source_obj,
const std::string& description,
int count);

virtual void all_dropped(uvm objection* objection,
uvm obj ect* source_obj,
const std::string& description,
int count);

/'l Group: Factory Interface
uvm conponent * create_conponent (const std::string& requested_type_nane,
const std::string& nane);

uvm obj ect* create_object(const std::string& requested_type_nane,
const std::string& nane);

static void set_type_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
bool replace = true);

voi d set_inst_override_by_type(const std::string& relative_inst_path,
uvm obj ect _wr apper* ori gi nal _type,
uvm obj ect _wr apper* override_type);

static void set_type_override(const std::string& original_type_nane,
const std::string& override_type_nane,
bool replace = true);

voi d set_inst_override(const std::string& relative_inst_path,
const std::string& original_type_nane,
const std::string& override_type_nane);

void print_override_info(const std::string& requested_type_name = "",
const std::string& nane = "");

60
Copyright © 2023 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

/'l Group: Hierarchical reporting interface
voi d set_report_id_verbosity_hier(const std::string&id,
int verbosity);

voi d set_report_severity_id_verbosity_hier(uvmseverity severity,
const std::string& id,
int verbosity);

voi d set_report_severity_action_hier(uvmseverity severity,
uvm action action);

voi d set_report_id_action_hier(const std::string& id,
uvm action action);

voi d set_report_severity_id_action_hier(uvmseverity severity,
const std::string& id,
uvm action action);
voi d set_report_default_file_hier(UUMFILE file);
voi d set_report_severity_file_hier(uvmseverity severity,
UWM FILE file);

void set_report_id_file_hier(const std::string&id,
UWM FILE file);

voi d set_report_severity_id_file_hier(uvmseverity severity,
const std::string& id,
WM FILE file);

voi d set_report_verbosity_|l evel _hier(int verbosity);
virtual void pre_abort();

}; /1 class uvm conponent

} /1 namespace uvm

7.1.2 Construction interface

When creating a new UVM component, an application should always provide alocal leaf name. The parent
is traced from the current uvm_component at top of the hierarchy stack. The uvm_component hierarchy
stack isbuilt during module construction, in the pre-run phases build_phase and connect_phase. If the parent
component is not derived from uvm_component, the leaf object becomes part of the object uvm_root. The
full hierarchical name shall be unique; if it is not unique, a warning message is generated, and a number is
appended at the end of the hierarchical name to make it unique.

Compatible with SystemC, it isillegal to create a component after the before_end_of elaboration phase or
UVM pre-run phases build_phase and connect_phase. The constructor for uvm_component spawns off the
member function run_phase of that component.

7.1.2.1 Constructor

explicit uvm conponent (uvm conponent _nanme nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
7.1.3 Hierarchy interface

The following member functions provide user access to information about the component hierarchy, for
example, topology.

7.1.3.1 get_parent

virtual uvm conponent* get_parent() const;

61

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_par ent shall return apointer to the component’ s parent, or NULL if it hasno parent.

7.1.3.2 get_full_name

virtual const std::string get_full_nane() const;

The member function get_full_name shall return the full hierarchica name of the component. It shall
concatenate the hierarchical name of the parent, if any, with the leaf name of the component, as returned by
member function uvm_object::get_name (see Section 4.2.3.2).

7.1.3.3 get_children
voi d get_children(std::vector<uvm conponent*>& children) const;

The member function get_children shall return a vector of type std::vector containing a pointer to every
instance of the component’s children of class uvm_component.

7.1.3.4 get_child

uvm conponent* get_child(const std::string& name) const;

The member function get_child shall return a pointer to the component’ s child which matches the argument
string name.

7.1.3.5 get_first_child
int get_first_child(std::string& name) const;

The member function get_first_child shall pass the name of the first child of a component to the argument
name. The member function returns true of the first child has been found; otherwise it shall return false.

7.1.3.6 get_first_child

int get_next_child(std::string& name) const;

The member function get_next_child shall pass the name of the next child of a component, followed after a
call to member function get_first_child, to the argument name. The member function returns true of the next
child has been found; otherwise it shall return false.

7.1.3.7 get_num_children

int get_numchildren() const;

The member function get_num_children shall return the number of the component’s children.

7.1.3.8 has_child

bool has_child(const std::string& nanme) const;

The member function has_child shall return trueif this component has a child with the given name; otherwise
it shall return false;

62
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.3.9 lookup

uvm conponent * | ookup(const std::string& nanme) const;

The member function lookup shall return a pointer to a component with the passed hierarchical name name
relative to the component. If the argument nameis preceded witha“.’ (dot), then the search shall begin relative
to the top level (absolute lookup). The member function shall return NULL if no component has been found.
The argument name shall not contain wildcards.

7.1.3.10 get_depth
unsi gned int get_depth() const;

The member function get_depth shall return the component’ s depth from the root level. uvm_top has adepth
of zero. The test and any other top level components have a depth of 1, and so on.

7.1.4 Phasing interface

UVM components execute their behavior in strictly ordered, pre-defined phases. Each phase is defined by its
own member function, which derived components can override to incorporate component-specific behavior.
During simulation, the phases are executed one by one, where one phase shall complete before the next phase
begins.

The phases can be grouped in three main categories:
— Pre-run phases
— Run-time phases
— Post-run phases

7.1.4.1 Pre-run phases

The pre-run phases are responsible for the construction, connection and elaboration of the structural
composition. In the pre-run phases, there is neither notion nor progress of time. It consists of the following
phases:

— build_phase: Thecomponent constructsitschildrenin thisphase. It may usethe static member function
uvm_config_db::get to obtain any configuration for itself, the member function uvm_config_db::set
to define any configuration for its own children, and the factory interface for actually creating the
children and other objects it might need. An application shall declare child objects derived from
uvm_component as pointers, instead of member fields of a component, such that they can be created
viathe factory in this phase.

— connect_phase: After creating the children in the build_phase, the component makes connections
(binding of (TLM) ports and exports) from child-to-child or from child-to-self (that is, to promote a
child or export up the hierarchy for external access).

— end_of elaboration_phase: At this point, the entire testbench environment has been built and
connected. No new components and connections shall be created from this point forward. Components
do final checksfor proper connectivity.

— start_of simulation_phase: The simulation is about to begin, and this phase is used to perform
any pre-run activity such as displaying banners, printing final testbench topology and configuration
information.

AsUVM components are derived from classsc_module, the inherited callbacksbefore _end_of elaboration,
end_of _elaboration, and start_of _simulation are available. It is recommended not to use these member

63

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

functions for the construction of testbenches, but to use the UVM pre-run phases. Main reason is to
support maximum reusability and flexibility for building, configuration and connecting various verification
components using the same construction mechanism.

7.1.4.2 Run-time phases

The run-time phases are used to perform the actual verification. These phases are exclusively designed only
for objects derived from class uvm_component. Run-time phases consume time.

A component's primary function is implemented in the member function run_phase. The component should
not declare‘run_phase' asathread process. The UVM-SystemC library spawnsrun_phase asathread process.
Other processes may be spawned from the run phase, if desired. When a component returns from executing
its member function run_phase, it does not signify completion of its run phase. Any processes that it may
have spawned still continue to run.

The run phase executes along with the other processesin the SystemC language: no special statusis provided
to the run_phase processes; for example, there is no guarantee that the run_phase processes is the first on
the runable queue at time 0s, and hence there is no guarantee that the run_phase processes execute ahead of
the other SystemC processes.

Concurrently to the execution of the run_phase, UVM defines a pre-defined schedule which consists of four
groups of phases which are executed sequentially:

— Reset phases. Phases to apply reset signals for the DUT. Consists of three phases called
pre reset_phase, reset_phase, and post_reset_phase.

— Configure phases: Phases which can be used for the configuration of the DUT. Consists of three phases
called pre_configure phase, configure phase, and post_configure phase.

— Main phases: Phaseswhich are used to apply the primary test stimulusto DUT. Consists of three phases
called pre_main_phase, main_phase, and post_main_phase.

— Shutdown phase: Phasesto wait for all datato be drained out of the DUT and to disable DUT. Consists
of three phases called pre_shutdown_phase, shutdown_phase, and post_shutdown_phase.

7.1.4.3 Post-run phases

The post-run phases are:

— extract_phase: This phase occurs after the run phaseis over. This phase is specific to objects derived
from class uvm_component and does not apply to objects derived from class sc_module. It is used
to extract simulation results from coverage collectors and scoreboards, collect status/error counts,
statistics, and other information from components in bottom-up order. Being a separate phase, the
extract phase ensures all relevant datafrom potentially independent sources (that is, other components)
are collected before being checked in the next phase.

— check_phase: This phase is specific to objects derived from class uvm_component and does not
apply to objectsderived from classsc_module. Having extracted vital simulation resultsin the previous
phase, the check phase is used to validate such data and determine the overall simulation outcome. It
executes bottom-up.

— report_phase: Finaly, the report phase is used to output results to files and/or the screen. This phase
isalso be specific to objects derived from classuvm_component and does not apply to objects derived
from class sc_module.

— final_phase: Thisphaseis called as soon as all tests have been executed and completed. This phaseis
used to close created or used files before the simulation exits.

64

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.4.4 build_phase

virtual void build_phase(uvm phase& phase);

The member function build_phase shall provide a context to implement functionality as part of the build
phase. The application shall not call this member function directly.

7.1.4.5 connect_phase

virtual void connect_phase(uvm phase& phase);

The member function connect_phase shall provide a context to implement functionality as part of the connect
phase. The application shall not call this member function directly.

7.1.4.6 end_of_elaboration_phase

virtual void end_of _el aboration_phase(uvm phase& phase);

The member function end_of_elaboration_phase shall provide a context to implement functionality as part
of the end of elaboration phase. The application shall not call this member function directly.

7.1.4.7 start_of_simulation_phase

virtual void start_of _sinmul ati on_phase(uvm phase& phase);

The member function start_of simulation_phase shall provide a context to implement functionality as part
of the start of simulation phase. The application shall not call this member function directly.

7.1.4.8 run_phase

virtual void run_phase(uvm phase& phase);

Themember functionrun_phase shall provideacontext toimplement functionality aspart of therun phase. An
objection shall beraised, using the member function phase.raise_objection, to causethe phaseto persist. Once
all components have dropped their respective objection using phase.drop_objection, or if no components
raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run
after the member function returns, but they shall be killed once the phase ends. The application shall not call
this member function directly.

7.1.4.9 pre_reset_phase

virtual void pre_reset_phase(uvm phase& phase);

The member function pre_reset_phase shall provide a context to implement functionality as part of the pre-
reset phase. An objection shall be raised, using the member function phase.raise_objection, to causethe phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

65

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.4.10 reset_phase

virtual void reset_phase(uvm phase& phase);

The member function reset_phase shall provide a context to implement functionality as part of the reset
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to
persist. Once al components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.11 post_reset_phase

virtual void post_reset_phase(uvm phase& phase);

The member function post_reset_phase shall provide a context to implement functionality as part of the post-
reset phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.12 pre_configuration_phase

virtual void pre_configuration_phase(uvm phase& phase);

The member function pre_configuration_phase shall provide a context to implement functionality as part of
the pre-configuration phase. An objection shall be raised, using the member function phase.raise_objection,
to cause the phase to persist. Once al components have dropped their respective objection using
phase.drop_objection, or if no components raise an objection, the phase shall be ended. Any processes
spawned by this member function continue to run after the member function returns, but they shall be killed
once the phase ends. The application shall not call this member function directly.

7.1.4.13 configuration_phase

virtual void configuration_phase(uvm phase& phase);

The member function configuration_phase shall provide a context to implement functionality as part of the
configuration phase. An objection shall be raised, using the member function phase.raise _objection, to cause
the phaseto persist. Once all components have dropped their respective objection using phase.drop_objection,
or if no components raise an objection, the phase shall be ended. Any processes spawned by this member
function continue to run after the member function returns, but they shall be killed once the phase ends. The
application shall not call this member function directly.

7.1.4.14 post_configuration_phase

virtual void post_configuration_phase(uvm phase& phase);

The member function post_configuration_phase shall provide a context to implement functionality as part of
the post-configuration phase. An objection shall be raised, using the member function phase.raise_objection,
to cause the phase to persist. Once al components have dropped their respective objection using
phase.drop_objection, or if nho components raise an objection, the phase shall be ended. Any processes

66

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

spawned by this member function continue to run after the member function returns, but they shall be killed
once the phase ends. The application shall not call this member function directly.

7.1.4.15 pre_main_phase

virtual void pre_nmai n_phase(uvm phase& phase);

The member function pre_main_phase shall provide a context to implement functionality as part of the pre-
main phase. An objection shall beraised, using the member function phase.raise_objection, to causethe phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.16 main_phase

virtual void main_phase(uvm phase& phase);

The member function main_phase shall provide a context to implement functionality as part of the main
phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to
persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.17 post_main_phase

virtual void post_mai n_phase(uvm phase& phase);

The member function post_main_phase shall provide acontext to implement functionality as part of the post-
main phase. An objection shall beraised, using the member function phase.raise_objection, to causethe phase
to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no
components raise an objection, the phase shall be ended. Any processes spawned by this member function
continue to run after the member function returns, but they shall be killed once the phase ends. The application
shall not call this member function directly.

7.1.4.18 pre_shutdown_phase

virtual void pre_shutdown_phase(uvm phase& phase);

The member function pre_shutdown_phase shall provide a context to implement functionality as part of the
pre-shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause
the phaseto persist. Once all components have dropped their respective objection using phase.drop_objection,
or if no components raise an objection, the phase shall be ended. Any processes spawned by this member
function continue to run after the member function returns, but they shall be killed once the phase ends. The
application shall not call this member function directly.

7.1.4.19 shutdown_phase

virtual void shutdown_phase(uvm phase& phase);

67

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function shutdown_phase shall provide a context to implement functionality as part of the
shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause the
phase to persist. Once al components have dropped their respective objection using phase.drop_objection,
or if no components raise an objection, the phase shall be ended. Any processes spawned by this member
function continue to run after the member function returns, but they shall be killed once the phase ends. The
application shall not call this member function directly.

7.1.4.20 post_shutdown_phase

virtual void post_shutdown_phase(uvm phase& phase);

The member function post_shutdown_phase shall provide a context to implement functionality as part of the
post-shutdown phase. An objection shall beraised, using the member function phase.raise_objection, to cause
the phaseto persist. Once all components have dropped their respective objection using phase.drop_objection,
or if no components raise an objection, the phase shall be ended. Any processes spawned by this member
function continue to run after the member function returns, but they shall be killed once the phase ends. The
application shall not call this member function directly.

7.1.4.21 extract_phase

virtual void extract_phase(uvm phase& phase);

The member function extract_phase shall provide a context to implement functionality as part of the extract
phase. The application shall not call this member function directly.

7.1.4.22 check_phase

virtual void check_phase(uvm phase& phase);

The member function check_phase shall provide a context to implement functionality as part of the check
phase. The application shall not call this member function directly.

7.1.4.23 report_phase

virtual void report_phase(uvm phase& phase);

The member function report_phase shall provide a context to implement functionality as part of the report
phase. The application shall not call this member function directly.

7.1.4.24 final_phase

virtual void final_phase(uvm phase& phase);

The member function final_phase shall provide a context to implement functionality as part of thefinal phase.
The application shall not call this member function directly.

7.1.4.25 phase_started

virtual void phase_started(uvm phase& phase);

68

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function phase_started shall provide a context to implement functionality as part of the start of
each phase. The argument phase specifies the phase being started. Any threads spawned in this callback are
not affected when the phase ends.

7.1.4.26 phase_ready_to_end

virtual void phase_ready_to_end(uvm phase& phase);

The member function phase ready to end shall provide a context to implement functionality as part of the
ending of each phase. The argument phase specifies the phase being ended. The member function shall be
invoked when all objections to ending the given phase have been dropped, thus indicating that phase is ready
to end. All thiscomponent’ s threads spawned for the given phase shall be killed upon return from this member
function. Components needing to consume delta cycles or advance timeto perform aclean exit from the phase
may raise the phase’ s objection.

7.1.4.27 phase_ended

virtual void phase_ended(uvm phase& phase);

Themember function phase_ended shall provideacontext toimplement functionality at the end of each phase.
The argument phase specifies the phase that has ended. Any threads spawned in this callback are not affected
when the phase ends.

7.1.4.28 set_domain

voi d set_domai n(uvm domai n* domain, int hier =1);

The member function set_domain shall set the phase domain to this component and, if hier is set, recursively
to all its children.

7.1.4.29 get_domain

uvm domai n* get _donai n() const;

The member function get_domain shall return a pointer to the phase domain set on this component.
7.1.4.30 define_domain

voi d define_domai n(uvm domai n* domain);

The member function define_domain shall build a custom phase schedules into the provided domain passed
as pointer.

7.1.4.31 set_phase_imp
voi d set_phase_i np(uvm phase* phase, uvm phase* inp, int hier =1);

Themember functionset_phase_imp shall provide acontext for an application-specific phaseimplementation,
which shall be created as a singleton object extending the default one and implementing required behavior for
the member functions execute and traver se.

69

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The optional argument hier specifies whether to apply the custom functor to the whole tree or just this
component.

7.1.5 Process control interface

The class uvm_component has the following member functions to support process control constructs on the
run process handle:

— suspend

— resume
The default implementation of these member functionsisto invoke the corresponding process control construct
on the component’ s run process handle, if the run processis active (that is, not already terminated), for those
simulators that support process control constructs. Each of these member functions return true if the simulator
supports process control constructs. For those simulators that do not support process control constructs, these
member functions do nothing and return false.

NOTE—The process control interface requires at least Accellera Systems Initiative SystemC reference
implementation version 2.3.0.

7.1.5.1 suspend

virtual bool suspend();

The member function suspend shall suspend operation of this component. It shall return true if suspending
succeeds; otherwiseit shall return false.

NOTE—This member function shall be implemented by the application to suspend the component according
to the protocol and functionality it implements. A suspended component can be subsequently resumed by
calling the member function resume.

7.1.5.2 resume
virtual bool resune();

The member function resume shall resume operation of this component. It shal return true if resuming
succeeds; otherwise it shall return false.

NOTE—This member function shall be implemented by the application to resume a component that was
previously suspended using member function suspend. Some components may start in the suspended state and
may need to be explicitly resumed.

7.1.6 Configuration interface

The configuration interface accommodates additional printing and debug facilities for user-defined
configurations using the configuration database uvm_config_db.

7.1.6.1 print_config

voi d print_config(bool recurse = false, bool audit = false) const;

The member function print_config shall print al configuration information for this component, as set by
previous calls to uvm_config_db<T>::set and exports to the resources pool. The settings are printing in the

70
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

order of their precedence. If argument recurseis set, then configuration information for all children and below
are printed as well. If argument audit is set, then the audit trail for each resource is printed along with the
resource name and value.

7.1.6.2 print_config_with_audit

voi d print_config_w th_audit(bool recurse = false) const;

The member function print_config_with_audit shall print al configuration information for this component,
asset by previouscallsto uvm_config db<T>::set and exportsto the resources pool. The settings are printing
in the order of their precedence, and without the audit trail. If argument recurse is set, then configuration
information for al children and below are printed as well.

7.1.6.3 print_config_matches

voi d print_config_matches(bool enable = true);

The member function print_config_ matches shall print al information about the matching configuration
settings as they are being applied for each call of uvm_config_db<T>::get. By default, this information is
not printed.

7.1.7 Objection interface
These member functions provide object level access into the uvm_objection mechanism.

7.1.7.1 raised

virtual void raised(uvmobjection* objection,
uvm obj ect* source_obj,
const std::string& description,
int count);

The member function raised shall be called when this or a descendant of this component instance raises the
specified objection. The argument source_obyj is the object that originally raised the objection. The argument
description is optionally provided by the source_obj to give areason for raising the objection. The argument
count indicates the number of objections raised by the source_obj.

7.1.7.2 dropped

virtual void dropped(uvm objection* objection,
uvm obj ect* source_obj,
const std::string& description,
int count);

The member function dropped shall be called when this or a descendant of this component instance dropsthe
specified abjection. Theargument source_obj isthe object that originally dropped the objection. The argument
descriptionisoptionally provided by the source _obj to give areason for dropping the objection. The argument
count indicates the number of objections dropped by the source _obj.

7.1.7.3 all_dropped

virtual void all_dropped(uvm objection* objection,
uvm obj ect* source_obj,
const std::string& description,
int count);

71
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function all_dropped shall be called when al objections have been dropped by this component
and all its descendants. The argument source_obj is the object that dropped the last objection. The argument
description is optionally provided by the source_obj to give areason for raising the objection. The argument
count indicates the number of objections dropped by the source_obj.

7.1.8 Factory interface

Thefactory interface provides components with convenient accessto the UVM's central uvm_factory object.
The member functions defined in this section shall call the corresponding member functionsin uvm_factory,
passing whatever argumentsit can to reduce the number of arguments required of the user.

7.1.8.1 create_component

uvm conponent* create_conponent (const std::string& requested_type_nane,
const std::string& nanme);

The member function create component shall provide a convenience layer to the member function
uvm_factory::create_ component_by name, which calls upon the factory to create a new child component
whose type corresponds to the preregistered type name, requested type name, and instance name, name (see
Section 6.4.4.4).

7.1.8.2 create_object

uvm obj ect* create_object(const std::string& requested_type_nane,
const std::string& nane);

The member function create object shall provide a convenience layer to the member function
uvm_factory::create object_by name, which calls upon the factory to create a new object whose type
corresponds to the preregistered type name, requested type name, and instance name, name (see Section
6.4.4.2).

7.1.8.3 set_type_override_by_type

static void set_type_override_by_type(uvm object_w apper* original _type,
uvm obj ect _wr apper* override_type,
bool replace = true);

The member function set_type override by type shall provide a convenience layer to the member function
uvm_factory::set_type override by type, which registers a factory override for components and objects
created at thislevel of hierarchy or below (see Section 6.4.3.3).

The argument original_type represents the type that is being overridden. In subsequent calls to
uvm_factory::create object_by type or uvm_factory::create component_by type, if the argument
requested type matches the original_type and the instance paths match, the factory shall produce the
override_type.

7.1.8.4 set_inst_override_by_type

voi d set _inst_override_by_ type(const std::string& relative_inst_path,
uvm obj ect _wr apper* original _type,
uvm obj ect _wr apper* override_type);

72
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_inst_override by type shall provide a convenience layer to the member function
uvm_factory::set_inst_override by type, which registers a factory override for components and objects
created at thislevel of hierarchy or below (see Section 6.4.3.1).

The argument relative inst_path is relative to this component and may include wildcards. The
argument original_type represents the type that is being overridden. In subsequent cals to
uvm_factory::create object_by typeor uvm_factory::create component_by type, if the requested type
matches the original_type and the instance paths match, the factory shall produce the override_type.

7.1.8.5 set_type_override

static void set_type_override(const std::string& original_type_nane,
const std::string& override_type_nane,
bool replace = true);

The member function set_type override shal provide a convenience layer to the member function
uvm_factory::set_type override by name, which configures the factory to create an object of type
override type name whenever the factory is asked to produce a type represented by original_type name (see
Section 6.4.3.4).

The argument original_type name typically refers to a preregistered type in the factory. It may, however,
be any arbitrary string. Subsequent calls to create component or create object with the same string
and matching instance path shall produce the type represented by override type name. The argument
override type name shall refer to a preregistered type in the factory.

7.1.8.6 set_inst_override

voi d set_inst_override(const std::string& relative_inst_path,
const std::string& original_type_nane,
const std::string& override_type_nane);

The member function set_inst_override shall provide a convenience layer to the member function
uvm_factory::set_inst_override by name, which registers afactory override for components created at this
level of hierarchy or below (see Section 6.4.3.2).

The argument relative inst_path is relative to this component and may include wildcards. The argument
original_type name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Subsequent calls to create_component or create object with the same string and matching instance
path shall produce the type represented by override type name. The override type name shall refer to a
preregistered type in the factory.

7.1.8.7 print_override_info

void print_override_info(const std::string& requested_type_name = "",
const std::string& nane = "");

The member function print_override info shall provide the same lookup process as create object and
create_component, but instead of creating an object, it prints information about what type of object would
be created given the provided arguments.

73
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.1.9 Hierarchical reporting interface

This interface provides versions of the member function set_report_* in the base class uvm_report_aobject
that are applied recursively to this component and all its children. When areport is issued and its associated
action UVM_L OG is set, the report shall be sent to its associated file descriptor.

7.1.9.1 set_report_id_verbosity_hier

void set_report_id_verbosity_hier(const std::string& id,
int verbosity);

The member function set_report_id_verbosity hier shall recursively associate the specified verbosity with
reports of the given id. A verbosity associated with a particular severity-id pair, using member function
set_report_severity id_verbosity hier, shall take precedence over a verbosity associated by this member
function.

7.1.9.2 set_report_severity_id_verbosity _hier

voi d set_report_severity_id_verbosity_hier(uvmseverity severity,
const std::string& id,
int verbosity);

The member function set_report_severity id_verbosity hier shall recursively associate the specified
verbosity with reports of the given severity with id pair. A verbosity associated with a particular severity-id
pair takes precedence over averbosity associated with id, which takes precedence over a verbosity associated
with a severity.

7.1.9.3 set_report_severity_action_hier

voi d set_report_severity_action_hier(uvmseverity severity,
uvm action action);

The member function set_report_severity action_hier shall recursively associate the specified action with
reports of the given severity. An action associated with a particular severity-id pair shall take precedence over
an action associated with id, which shall take precedence over an action associated with a severity as defined
in this member function.

7.1.9.4 set_report_id_action_hier

void set_report_id_action_hier(const std::string& id,
uvm action action);

The member function set_report_id_action_hier shall recursively associate the specified action with reports
of the given id. An action associated with a particular severity-id pair shall take precedence over an action
associated with id as defined in this member function.

7.1.9.5 set_report_severity_id_action_hier

voi d set_report_severity_id_action_hier(uvmseverity severity,
const std::string& id,
uvm action action);

The member function set_report_severity id_action_hier shall recursively associate the specified action
with reports of the given severity withid pair. An action associated with a particular severity-id pair shall take

74
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

precedence over an action associated with id, which shall take precedence over an action associated with a
severity.

7.1.9.6 set_report_default_file_hier

void set_report_default_file_hier(UUMFILE file);

The member function set_report_default_file hier shall recursively associate the report to the default file
descriptor. A file associated with a particular severity-id pair shall take precedence over afile associated with
id, which shall take precedence over a file associated with a severity, which shall take precedence over the
default file descriptor as defined in this member function.

7.1.9.7 set_report_severity_file_hier

voi d set_report_severity_file_hier(uvmseverity severity,
UWM FILE file);

The member function set_report_severity file hier shall recursively associate the specified file descriptor
with reports of the given severity. A file associated with a particular severity-id pair shall take precedence
over afile associated with id, which shall take precedence over a file associated with a severity as defined
in this member function.

7.1.9.8 set_report_id_file_hier

void set_report_id_file_hier(const std::string& id,
UVM FILE file);

The member function set_report_id_file hier shall recursively associate the specified file descriptor with
reports of the given id. A file associated with a particular severity-id pair shall take precedence over afile
associated with id as defined in this member function.

7.1.9.9 set_report_severity_id_file_hier

void set_report_severity_id_file_hier(uvmseverity severity,
const std::string&id,
UM FI LE file);

Themember function set_report_severity_id_file_hier shall recursively associate the specified file descriptor
with reports of the given severity and id pair. A file associated with a particular severity-id pair shall take
precedence over afile associated with id, which shall take precedence over a file associated with a severity,
which shall take precedence over the default file descriptor.

7.1.9.10 set_report_verbosity_level_hier

voi d set_report_verbosity_|l evel _hier(int verbosity);

The member function set_report_verbosity level hier shall recursively set the maximum verbosity level for
reports for this component and all those below it. Any report from this component sub-tree whose verbosity
exceeds this maximum are ignored.

7.1.9.11 pre_abort

virtual void pre_abort();

75

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function pre_abort shall be executed when the message system is executing a UVM_EXIT
action. The exit action causes an immediate termination of the simulation, but the pre_abort callback hook
gives components an opportunity to provide additional information to the application before the termination
happens. For example, atest may want to execute the report function of a particular component even when
an error condition has happened to force a premature termination. The member function pre_abort shall be
called for all UVM components in the hierarchy in a bottom-up fashion.

7.1.10 Macros
UV M-SystemC defines the following macros for class uvm_component:

Utility macro UVM_COMPONENT_UTIL S(classname) to be used inside the Class definition, that expands
to:

— Thedeclaration of the member function get_type name, which returns the type of the class as string
— Thedeclaration of the member function get_type, which returns a factory proxy object for the type
— Theclass uvm_component_registry<classname> used by the factory.

Template classes shall use the macro UVM_COMPONENT_PARAM_UTILS, to guarantee correct
registration of one or more parameters passed to the classtemplate. Note that template classes are not eval uated
at compile-time, and thus not registered with the factory. Due to this, name-based |ookup with the factory for
template classes is not possible. Instead, an application shall use the member function get_type for factory
overrides.

7.2 uvm_driver

The class uvm_driver isthe base class for drivers that initiate requests for new transactions. The ports are
typically connected to the exports of an appropriate sequencer component of class uvm_sequencer .

7.2.1 Class definition

namespace uvm {

tenpl ate <typenanme REQ = uvm sequence_item typenane RSP = REQ>
class uvmdriver : public uvm conponent
{

public:

Il Ports

uvm seq_i tem pul | _port<REQ RSP> seq_item port;

uvm anal ysi s_port <RSP> rsp_port;

/1 Const uct or
explicit uvmdriver(uvm conponent_nane name);

/1 Menber function
virtual const std::string get_type_nanme() const;

}; /1 class uvmdriver

} /1 namespace uvm

7.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be aderivative of classuvm_sequence item.

76
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.2.3 Ports
7.2.3.1 seq_item_port

uvm seq_item pul | _port<REQ RSP> seq_item port;

The port seq_item_port of type uvm_seq_item_pull_port shall be defined to connect (bind) the driver to the
corresponding export in the sequencer.

NOTE—In line with the UVM-SystemV erilog syntax, the member function connect can be used to establish
the binding between the driver and the sequencer. The UVM-SystemC implementation also supports the
SystemC syntax using the member function bind or using oper ator () to perform the binding.

7.2.3.2 rsp_port

uvm anal ysi s_port <RSP> rsp_port;

The port rsp_port shall provide away of sending responses back to the connected sequencer.
7.2.4 Member functions

7.2.4.1 Constructor
explicit uvmdriver(uvm.conponent_name nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
7.2.4.2 get_type_name

virtual const std::string get_type_nane() const;

The member function get_type name shall return the type name of the object derived from this class as an
object of type std::string.

7.3 uvm_monitor

The class uvm_monitor is the base class for monitors. Deriving from uvm_monitor alows an application
to distinguish monitors from generic component types inheriting from uvm_component. Such monitors shall
automatically inherit features that may be added to uvm_monitor in the future.

7.3.1 Class definition

namespace uvm {

class uvmononitor : public uvm conponent

{
public:

/'l Constructor
explicit uvmononitor(uvm conponent_nanme nane);

/1 Menber function
virtual const std::string get_type_name() const;

}; // class uvm. nonitor

77

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} /1 namespace uvm

7.3.2 Member functions

7.3.2.1 Constructor
explicit uvmononitor(uvm conponent_nanme nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.3.2.2 get_type_name

virtual const std::string get_type_nane() const;

The member function get_type name shall return the type name of the object derived from this class as an
object of type std::string.

7.4 uvm_agent

The class uvm_agent is the base class for the creation of agents. Deriving from uvm_agent shall enable an
application to distinguish agents from other component types also using its inheritance. Such agents shall
automatically inherit features that may be added to uvm_agent in the future.

While an agent’s build function, inherited from uvm_component, can be implemented to define any agent
topology, an agent typically contains three subcomponents: a driver, sequencer, and monitor. If the agent is
active, subtypes should contain all three subcomponents. If the agent is passive, subtypes should contain only
the monitor.

7.4.1 Class definition

namespace uvm {
class uvm agent : public uvm conponent
{ .
public:

/'l Constructor
explicit uvm agent(uvm conponent_nanme nane);

/1 Menber functions
virtual const std::string get_type_name() const;
uvm active_passive_enumget _is_active() const;

}; // class uvm agent

} // namespace uvm

7.4.2 Member functions

7.4.2.1 Constructor

explicit uvmagent(uvm conponent_nanme nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

78

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.4.2.2 get_type_name
virtual const std::string get_type_nane() const;

The member function get_type name shall return the type name of the object derived from this class as an
object of type std::string.

7.4.2.3 get_is_active
uvm acti ve_passi ve_enum get _i s_active();

The member function get_is active shall return UVM_ACTIVE if the agent is acting as an active agent
and UVM_PASSIVE if it is acting as a passive agent (see Section 17.4.4). An application may override this
behavior if amore complex algorithm is needed to determine the active/passive nature of the agent.

7.5uvm_env

The class uvm_env is the base class for the creation of a self-containing verification environment, such as a
verification component which contains multiple agents.

7.5.1 Class definition

nanmespace uvm {
class uvmenv : public uvm conponent
{
public:

/1 Constructor
explicit uvmenv(uvm conponent _nanme nane);

/1 Menber function
virtual const std::string get_type_nane() const;

}; /1 class uvm.env

} /! namespace uvm

7.5.2 Member functions

7.5.2.1 Constructor

explicit uvm env(uvm conponent_nane name);

Constructor

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
7.5.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type name shall return the type name of the object derived from this class as an
object of type std::string.

79

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.6 uvm_test
The classuvm_test isthe base class for the test environment.

7.6.1 Class definition

nanmespace uvm {
class uvmtest : public uvm conponent
{
public:

/1 Constructor
explicit uvmtest(uvm . conponent_name nane);

/1 Menber function
virtual const std::string get_type_nane() const;

}; /1 class uvmtest

} // namespace uvm

7.6.2 Member functions

7.6.2.1 Constructor
explicit uvmtest(uvm.conponent_name nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
7.6.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type name shall return the type name of the object derived from this class as an
object of type std::string.

7.7 uvm_scoreboard

The classuvm_scor eboard isthe base classfor the creation of ascoreboard. Deriving from uvm_scor eboard
shall enable an application to distinguish scoreboards from other component types inheriting directly from
uvm_component. Such scoreboards shall automatically inherit and benefit from features that may be added
to uvm_scoreboard in the future.

7.7.1 Class definition

namespace uvm {

class uvm scoreboard : public uvm conmponent

{
public:
explicit uvm scoreboard(uvm conponent_nanme nane);
virtual const std::string get_type_nanme() const;
}; /1 class uvm scoreboard

} /1 namespace uvm

80
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

7.7.2 Member functions

7.7.2.1 Constructor

explicit uvmscoreboard(uvm conponent_nanme nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
7.7.2.2 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type_name shall return the type name of the component derived from this class as
an object of type std::string.

7.8 uvm_subscriber

The class uvm_subscriber is the base class for the creation of a subscriber. It provides an analysis export
for receiving transactions from a connected analysis export. Making such a connection “subscribes’ this
component to any transactions emitted by the connected analysis port.

Subtypes of this class shall define the member function write to process the incoming transactions. This class
is particularly useful when designing a coverage collector that attaches to a monitor.

7.8.1 Class definition

nanespace uvm {
tenpl ate <typenane T = int>
class uvm subscriber : public uvm conponent
{
public:

/1 Export
uvm anal ysi s_export<T> anal ysi s_export;

/1 Constructor
explicit uvmsubscriber(uvm conponent_nanme nane);

/1 Menber function
virtual const std::string get_type_nane() const;

}; /1 class uvm subscri ber

} // namespace uvm

7.8.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis export.
7.8.3 Export

7.8.3.1 analysis_export

uvm anal ysi s_export<T> anal ysi s_export;

81

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The export analysis_export shall provide access to the member function write, which derived subscribers
shall implement.

7.8.4 Member functions

7.8.4.1 Constructor

explicit uvm subscriber(uvm conponent_name nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
7.8.4.2 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type_name shall return the type name of the component derived from this class as
an object of type std::string.

82

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

8. Sequencer classes

The sequencer classes offer the interface between the stimuli generators (by means of sequences) and the
structural composition of the test infrastructure using verification components. The sequencer is integral
part of a verification component, which can be enabled in case the verification component is marked as
‘active’ (driving) element.

The segquencer processes the transactions, defined as objects derived from class uvm_sequence_item or class
uvm_sequence and passes these transactions to the driver (object derived from class uvm_driver).

The following sequencer classes are defined:
— uvm_sequencer_base
— uvm_sequencer_param_base
— uvm_sequencer

8.1 uvm_sequencer_base
The class uvm_sequencer_base isthe root base class for all sequencer classes.

8.1.1 Class definition

namespace uvm {

cl ass uvm sequencer_base : public uvm conponent
public:
/1 Constructor
explicit uvm sequencer_base(uvm conponent_nane nane);

/1 Menber functions
bool is_child (uvm sequence_base* parent, const uvm sequence_base* child) const;

virtual int user_priority_arbitration(
std::vector< uvm sequence_request* > avail _sequences);

virtual void execute_itenm(uvm sequence_itent item);
virtual void start_phase_sequence(uvm phase& phase);

virtual void wait_for_grant(uvm sequence_base* sequence_ptr,
int itempriority -1,
bool | ock_request fal se);

virtual void wait_for_itemdone(uvm sequence_base* sequence_ptr,
int transaction_id = -1);

bool is_blocked(const uvm sequence_base* sequence_ptr) const;
bool has_| ock(uvm sequence_base* sequence_ptr);
virtual void | ock(uvm sequence_base* sequence_ptr);
virtual void grab(uvm sequence_base* sequence_ptr);
virtual void unlock(uvm sequence_base* sequence_ptr);
virtual void ungrab(uvm sequence_base* sequence_ptr);
virtual void stop_sequences();

virtual bool is_grabbed() const;

virtual uvm sequence_base* current_grabber() const;
virtual bool has_do_avail able();

voi d set_arbitration(SEQ ARB_TYPE node);

SEQ ARB_TYPE get _arbitration() const;

virtual void wait_for_sequences();

virtual void send_request(uvm sequence_base* sequence_ptr,
uvm sequence_itent seq_item
bool rerandonmize = fal se);

}; /1 class uvm sequencer_base

83

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} /1 namespace uvm

8.1.2 Constructor

explicit uvm sequencer_base(uvm conmponent_name nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
8.1.3 Member functions

8.1.3.1is_child

bool is_child(uvm sequence_base* parent, const uvm sequence_base* child) const;

The member function is_child shall return true if the child sequence is a child of the parent sequence and
false otherwise.

8.1.3.2 user_priority_arbitration

virtual int user_priority_arbitration(
std::vector< uvm sequence_request* > avail _sequences);

The member function user_priority_arbitration shall be caled by an application when the sequencer
arbitration modeissetto SEQ_ARB_USER (viathemember function set_ar bitration) each timethat it needs
to arbitrate among sequences. Derived sequencers may override this member function to perform a custom
arbitration policy. The override shall return one of the entries from the avail _sequences queue, which are
indexes into an internal queue of type std::vector< uvm_sequence request* >. The default implementation
shall behave similar as SEQ_ARB_FIFO, which returns the first entry of avail _sequences.

8.1.3.3 execute_item

virtual void execute_item uvmsequence_itent item);

The member function execute item shall execute the given transaction item given as argument directly on
this sequencer. A temporary parent sequence is automatically created for the item. There is no capability to
retrieve responses. If thedriver returns responses, it accumulatesin the sequencer, eventually causing response
overflow unless member function uvm_sequence base::set_response queue error_report_disabled is
called.

8.1.3.4 start_phase_sequence

virtual void start_phase_sequence(uvm phase phase);

The member function start_phase sequence shall start the default sequence for the phase given as argument.
The default sequence is configured via resources using either a sequence instance or sequence type (object
wrapper). If both are used, the sequence instance takes precedence. When attempting to override a previous
default sequence setting, an application shall override both the instance and type (wrapper) resources, else the
override may not take effect.

8.1.3.5 wait_for_grant

virtual void wait_for_grant(uvm sequence_base* sequence_ptr,
int itempriority = -1,

84

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

bool | ock_request = false);

The member function wait_for_grant shall issue a request for the specified sequence. If item priority is not
specified, then the current sequence priority shall be used by the arbiter. If alock request is made, then the
sequencer shall issue alock immediately before granting the sequence. The lock may be granted without the
sequence being granted if the member function is_relevant of the sequence instance is not asserted.

When this member function returns, the sequencer has granted the sequence, and the sequence shall call
send_request without inserting any ssimulation delay other than delta cycles. The driver is currently waiting
for the next item to be sent viathe send_request call.

8.1.3.6 wait_for_item_done

virtual void wait_for_itemdone(uvm sequence_base* sequence_ptr,
int transaction_id = -1);

The member function wait_for_item_done shall block the sequence until the driver callsitem_done or put
on a transaction issued by the specified sequence. If no transaction_id parameter is specified, then the call
shall return the next time that the driver callsitem_done or put. If a specific transaction_id is specified, then
the call shall only return when the driver indicates that it has completed that specific item.

8.1.3.7 is_blocked

bool is_bl ocked(const uvm sequence_base* sequence_ptr) const;

The member function is_blocked shall return true if the sequence referred to by sequence ptr is currently
locked out of the sequencer. It shall return falseif the sequenceis currently allowed to issue operations.

Even when a sequence is not blocked, it is possible for another sequence to issue alock before this sequence
isableto issue arequest or lock.

8.1.3.8 has_lock

bool has_| ock(uvm sequence_base* sequence_ptr);

The member function has lock shall return true if the sequence referred to in the parameter currently has a
lock on the sequencer; otherwise it shall return false. Even if this sequence has alock, a child sequence may
also have alock, in which case the sequenceis still blocked from issuing operations on the sequencer.

8.1.3.9 lock

virtual void | ock(uvm sequence_base* sequence_ptr);

The member function lock shall request a lock for the sequence specified by the specified argument
seguence ptr. A lock request shall be arbitrated the same as any other request. A lock isgranted after all earlier
requests are completed and no other locks or grabs are blocking this sequence. Thelock call shall return when
the lock has been granted.

8.1.3.10 grab

virtual void grab(uvm sequence_base* sequence_ptr);

85

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function grab shall request a grab for the sequence specified by the specified argument
seguence ptr. A grab request is put in front of the arbitration queue. It shall be arbitrated before any other
requests. A grab is granted when no other grabs or locks are blocking this sequence. The grab call shall return
when the grab has been granted.

8.1.3.11 unlock

virtual void unlock(uvm sequence_base* sequence_ptr);

The member function unlock shall remove any locks and grabs obtained by the specified argument
sequence_ptr.

8.1.3.12 ungrab

virtual void ungrab(uvm sequence_base* sequence_ptr);

The member function ungrab shall remove any locks and grabs obtained by the specified argument
sequence _ptr.

8.1.3.13 stop_sequences

virtual void stop_sequences();

The member function stop_sequences shall inform the sequencer to kill all sequences and child sequences
currently operating on the sequencer, and remove all requests, locks and responses that are currently queued.
This essentially resets the sequencer to an idle state.

8.1.3.14 is_grabbed

virtual bool is_grabbed() const;

The member function is_grabbed shall return true if any sequence currently has a lock or grab on this
seguencer; otherwiseit shall return false.

8.1.3.15 current_grabber

virtual uvm sequence_base* current_grabber() const;

The member function current_grabber shall return a pointer to the sequence that currently hasalock or grab
on the sequence. If multiple hierarchical sequences have a lock, it returns the child that is currently allowed
to perform operations on the sequencer.

8.1.3.16 has_do_available

virtual bool has_do_avail abl e();

The member function has_do_available shall return true if any sequence running on this sequencer is ready
to supply atransaction, otherwiseit shall return false.

86

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

8.1.3.17 set_arbitration

void set_arbitration(SEQ ARB_TYPE node);

The member function set_arbitration shall set the arbitration mode for the sequencer. The argument mode
shall be of type SEQ_ARB_TYPE and set to:

— SEQ_ARB_FIFO: Requests are granted in FIFO order (default).

— SEQ_ARB_WEIGHTED: Requests are granted randomly by weight.

— SEQ_ARB_RANDOM: Requests are granted randomly.

— SEQ_ARB_STRICT_FIFO: Requests at highest priority granted in FIFO order.

— SEQ _ARB_STRICT_RANDOM: Requests at highest priority granted in randomly.

— SEQ_ARB_USER: Arbitration is delegated to the user-defined member function,
user_priority_arbitration, which specifies the next sequence to grant.

The default arbitration mechanism shall be set to SEQ_ARB_FIFO.
8.1.3.18 get_arbitration

SEQ ARB_TYPE get _arbitration() const;

The member function get_arbitration shall return the current arbitration mode set for the sequencer (see
Section 8.1.3.20).

8.1.3.19 wait_for_sequences

virtual void wait_for_sequences();

The member function wait_for_sequences shall wait for a sequence to have a new item available.

8.1.3.20 send_request

virtual void send_request(uvm sequence_base* sequence_ptr,
uvm sequence_i tent seq_item
bool rerandonize = false);

Derived classes shall implement the member function send_request to send a request item to the sequencer,
which shall forward it to the driver.

This member function shall only be called after await_for_grant call.

NOTE—Randomization is not yet supported in UVM-SystemC.

8.2 uvm_sequencer_param_base

The class uvm_sequencer_param_base extends the base class uvm_sequencer _base for specific request
(REQ) and response (RSP) types, which are specified as template arguments.

8.2.1 Class definition

namespace uvm {

87

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

tenpl ate <typenanme REQ = uvm sequence_item typenane RSP = REQ>
cl ass uvm sequencer_param base : public uvm sequencer_base

{
public:
/1 Constructor
explicit uvm sequencer_param base(uvm conponent _nane nane);
/'l Group: Requests
voi d send_request(uvm sequence_base* sequence_ptr,
uvm sequence_itent seq_item
bool rerandomize = false);
REQ get _current _iten() const;
}; /1 class uvm sequencer_param base

} /1 namespace uvm

8.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be aderivative of classuvm_sequence item.

8.2.3 Constructor

explicit uvm sequencer_param base(uvm conmponent_name nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
8.2.4 Requests

8.2.4.1 send_request

virtual void send_request(uvm sequence_base* sequence_ptr,
uvm sequence_i tent seq_item
bool rerandonmi ze = false);

The member function send_request sends a request item pointed to by seq item to the sequencer pointed to
by sequence ptr. The sequencer shall forward it to the driver. This member function shall only be called after
acall to member function wait_for_grant.

NOTE—Randomization is not yet supported in UVM-SystemC.
8.2.4.2 get_current_item

REQ get _current _iten() const;

The member function get_current_item shall return the requested item of type REQ, which is currently being
executed by the sequencer. If the sequencer is not currently executing an item, this member function shall
return NULL.

The sequencer is executing an item from the time that get_next_item or peek is called by the driver until the
time that member function get or item_done is called by the driver. In case a driver calls member function
get, the current item cannot be shown, since the item is completed at the sametime asit is requested.

88

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

8.3 uvm_sequencer

The classuvm_sequencer definesthe interface for the TLM communication of sequences or sequence-items
by providing access via an export object of classsc_export.

8.3.1 Class definition

nanmespace uvm {

tenpl ate <typenane REQ = uvm sequence_item typenane RSP = REQ>
class uvm sequencer : public uvm sequencer_param base<REQ RSP>,
public uvmsqr_if_base<REQ RSP>
{
public:
/1 Constructor
explicit uvm sequencer(uvm conponent_nanme nane);

/1 G oup: Exports
uvm seq_item pul | _i p<REQ RSP, this> seq_item export;
/1 Goup: Sequencer interface
virtual REQ get_next_iten(REQ* req = NULL);
virtual bool try_next_itenm{ REQ& req);
virtual void itemdone(const RSP& item bool use_item= true);
virtual void itemdone();
virtual REQ get(REQ* req = NULL);
virtual void get(REQ& req);
virtual REQ peek(REQ* req = NULL);
virtual void put(const RSP& rsp);
virtual void stop_sequences();
}; /1 class uvm sequencer

} // namespace uvm

8.3.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be aderivative of class uvm_sequence_item.

8.3.3 Constructor

explicit uvm sequencer(uvm conponent_name nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
8.3.4 Exports

8.3.4.1 seq_item_export

uvm seq_itempul | _i np<REQ RSP, this > seq_item export;

The export seq_item_export shall provide access to the sequencer’'s implementation
uvm_seq_item_pull_imp viathe sequencer interface uvm_sgr_if_base<REQ, RSP> (see Section 14.13).

8.3.5 Sequencer interface
8.3.5.1 get_next_item

virtual REQ get_next_iten(REQ* req = NULL);

89

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_next_item shall retrieve the next available item from a sequence (see also Section
14.13.3.1).

8.3.5.2 try_next_item

virtual bool try_next_item(REQ& req);

The member function try_next_item shall retrieve the next available item from a sequence if oneis available
(see also Section 14.13.3.2).

8.3.5.3 item_done

virtual void itemdone(const RSP& item bool use_item= true);
virtual void itemdone();

The member function item_done shall indicate that the request is completed (see also Section 14.13.3.3).

8.3.5.4 get

virtual REQ get(REQ* req = NULL);
virtual void get(REQ& req);

The member function get shall retrieve the next available item from a sequence (see also Section 14.13.3.4).
8.3.5.5 peek

virtual REQ peek(REQ* req = NULL);

The member function peek shall return the current request item if one is in the FIFO (see also Section
14.13.3.5).

8.3.5.6 put

virtual void put(const RSP& rsp);

The member function put shall send a response back to the sequence that issued the request (see also Section
14.13.3.6).

8.3.5.7 stop_sequences

virtual void stop_sequences();

The member function stop_sequences shall tell the sequencer to kill all sequences and child sequences
currently operating on the sequencer, and remove all requests, locks and responses that are currently queued.
This essentially resets the sequencer to an idle state.

8.3.6 Macros

8.3.6.1 UVYM_DECLARE_P_SEQUENCER

UVM DECLARE P_SEQUENCER(SEQUENCER) ;

90
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The macro UVM_DECLARE_P_SEQUENCER shal declare a variable p_sequencer whose type is
specified by the argument SEQUENCER.

91

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9. Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsul ated
as a sequence or sequence item. As the sequences and sequence items only describe stimuli, they are
independent and thus not part of the structural hierarchy of a UVM agent (in which sequencer, driver and
monitor resides). Instead, they are included at a higher functional layer defined within the UVM environment
(e.g. encapsulated within a verification component derived from class uvm_env) or as part of a UVM test
environment (component derived from class uvm_test).

The following sequence classes are defined:
— uvm_transaction
— uvm_sequence item
— uvm_sequence _base
— uvm_sequence

When sequences are executed parallel, the sequencer shall arbitrate among the parallel sequences. By default,
requests are granted in afirst-in-first-out (FIFO) order (see Section 8.1.3.17).

9.1 uvm_transaction

The class uvm_transaction is the root base class for al UVM transactions. As such, the class
uvm_sequence_item shall be derived from this class. The main purpose of this classisto provide timestamp
properties, notification events, and transaction recording.

9.1.1 Class definition

nanmespace uvm {

class uvmtransaction : public uvm object

{
public:
/'l Constructors
uvm transaction();
explicit uvmtransaction(const std::string& name);

/1 Menber functions
void set_transaction_id(int id);
int get_transaction_id() const;

}; // class uvmtransaction

} // namespace uvm

9.1.2 Constructors

uvm transaction();
explicit uvmtransaction(const std::string& name);

The constructor shall create and initialize an instance of the class, which is derived from class uvm_object,
with the name name passed as an argument.

9.1.3 Constraints on usage

An application shall not create transactions based on this base class. Instead, it shall use the class
uvm_sequence_item or class uvm_sequence.

92

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.1.4 Member functions

9.1.4.1 set_transaction_id
void set_transaction_id(int id);

The member function set_transaction_id shall set the transaction’s numeric identifier (ID), passed as
argument id. If the transaction ID is not set via this member function, the transaction ID defaultsto -1.

When using sequences to generate stimulus, the transaction ID is used along with the sequence ID to route
responses in sequencers and to correlate responses to regquests.

9.1.4.2 get_transaction_id

int get_transaction_id() const;

The member function get_transaction_id shall return the transaction’s numeric identifier (ID), whichis-1if
not set explicitly by set_transaction_id.

When using an object derived from class uvm_sequence<REQ, RSP> to generate stimulus, the transaction
ID is used along with the sequence ID to route responses in sequencers and to correl ate responses to requests.

9.2 uvm_sequence_item

The class uvm_sequence _item is the base class for application-defined sequence items and also serves
as the base class for class uvm_sequence. The class uvm_sequence_item provides basic functionality for
transactional objects, both sequence items and sequences, to operate in the sequence mechanism.

9.2.1 Class definition

namespace uvm {

class uvm sequence_item: public uvmtransaction
{
public:
| Constructors
uvm sequence_iten();
explicit uvmsequence_item const std::string& name);

/1 Menber functions

voi d set _use_sequence_i nfo(bool value);

bool get_use_sequence_info() const;

void set_id_info(uvmsequence_iten& item);

virtual void set_sequencer(uvm sequencer_base* sequencer);
uvm sequencer _base* get_sequencer () const;

voi d set _parent _sequence(uvm sequence_base* parent);
uvm sequence_base* get_parent_sequence() const;

voi d set_depth(int value);

int get_depth() const;

virtual bool is_itenm() const;

const std::string get_root_sequence_nane() const;
const uvm sequence_base* get_root_sequence() const;
const std::string get_sequence_path() const;

}; /1 class uvm sequence_item

} // namespace uvm

93

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.2.2 Constructors

uvm sequence_iten();
explicit uvmsequence_item const std::string& name);

The constructor shall create and initialize an instance of the class with the name namepassed as an argument.
9.2.3 Member functions
9.2.3.1 set_use_sequence_info

voi d set_use_sequence_i nfo(bool value);

The member function set_use sequence info shall enable or disable printing, copying, or recording of
sequence information (sequencer, parent_seguence, sequence_id, etc.). When the argument of this member
function is set to false, then the usage of sequence information shall be disabled. When the argument of this
member function is set to true, the printing and copying of sequence information shall be enabled.

9.2.3.2 get_use_sequence_info

bool get_use_sequence_info() const;

The member function get_use sequence_info shall return true if the usage of sequence information, such as
printing and copying of sequence information, has been enabled. The member function shall return falseif the
usage of sequence information has been disabled.

9.2.3.3 set_id_info
void set_id_info(uvmsequence_iten& item);

The member function set_id_info shall copy the sequence ID and transaction I D from the referenced item into
the calling item. This routine should always be used by driversto initialize responses for future compatibility.

9.2.3.4 set_sequencer

virtual void set_sequencer(uvm sequencer_base* sequencer);

The member function set_sequencer shall set the default sequencer, passed as argument, to be used for the
sequence or sequence item for which this member function is caled. It shall take effect immediately, so it
should not be called while the sequence is actively communicating with the sequencer.

9.2.3.5 get_sequencer

uvm sequencer _base* get_sequencer () const;

The member function get_sequencer shall return a pointer to the default sequencer used by the sequence or
seguence item for which this member function is called.

9.2.3.6 set_parent_sequence

voi d set _parent _sequence(uvm sequence_base* parent);

94

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_parent_sequence shall set the parent sequence, passed as an argument, of the
sequence or sequence item.

9.2.3.7 get_parent_sequence
uvm sequence_base* get_parent_sequence() const;

The member function get_parent_sequence shall return a pointer to the parent sequence of any sequence for
which this member function was called. If thisis a parent sequence, the member function shall return NULL.

9.2.3.8 set_depth
voi d set_depth(int value);

The member function set_depth shall set the depth of a particular sequence. If this member function is not
called, the depth of any sequence shall be calculated automatically. When called, the member function shall
override the automatically calculated depth, even if it isincorrect.

9.2.3.9 get_depth

int get_depth() const;

The member function get_depth shall return the depth of sequence from its parent. A parent sequence has a
depth of 1, its child has a depth of 2, and its grandchild has a depth of 3.

9.2.3.10is_item

virtual bool is_iten() const;

The member function is_item shall return true when the object for which the member function is called is
derived from uvm_sequence_item. It shall return false if the object is derived from class uvm_sequence.

9.2.3.11 get_root_sequence_name

const std::string get_root_sequence_nane() const;

The member function get_root_sequence _name shall provide the name of the root sequence (the top-most
parent sequence).

9.2.3.12 get_root_sequence

const uvm sequence_base* get_root_sequence() const;

The member function get_root_sequence shall provide a reference to the root sequence (the top-most parent
seguence).

9.2.3.13 get_sequence_path

const std::string get_sequence_path() const;

95

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_sequence path shall provide a string of names of each sequence in the full
hierarchical path. The dot character ‘.’ is used as the separator between each sequence.

9.3 uvm_sequence_base

The class uvm_sequence_base defines the primary interface member functions to create, control and execute
the sequences.

9.3.1 Class definition

namespace uvm {

cl ass uvm sequence_base : public uvm sequence_item

public:
/1 Constructor
explicit uvm sequence_base(const std::string& name);

/'l Group: Sequence state
uvm sequence_st at e_enum get _sequence_state() const;
voi d wait_for_sequence_state(unsigned int state_mask);

/1 Group: Sequence execution

virtual void start(uvm sequencer_base* sqr,
uvm sequence_base* parent_sequence = NULL,
int this_priority = -1,
bool call _pre_post = true);

virtual void pre_start();

virtual void pre_body();

virtual void pre_do(bool is_item);

virtual void md_do(uvm sequence_itent this_item);
virtual void body();

virtual void post_do(uvm sequence_itent this_item);
virtual void post_body();

virtual void post_start();

/1 Group: Run-tinme phasing

uvm phase* get_starting_phase() const;

voi d set_starting_phase(uvm phase* phase);

bool get_autonati c_phase_objection() const;

voi d set_automati c_phase_obj ection(bool value);

/1 Group: Sequence control

void set_priority(int value);

int get_priority() const;

virtual bool is_relevant() const;

virtual void wait_for_relevant() const;

voi d | ock(uvm sequencer_base* sequencer NULL);
voi d grab(uvm sequencer_base* sequencer = NULL);
voi d unl ock(uvm sequencer _base* sequencer = NULL);
voi d ungrab(uvm sequencer _base* sequencer = NULL);
bool is_blocked() const;

bool has_I ock();

void kill();

virtual void do_kill();

/1 Group: Sequence item execution

uvm sequence_i tent create_iten(uvm object_w apper* type_var,
uvm sequencer _base* | _sequencer,
const std::string& nane);

virtual void start_iten(uvm sequence_itent item
int set_priority = -1,
uvm sequencer _base* sequencer = NULL);

virtual void finish_iten(uvm sequence_itent item
int set_priority =-1);

virtual void wait_for_grant(int itempriority = -1,
bool |ock_request = false);
96

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void send_request(uvm sequence_itent request,
bool rerandomize = false);

virtual void wait_for_itemdone(int transaction_id = -1);
/'l Group: Response interface
voi d use_response_handl er(bool enable);
bool get_use_response_handl er() const;
virtual void response_handl er(const uvm sequence_iten¥ response);
voi d set_response_queue_error_report_di sabl ed(bool value);
bool get_response_queue_error_report_disabl ed() const;
voi d set_response_queue_depth(int value);
int get_response_queue_depth() const;
virtual void clear_response_queue();
}; /1 class uvm sequence_base

} /1 namespace uvm

9.3.2 Constructor

explicit uvmsequence_base(const std::string& nanme);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
9.3.3 Sequence state

9.3.3.1 get_sequence_state

uvm sequence_st at e_enum get _sequence_state() const;

The member function get_sequence state shall return the sequence state as an enumerated value of type
uvm_sequence_state_enum (see Section 17.4.5). This member function can be used to wait on the sequence
reaching or changing from one or more states.

9.3.3.2 wait_for_sequence_state

voi d wait_for_sequence_state(unsigned int state_mask);

The member function wait_for_sequence_state shall wait until the sequence reaches one of the given states.
If the sequenceis already in one of these states, the member function shall return immediately.

9.3.4 Sequence execution

9.3.4.1 start

virtual void start(uvm sequencer_base* sqr,
uvm sequence_base* parent_sequence = NULL,
int this_priority = -1,
bool call_pre_post = true);

The member function start shall execute the sequence. The argument sequencer specifies the sequencer on
which to run this sequence. The sequencer shall be compatible with the sequence, that is, the sequencer shall
recognize the communicated request and response types.

If parent_sequence is not passed as argument or set to NULL, then the sequenceis treated as aroot sequence,
otherwiseit isachild of a parent sequence. In the latter case, the parent sequence’ s member functionspre_do,
mid_do, and post_do shall be called during the execution of this sequence.

97

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If this_priority is nhot passed as argument or set to -1, the priority of a sequenceis set to priority of its parent
seguence. If itisaroot (parent) sequence, its default priority is 100. A different priority greater than zero may
be specified using this argument. Higher numbers indicate higher priority.

If argument call_pre _post is not passed or set to true, then the member functions pre_body and post_body
shall be called before and after calling the member function body of the sequence.

9.3.4.2 pre_start

virtual void pre_start();

The member function pre_start shall be provided as a callback for the application that is called before the
optional execution of member function pre_body. The application shall not call this member function.

9.3.4.3 pre_body

virtual void pre_body();

The member function pre_body shall be provided as a callback for the application that is called before the
execution of member function body, but only when the sequence is started by using member function start.
If start iscalled with argument call_pre post set to false, the member function pre_body shall not be called.
The application shall not call this member function.

9.3.4.4 pre_do
virtual void pre_do(bool is_item);

The member function pre_do shall be provided as a callback for the application that is called on the parent
seguence, if the sequence hasissued await_for_grant call and after the sequencer has selected this sequence,
and before the item is randomized. The application shall not call this member function.

9.3.4.5 mid_do
virtual void md_do(uvm sequence_itent this_item);

Themember functionmid_do shall be provided asacallback for the application that iscalled after the sequence
item has been randomized, and just before the item is sent to the driver. The application shall not call this
member function.

9.3.4.6 body

virtual void body();

The member function body shall be provided as a callback for the application that is called before the optional
execution of member function post_body. The application shall not call this member function.

NOTE—In an application, the implementation of the sequence resides in this member function.

9.3.4.7 post_do

virtual void post_do(uvmsequence_itent this_item);

98

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function post_do shall be provided as a callback for the application that is called after the driver
has indicated that it has completed the sequence item, calling either the member function item_done or put.
The application shall not call this member function.

9.3.4.8 post_body

virtual void post_body();

The member function post_body shall be provided as a callback for the application that is called before the
execution of member function post_start, but only when the sequence is started by using member function
start. If start is called with argument call_pre post set to false, the member function post_body shall not be
called. The application shall not call this member function.

9.3.4.9 post_start

virtual void post_start();

The member function post_start shall be provided as a callback for the application that is called after the
optional execution of member function post_body. The application shall not call this member function.

9.3.5 Run-time phasing
9.3.5.1 get_starting_phase

uvm phase* get_starting_phase() const;

The member function get_starting_phase shall return the starting phase.

If non-null, the starting phase specifies the phase in which this sequence was started. The starting phaseis set
automatically when this sequence is started as the default sequence on a sequencer.

9.3.5.2 set_starting_phase

voi d set_starting_phase(uvm phase* phase);

The member function set_starting_phase shall specify the starting phase.
9.3.5.3 get_automatic_phase_objection

bool get_autonati c_phase_objection() const;

The member function get_automatic_phase objection shall return and lock the automatically objection state
of the starting phase.

If the member functions returnstrue, the sequence automatically rai ses an objection to the starting phase (if the
starting phase is not NULL) immediately prior to pre_start (see Section 9.3.4.2) being called. The objection
isdropped after post_start (see Section 9.3.4.9) has executed, or Kill (see Section 9.3.6.11) has been called.

9.3.5.4 set_automatic_phase_objection

voi d set _aut omati c_phase_obj ecti on(bool value);

99

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_automatic_phase objection shall set the automatically objection state of the
starting phase.

The most common interaction with the starting phase within asequenceisto simply raise the phase' s objection
prior to executing the sequence, and drop the objection after ending the sequence, either naturally, or viaacall
to kill. In order to simplify this interaction for an application, the implementation shall provide the ability to
perform this functionality automatically.

NOTE—An application should not call the member function set_automatic_phase objection(true) if a
seguence runs with aforever loop inside of the body, as the objection will never get dropped.

9.3.6 Sequence control

9.3.6.1 set_priority

void set_priority(int value);

Themember function set_priority shall set the priority of asequence. The default priority valuefor aseguence
is 100. Higher values result in higher priorities. When the priority of a sequence is changed, the new priority
shall be used by the sequencer the next time that it arbitrates between sequences.

9.3.6.2 get_priority

int get_priority() const;

The member function get_priority shall return the current priority of the sequence.
9.3.6.3is_relevant

virtual bool is_relevant() const;

The member function is relevant shall mark a sequence as being relevant or not. By default, the member
function is_relevant shall return true, indicating that the sequenceis always relevant.

An application may choose to overload this member function to indicate to the sequencer that the sequence
is not currently relevant after a request has been made. Any sequence that implements the member function
is relevant shall also implement wait_for_relevant, to enable a sequencer to wait for a sequence to become
relevant.

When the sequencer arbitrates, it shall call the member function is_relevant on each reguesting, unblocked
seguence to see if it isrelevant. If this member function returns false, then the sequence is not used.

If all requesting sequences are not relevant, then the sequencer shall call wait_for_relevant on all sequences
and re-arbitrate upon its return.

9.3.6.4 wait_for_relevant

virtual void wait_for_relevant() const;

The member function shall be called by the sequencer when all available sequences are not relevant. When
wait_for_relevant returns, the sequencer attempts to re-arbitrate.

100

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Returning from this call does not guarantee that a sequence is relevant, although that would be theideal. This
member function shall provide some delay to prevent an infinite loop.

If asequence definesis relevant so that it is not always relevant (by default, a sequence is always relevant),
then the sequence shall also implement the member function wait_for_relevant.

9.3.6.5 lock

voi d | ock(uvm sequencer _base* sequencer = NULL);

The member function lock shall request alock on the specified sequencer. If sequencer is NULL, thelock is
requested on the current default sequencer. A lock request shall be arbitrated the same as any other request. A
lock is granted after al earlier requests are completed and no other locks or grabs are blocking this sequence.
Thelock call shall return when the lock has been granted.

9.3.6.6 grab

voi d grab(uvm sequencer _base* sequencer = NULL);

The member function grab shall request alock on the specified sequencer. If sequencer isNULL, thegrabis
requested on the current default sequencer. A grab request is put in front of the arbitration queue. It shall be
arbitrated before any other requests. A grab is granted when no other grabs or locks are blocking this sequence.
The grab call shall return when the grab has been granted.

9.3.6.7 unlock

voi d unl ock(uvm sequencer_base* sequencer = NULL);

The member function unlock shall remove any locks or grabs obtained by this sequence on the specified
seguencer. If the sequencer is NULL, then the unlock is done on the current default sequencer.

9.3.6.8 ungrab

voi d ungrab(uvm sequencer _base* sequencer = NULL);

The member function ungrab shall remove any locks or grabs obtained by this sequence on the specified
sequencer. |f the sequencer is NULL, then the ungrab is done on the current default sequencer.

9.3.6.9is_blocked
bool is_blocked() const;

The member function is_blocked shall return a Boolean type indicating whether this sequence is currently
prevented from running due to another lock or grab. A trueisreturned if the sequenceis currently blocked. A
falseisreturned if no lock or grab prevents this sequence from executing. Even if a sequence is not blocked,
it is possible for another sequence to issue alock or grab before this sequence can issue a request.

9.3.6.10 has_lock

bool has_l ock();

101

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function has lock shall return true if this sequence has a lock; otherwise it shall return false.
Even if this sequence has a lock, a child sequence may also have alock, in which case the sequence is still
blocked from issuing operations on the sequencer.

9.3.6.11 kill
void kill();

Themember functionkill shall shall kill the sequence, and causeall current locksand requestsin the sequence’s
default sequencer to be removed. The segquence state shall be changed to UVM _STOPPED and the callback
functions post_body and post_start are not being executed.

9.3.6.12 do_Kkill
virtual void do_Kkill();

The member function do_kill shall provide a callback for an application that is called whenever a sequence
isterminated by using either Kill or stop_sequences.

9.3.7 Sequence item execution

9.3.7.1 create_item

uvm sequence_itent create_iten(uvm object_w apper* type_var,
uvm sequencer _base* | _sequencer,
const std::string& nanme);

The member function create_item shall create and initialize a sequence item of class uvm_sequence_item
or sequence of class uvm_sequence using the factory. The type of the created object, being a sequence
item or sequence, is defined by the first argument type var, which shall be of type uvm_sequence_item or
uvm_sequence only. The sequence item or sequence shall be initialized to communicate with the specified
sequencer |_sequencer passed as second argument. The name of the created item shall be passed as third
argument.

9.3.7.2 start_item

virtual void start_iten{ uvm sequence_itent item
int set_priority = -1,
uvm sequencer _base* sequencer = NULL);

The member function start_item shall initiate execution of a sequence item specified as argument item. If the
item has not aready been initialized using member function create _item, then it isinitialized here by using
the sequencer specified by argument sequencer. If argument sequencer is not specified or set to NULL, the
default sequencer shall be used (see also Section 9.2.3.4). The argument set_priority can be used to specify
the priority for the execution. If argument set_priority is not specified or set to -1, the default priority shall be
100. Randomization, or other member functions, may be done between start_item and finish_item to ensure
late generation.

9.3.7.3 finish_item

virtual void finish_iten(uvm sequence_itent item
int set_priority =-1);

102
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function finish_item shall finalize execution of execution of a sequence item specified as
argument item. The member function shall be called after start_item with no delays or delta-cycles. The
argument set_priority can be used to specify the priority for the execution. If argument set_priority is not
specified or set to -1, the default priority shall be 100. Randomization, or other member functions, may be
called between start_item and finish_item.

9.3.7.4 wait_for_grant

-1

virtual void wait_for_grant(int itempriority s
false);

bool | ock_request

The member function wait_for_grant shall issue arequest to the current sequencer. If argument item_priority
isnot specified or setto-1, then the current sequence priority isused by the arbiter. If theargument lock_request
is set to true, then the sequencer shall issue alock immediately before granting the sequence.

NOTE—The lock may be granted without the sequence being granted if member function is _relevant is not
asserted.

9.3.7.5 send_request

virtual void send_request(uvm sequence_itent request,
bool rerandomize = false);

The member function send_request shall send the request item, passed as an argument, to the sequencer,
which shall forward it to the driver. If argument rerandomize is set to true, the item is randomized before
being sent to the driver.

NOTE 1—In an application, the member function send_request shall only be called after a call to
wait_for_grant.

NOTE 2—Randomization is not yet supported in UVM-SystemC.
9.3.7.6 wait_for_item_done

virtual void wait_for_itemdone(int transaction_id = -1);

The member function wait_for_item_done shall block until the driver cals item_done or put. If no
transaction_id argument is specified, then the call shall return the next time that the driver calls item_done
or put. If aspecific transaction_id is specified, then the call shall return when the driver indicates completion
of that specific item.

NOTE—If a specific transaction _id has been specified, and the driver has already issued anitem_done or put
for that transaction, then the call hangs, having missed the earlier notification.

9.3.8 Response interface

9.3.8.1 use_response_handler

voi d use_response_handl er (bool enable);

The member function use response handler shall send responses to the response handler when argument
enable is set to true. By default, responses from the driver are retrieved in the sequence by calling member
function get_response.

103

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.3.8.2 get_use_response_handler

bool get_use_response_handl er() const;

The member function get_use response handler shall return the state set by use response_handler. If this
member function returns false, the response handler is disabled.

9.3.8.3 response_handler

virtual void response_handl er(const uvm sequence_iten¥ response);

The member functionresponse_handler shall be provided to enable the sequencer, in case returnstrue, to call
this member function for each response that arrives for this sequence.

9.3.8.4 set_response_queue_error_report_disabled

voi d set_response_queue_error_report_di sabl ed(bool value);

The member function set_response_queue _error_report_disabled shall enable error reporting of overflows
of the reponse queue. The response queue shall overflow if more responses are sent to this sequence from the
driver than callsto member function get_response are made. If argument valueis set to false, error reportingis
disabled. If argument valueis set to true, error reporting isenabled. By default, if the response queue overflows,
an error isreported.

9.3.8.5 get_response_queue_error_report_disabled

bool get_response_queue_error_report_di sabl ed() const;

The member function get_response queue error_report_disabled shall return the reporting status of an
overflow of the response queue. It returns false when error reports are generated and returns true if no such
error reports are generated.

9.3.8.6 set_response_queue_depth

voi d set_response_queue_depth(int value);

The member function set_response queue depth shall set the depth of the reponse queue. The default
maximum depth of the response queue is 8. An argument value of -1 defines an unbound response queue.

9.3.8.7 get_response_queue_depth

int get_response_queue_depth() const;

The member function get_response_queue_depth shall return the current depth for the response queue. An
unbound response queue returns the value - 1.

9.3.8.8 clear_response_queue

virtual void clear_response_queue();

The member function clear_response queue shall empty the response queue for the sequence.

104

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

9.4 uvm_sequence

The classuvm_sequence extends the base classuvm_sequence_basefor specific request (REQ) and response
(RSP) types, which are specified as template arguments.

9.4.1 Class definition

nanmespace uvm {
tenpl ate <typename REQ = uvm sequence_item typenane RSP = REQ>

cl ass uvm sequence : public uvm sequence_base

{
public:
/1 Constructor
explicit uvmsequence(const std::string& nanme);
/1 Menber functions
voi d send_request (uvm sequence_itenf request,

bool rerandonmi ze = false);

REQ get _current _iten() const;

virtual void get_response(RSP* response,
int transaction_id = -1);

}; // class uvm sequence

} // namespace uvm

9.4.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be aderivative of class uvm_sequence_item.

9.4.3 Constructor

explicit uvmsequence(const std::string& nane);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.
9.4.4 Member functions
9.4.4.1 send_request

voi d send_request(uvm sequence_itent request,
bool rerandom ze = false);

The member function send_request shall send the request item, passed as an argument, to the segquencer,
which shall forward it to the driver. If argument rerandomize is set to true, the item is randomized before
being sent to the driver.

NOTE 1—In an application, the member function send_request shall only be called after a call to
wait_for_grant.

NOTE 2—Randomization is not yet supported in UVM-SystemC.

9.4.4.2 get_current_item

REQ get _current _iten() const;

105
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_current_item shall return the request item currently being executed by the
seguencer. If the sequencer is not currently executing an item, this member function shall return NULL. The
seguencer is executing an item from the time that get_next_item or peek is called until the time that get or
item_doneiscalled.

NOTE—A driver that only calls get will never show a current item, since the item is completed at the same
time asit is requested.

9.4.4.3 get_response

virtual void get_response(RSP* response,
int transaction_id = -1);

Themember function get_response shall retrieve aresponse viathe response queue. If no responseisavailable
in the response queue, the member function blocks until aresponseis received.

If no transaction_id is passed as an argument, this member function shall return the next response sent to this
seguence. If atransaction_idisspecified, the member function shall block until aresponse with that transaction
ID isreceived in the response queue.

106

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10. Configuration and resource classes

The configuration and resource classes provide accessto acentralized database where type specific information
can be stored and retrieved. A configuration or resource item may be associated with a specific hierarchical
scope of an object derived from class uvm_component or it may be visible to all components regardless of
their hierarchical position.

The following configuration and resource classes are defined:
— uvm_config_db
— uvm_resource db
— uvm_resource _db_options
— uvm_resource _options
— uvm_resource base
— uvm_resource_pool
— uvm_resource
— uvm_resource_types

10.1 uvm_config_db

The classuvm_config_db provides atyped interface for object-centric configuration. It is consistent with the
configuration mechanism as defined for the class uvm_component. Information can be read from or written
to the database at any time during simulation.

10.1.1 Class definition

namespace uvm {

tenpl ate <class T>
class uvm config_db

{
public:

/1 Constructor
uvm config_db();

/1 Menber functions

static void set(uvm.conponent* cntxt,
const std::string& inst_nane,
const std::string& field_nane,
const T& value);

static bool get(uvm . conponent* cntxt,
const std::string& inst_nane,
const std::string& field_nane,
T& val ue);

static bool exists(uvm.conmponent* cntxt,
const std::string& inst_nane,
const std::string& field_nane,
bool spell_chk = false);

static void wait_nodified(uvmconponent* cntxt,
const std::string& inst_nane,
const std::string& field_nanme);

}; // class uvmconfig_db

} // namespace uvm

107
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.1.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the
configuration database.

10.1.3 Constraints on usage

To remain compatible with UVM-SystemVerilog, all of the member functions in class uvm_config_db are
static, so these are called using the operator::.

10.1.4 Member functions

10.1.4.1 set

static void set(uvm.conponent* cntxt,
const std::string& inst_nane,
const std::string& field_nane,
const T& value);

The member function set shall create a new or update an existing configuration setting using target field
field_name in instance with name inst_name from the context cntxt in which it is defined. If argument cntxt
is set to NULL, then inst_name defines the complete scope for the configuration setting; otherwise, the full
name of the component referenced to by cntxt shall be added to the instance name. An application may define
inst_name and field_name to be glob-style or regular expression style expressions.

10.1.4.2 get

static bool get(uvmconponent* cntxt,
const std::string& inst_nang,
const std::string& field_nane,
T& val ue);

The member function get shall retrieve aconfiguration setting viaargumentsinst_name and field_name, using
a component pointer cntxt as the starting search point. The argument inst_name shall be an explicit instance
name relative to cntxt and may be an empty string if the cntxt is the instance that the configuration object
appliesto. The argument field_nameis the specific field in the scope that is being searched for.

The member function returns true if the value is being found; otherwise, false is returned.

10.1.4.3 exists

static bool exists(uvm.conponent* cntxt,
const std::string& inst_nane,
const std::string& field_nane,
bool spell_chk = false);

The member function exists shall check if avaluefor field_nameis availablein inst_name, using component
cntxt asthe starting search point. inst_name is an explicit instance name relative to cntxt and may be an empty
string if the cntxt is the instance that the configuration object applies to. field_name is the specific field in
the scope that is being searched for. The argument spell_chk can be set to true to turn spell checking on if it
is expected that the field should exist in the database. The function returns true if a config parameter exists
and falseif it does not exist.

108

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.1.4.4 wait_modified

static void wait_nodified(uvmconponent* cntxt,
const std::string& inst_nane,
const std::string& field_nanme);

The member function wait_modified shall wait for a configuration setting to be set for field_namein cntxt and
inst_name. The member function blocks until a new configuration setting is applied that effects the specified
field.

10.2 uvm_resource_db

The class uvm_resource_db provides a convenience interface for the resources facility. In many cases basic
operations such as creating and setting a resource or getting a resource could take multiple lines of code
using the interfaces in class uvm_resource base or class uvm_resource. The convenience layer in class
uvm_resource_db reduces many of those operations to asingle line of code.

10.2.1 Class definition

namespace uvm {

tenplate < typename T = uvmobject* >
class uvmresource_db

{
public:
/1 Menber functions
static uvmresource<T>* get_by_type(const std::string& scope);
static uvmresource<T>* get_by_name(const std::string& scope,
const std::string& nane,
bool rpterr = true);
static uvmresource<T>* set_default(const std::string& scope,
const std::string& nanme);
static void set(const std::string& scope,
const std::string& nane,
const T& val,
uvm obj ect* accessor = NULL);
static void set_anonynmous(const std::string& scope,
const T& val,
uvm obj ect* accessor = NULL);
static bool read_by_name(const std::string& scope,
const std::string& nane,
T val,
uvm obj ect* accessor = NULL);
static bool read_by_type(const std::string& scope,
T val,
uvm obj ect* accessor = NULL);
static bool wite_by_name(const std::string& scope,
const std::string& nane,
const T& val,
uvm obj ect* accessor = NULL);
static bool wite_by_type(const std::string& scope,
const T& val,
uvm obj ect* accessor = NULL);
static void dunp();
private:

/1 disabled
uvm resour ce_db();

109

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

}; /1 class uvmconfig_db

} /1 namespace uvm

10.2.2 Template parameter T

Thetemplate parameter T specifiesthe object type of the objects being stored in or retrieved from the resource
database.

10.2.3 Constraints on usage

To remain compatible with UVM-SystemV erilog, all of the member functionsin classuvm_resource db are
static, so these shall be called using the operator::. An application shall not instantiate this class, but shall
call the static member functions directly.

10.2.4 Member functions

10.2.4.1 get_by type

static uvmresource<T>* get_by_type(const std::string& scope);

The member function get_by type shall return the resource by type. Thetypeis specified in the database class
parameter so the only argument to this member function is the scope.

10.2.4.2 get_by_name

static uvmresource<T>* get_by_name(const std::string& scope,
const std::string& nane,
bool rpterr = true);

The member function get_by name shall return the resource by name. Thefirst argument is the current scope
and the second argument is the name of the resource to be retrieved. If the argument rpterr is set to true, a
warning shall be generated if no matching resource is found.

10.2.4.3 set_default

static uvmresource<T>* set_default(const std::string& scope,
const std::string& nane);

The member function set_default shall create a new resource with a default value and add it to the resource
database using arguments name and scope as the lookup parameters.

10.2.4.4 set

static void set(const std::string& scope,
const std::string& nane,
const T& val,
uvm obj ect* accessor = NULL);

The member function set shall create anew resource, writeavalueval to it, and add it to the resource database
using arguments name and scope as the lookup parameters. The argument accessor is used for auditing.

110

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.2.4.5 set_anonymous

static void set_anonynmous(const std::string& scope,
const T& val,
uvm obj ect* accessor = NULL);

The member function set_anonymous shall create a new resource, write a value val to it, and add it to the
resource database. As the resource has no argument name, it is not added to the name map. But is does have
an argument scope for lookup purposes. The argument accessor is used for auditing.

10.2.4.6 read_by name

static bool read_by_nanme(const std::string& scope,
const std::string& nane,
T val,
uvm obj ect* accessor = NULL);

The member function read_by name shall locate a resource by arguments name and scope and returns the
value through argument val. The member function shall return true if the read was successful; otherwise it
shall return false. The argument accessor is used for auditing.

10.2.4.7 read_by_type

static bool read_by_type(const std::string& scope,
T val,
uvm obj ect* accessor = NULL);

Themember functionread_by_typeshall read avalue by type. Thevalueisreturned through the argument val.
The argument scope is used for the lookup. The member function shall return true if the read was successful;
otherwise it shall return false. The argument accessor is used for auditing.

10.2.4.8 write_by_name

static bool wite_by_name(const std::string& scope,
const std::string& nane,
const T& val,
uvm obj ect* accessor = NULL);

The member function write_by name shall write the argument val into the resources database. First, look up
the resource by using arguments name and scope. If it is not located then add a new resource to the database
and then writeitsvalue.

10.2.4.9 write_by_type

static bool wite_by_type(const std::string& scope,
const T& val,
uvm obj ect* accessor = NULL);

The member function write by type shall write the argument val into the resources database. First, ook up
the resource by type. If it is not located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be aregular expression, and consequently may target
other scopes beyond the scope argument. If aget_by name match isfound for name and scope then val shall
be written to that matching resource and thus may impact other scopes which also match the resource.

111

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.2.4.10 dump

static void dunp();

The member function dump shall dump all the resources in the resource pool. This is useful for debugging
purposes. This member function does not use the parameter T, so it shall dump the same thing (the entire
database) no matter the value of the parameter.

10.3 uvm_resource_db_options

The class uvm_resource_db_options shall provide a namespace for managing options for the resources
database facility. The class shall define static member functions for manipulating and retrieving the value of
the data members. The static data members represent options and settings that control the behavior of the
resources database facility.

10.3.1 Class definition

namespace uvm {
class uvmresource_db_options
{
public:
/1 Menber functions
static void turn_on_tracing();
static void turn_off_tracing();
static bool is_tracing();
private:
/1 Disabled
uvm resour ce_db_options();
}; // class uvmresource_db_options

} // namespace uvm
10.3.2 Member functions
10.3.2.1 turn_on_tracing
static void turn_on_tracing();

The member function turn_on_tracing shall enable tracing for the resource database. This causes all reads
and writes to the database to display information about the accesses.

10.3.2.2 turn_off_tracing

static void turn_off_tracing();

The member function turn_off_tracing shall disable tracing for the resource database.
10.3.2.3 is_tracing

static bool is_tracing();

Themember functionis_tracing shall returntrueif thetracing facility isenabled; otherwiseit shall returnfalse.

112
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.4 uvm_resource_options

The class uvm_resour ce_options shall provide a namespace for managing options for the resources facility.
The class shall only provide static member functions for manipulating and retrieving the value of its data
members.

10.4.1 Class definition

nanmespace uvm {
class uvm resource_options
{
public:
/1 Menber functions
static void turn_on_auditing();
static void turn_of f_auditing();
static bool is_auditing();
private:
/1 disabled
uvm resour ce_options();

}; // class uvmresource_options

} // namespace uvm

10.4.2 Member functions
10.4.2.1 turn_on_auditing

static void turn_on_auditing();

The member function turn_on_auditing shall enable auditing for the resource database. This causes all reads
and writes to the database to store information about the accesses. Auditing is enabled by default.

10.4.2.2 turn_off_auditing

static void turn_off_auditing();

The member function turn_off _auditing shall disable auditing for the resource database. If auditing is
disabled, it is not possible to get extrainformation about resource database accesses.

10.4.2.3 is_auditing

static bool is_auditing();

The member function is_auditing shall return true if auditing is enabled; otherwise it shall return false.

10.5 uvm_resource_base

The class uvm_resource base shall provide a non-parameterized base class for resources. It supports
interfaces for scope matching and virtual member functions for printing the resource and accessors list.

10.5.1 Class definition

namespace uvm {

113
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvmresource_base : public uvm object

{
public:
/1 Constructor
uvm resour ce_base(const std::string& nane = "",
const std::string& scope = "*");

/'l Group: Resource database interface
virtual uvmresource_base* get_type_handl e() const = O;

/'l Group: Read-only interface
voi d set_read_only();
bool is_read_only() const;

/1 Group: Notification

voi d wait_nodified();

/'l Group: Scope interface

voi d set_scope(const std::string* scope);
std::string get_scope() const;

bool match_scope(const std::string& scope);

/Il Group: Priority
virtual void set_priority(uvmresource_types::priority_e pri) = 0;

I/l Group: Utility functions
void do_print(const uvmprinter& printer) const;

/'l Group: Audit trail
voi d record_read_access(uvmobject* accessor = NULL);
void record_wite_access(uvmobject* accessor = NULL);
virtual void print_accessors() const;
voi d init_access_record(uvmresource_types::access_t access_record);
/1 Data nenbers
unsi gned int precedence;
static int unsigned defaul t_precedence;
}; /1 class uvmresource_base

} /1 namespace uvm

10.5.2 Constructor

uvm resour ce_base(const std::string& name = "",
const std::string& scope = "*");

The constructor takes two arguments, the name of the resource name and a regular expression scope which
represents the set of scopes over which thisresource isvisible.

10.5.3 Resource database interface
10.5.3.1 get_type_handle

virtual uvmresource_base* get_type_handl e() const = O;

The member function get_type_handle shall return the type handle of the resource container.
10.5.4 Read-only interface

10.5.4.1 set_read_only

voi d set_read_only();

114

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_read_only shall define the resource as a read-only resource. An attempt to call
uvm_resour ce<T>::write on the resource shall cause an error.

10.5.4.2 is_read_only

bool is_read_only() const;

The member function is read only shall return true if this resource has been set to read-only; otherwise it
shall return false.

10.5.5 Notification
10.5.5.1 wait_modified

voi d wait_nodified();

The member function wait_modified shall block execution until the resource has been modified, that is, it
waitstill auvm_resource<T>::write operation has been performed.

10.5.6 Scope interface

10.5.6.1 set_scope

voi d set_scope(const std::string& scope);

Themember function set_scope shall set thevalue of theregular expression that identifiesthe set of scopesover
which this resource is visible. If the supplied argument is aglob it shall be converted to aregular expression
beforeit is stored.

10.5.6.2 get_scope

std::string get_scope() const;

The member function get_scope shall retrieve the regular expression string that identifies the set of scopes
over which thisresourceisvisible.

10.5.6.3 match_scope

bool match_scope(const std::string& scope);

Themember function match_scope shall return trueif thisresourceisvisiblein ascope. The scopeis specified
as argument and may use regular expressions.

10.5.7 Priority

10.5.7.1 set_priority
virtual void set_priority(uvmresource_types::priority_e pri) = 0;
The member function set_priority shall change the search priority of the resource based on the value of the

priority enumeration given as argument.

115
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.5.8 Utility functions

10.5.8.1 do_print

void do_print(const uvmeprinter& printer) const;

Themember functiondo_print shall be called by member function print. It allowsan applicationtoimplement
application-specific printing routines.

10.5.9 Audit trail

10.5.9.1 record_read_access

voi d record_read_access(uvmobject* accessor = NULL);

The member function record_read_access shall record the read access for this resource.
10.5.9.2 record_write_access

void record_wite_access(uvmobject* accessor = NULL);

The member function record_write access shall record the write access for this resource.
10.5.9.3 print_accessors

virtual void print_accessors() const;

The member function print_accessor s shall print the access records for this resource.
10.5.9.4 init_access_record

voi d init_access_record(uvmresource_types::access_t access_record);

The member function init_access record shall initialize a new access record.

10.5.10 Data members

10.5.10.1 precedence

unsi gned int precedence;

The data member precedence shall be used to associate a precedence that a resource has with respect to other
resources which match the same scope and name. Resources are set to the default_precedence initially, and
may be set to a higher or lower precedence as desired.

10.5.10.2 default_precedence

static int unsigned defaul t_precedence;

The data member default_precedence is the default precedence for a resource that has been created. When
two resources have the same precedence, the first resource found has precedence.

116
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.6 uvm_resource_pool

The class uvm_resource_pool shall provide the centralized resource pool to store each resource both by
primary name and by type handle.

10.6.1 Class definition

nanmespace uvm {

class uvm resource_pool
{
public:
static uvmresource_pool * get();
bool spell_check(const std::string& s) const;

/1 Group: Set interface

voi d set(uvmresource_base* rsrc, int override = 0);
voi d set_override(uvmresource_base* rsrc);
voi d set_nane_override(uvmresource_base* rsrc
voi d set_type_override(uvmresource_base* rsrc);

-

/'l Group: Lookup

uvm resource_types::rsrc_g_t* | ookup_name(const std::string& scope,
const std::string& nane,
uvm r esour ce_base* type_handl e,
bool rpterr = true) const;

uvm r esour ce_base* get _hi ghest_precedence(uvmresource_types::rsrc_g_t* g) const;
static void sort_by_precedence(uvmresource_types::rsrc_q_t* q);

uvm r esour ce_base* get_by_name(const std::string& scope,
const std::string& nane,
uvm r esour ce_base* type_handl e,
bool rpterr = true);

uvm resource_types::rsrc_g_t* | ookup_type(const std::string& scope,
uvm resour ce_base* type_handle) const;

uvm r esour ce_base* get_by_type(const std::string& scope,
uvm r esour ce_base* type_handle);

uvm resource_types::rsrc_g_t* | ookup_regex_nanes(const std::string& scope,
const std::string& nane,
uvm r esour ce_base* type_handle = NULL);

uvm resource_types::rsrc_g_t* | ookup_regex(const std::string& re,
const std::string& scope);

uvm resource_types::rsrc_g_t* | ookup_scope(const std::string& scope);

/!l Goup: Priority interface
void set_priority_type(uvmresource_base* rsrc,
uvm resource_types::priority_e pri);

void set_priority_nane(uvmresource_base* rsrc,
uvm resource_types::priority_e pri);

void set_priority(uvmresource_base* rsrc,
uvmresource_types::priority_e pri);

/1 G oup: Debug

uvm resource_types::rsrc_g_t* find_unused_resources() const;

void print_resources(uvmresource_types::rsrc_g_t rq, bool audit = false) const;
voi d dunp(bool audit = false) const;

}; /1 class uvm.resource_pool

} // namespace uvm

117
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.6.2 get

static uvmresource_pool * get();

The member function get shall return the singleton handle to the resource pool.

10.6.3 spell_check
bool spell _check(const std::string& s) const;

The member function spell_check shall invoke the spell checker for the string s passed as argument. The
universe of correctly spelled strings—i.e. the dictionary—is the name map.

10.6.4 Set interface

10.6.4.1 set

voi d set(uvmresource_base* rsrc, int override =0);

The member function set shall add a new resource to the resource pool. The resource isinserted into both the
name map and type map so it can be located by either.

An object creates a resource and sets it into the resource pool. Later, other objects that want to access the
resource shall get it from the pool.

Overrides can be specified using thisinterface. Either aname override, atype override or both can be specified.
If an override is specified, then the resource is entered at the front of the queue instead of at the back.

It isnot recommended that an application specify the override parameter directly. I nstead, an application should
use the member functions set_override, set_name _override, or set_type override.

10.6.4.2 set_override

voi d set_override(uvmresource_base* rsrc);

The member function set_override shall override the resource, provided as an argument, in the resource pool
both by name and type.

10.6.4.3 set_name_override

voi d set_nane_override(uvmresource_base* rsrc);

The member function set_name _override shall override the resource, provided as argument rsrc, in the
resource pool using normal precedence in the type map and shall override the name.

10.6.4.4 set_type_override

voi d set_type_override(uvmresource_base* rsrc);

Themember functionset_type overrideshall overridetheresource, provided asargument rsrc, intheresource
pool using normal precedence in the name map and shall override the type.

118

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.6.5 Lookup

10.6.5.1 lookup_name

uvm resource_types::rsrc_g_t* | ookup_name(const std::string& scope,
const std::string& nane,
uvm r esour ce_base* type_handl e,
bool rpterr = true) const;

The member function lookup_name shall return a queue of resources that match the name, scope, and
type_handle, which are passed as arguments. If no resources match the queue is returned empty. If rpterr is
set, then awarning isissued if no matches are found, and the spell checker isinvoked on name. If type_handle
isNULL, then atype check is not made and resources are returned that match only name and scope.

10.6.5.2 get_highest_precedence

uvm r esour ce_base* get_hi ghest_precedence(uvm resource_types::rsrc_q_t* q) const;

The member function get_highest_precedence shall traverse the queue passes as argument, g, of resources
and return the one with the highest precedence. In the case where there exists more than one resource with the
highest precedence value, the first one that has that precedence shall be the one that is returned.

10.6.5.3 sort_by_precedence

static void sort_by_precedence(uvmresource_types::rsrc_q_t* q);

The member function sort_by precedence shall sort the resources, passed as argument as a list of resources,
in precedence order. The highest precedence resource shall be first in the list and the lowest precedence shall
belast. Resourcesthat have the same precedence and the same name shall be ordered by most recently set first.

10.6.5.4 get_by_name

uvm r esour ce_base* get_by_name(const std::string& scope,
const std::string& nane,
uvm r esour ce_base* type_handl e,
bool rpterr = true);

The member function get_by name shall return the resource by using the arguments name, scope, and
type_handle. Whether the get succeeds or fails, save a record of the get attempt. If the argument rpterr is set
to true, the member function shall report potential errors.

10.6.5.5 lookup_type

uvm resource_types::rsrc_g_t* |ookup_type(const std::string& scope,
uvm r esour ce_base* type_handl e) const;

The member function lookup_type shall return a queue of resources that match the argument type_handle and
argument scope. If no resources match, then the returned queue is empty.

10.6.5.6 get_by_type

uvm r esour ce_base* get_by_type(const std::string& scope,
uvm r esour ce_base* type_handle);

119

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_by type shall return the resources that match the argument type handle and
argument scope. It shall insert arecord into the get history list whether or not the get succeeded.

10.6.5.7 lookup_regex_names

uvm resource_types::rsrc_g_t* | ookup_regex_nanes(const std::string& scope,
const std::string& nane,
uvm r esour ce_base* type_handle = NULL);

The member function lookup_regex_names shall return a queue of resources that match the arguments name,
scope, and type_handle, where name and scope may be expressed as a regular expression.

10.6.5.8 lookup_regex

uvm resource_types::rsrc_g_t* |ookup_regex(const std::string&re,
const std::string& scope);

The member function lookup_regex shall return a queue of resources that whose name matches the regular
expression argument re and whose scope matches the specified argument scope.

10.6.5.9 lookup_scope

uvm resource_types::rsrc_g_t* | ookup_scope(const std::string& scope);

The member function lookup_scope shall return a queue of resources that are visible to a particular scope.

NOTE—This member function could be quite computation expensive, asit hasto traverse al of the resources
in the resource database.

10.6.6 Priority interface

10.6.6.1 set_priority_type

void set_priority_type(uvmresource_base* rsrc,
uvm resource_types::priority_e pri);

The member function set_priority type shall change the priority of the resource rsrc in the resource type
map only, based on the value of priority enumeration argument pri. The priority in the resource name map
remains unchanged.

10.6.6.2 set_priority_name

voi d set_priority_name(uvmresource_base* rsrc,
uvm resource_types::priority_e pri);

The member function set_priority_name shall change the priority of the resource rsrc in the resource name
map only, based on the value of priority enumeration argument pri. The priority in the resource type map
remains unchanged.

10.6.6.3 set_priority

void set_priority(uvmresource_base* rsrc,
uvmresource_types::priority_e pri);

120
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_priority shall change the priority of the resource rsrc in the resource name map and
type map, based on the value of priority enumeration argument pri.

10.6.7 Debug
10.6.7.1 find_unused_resources

uvm resource_types::rsrc_g_t* find_unused_resources() const;

The member function find_unused_resour ces shall return a queue of resources that have at least one write
and no reads.

10.6.7.2 print_resources

voi d print_resources(uvmresource_types::rsrc_q_t rqg, bool audit = false) const;

The member function print_resources shall print the queue of resources passed as argument rg. If the
argument audit is set to true, the audit trail is printed for each resource along with the name, value, and scope
regular expression.

10.6.7.3 dump

voi d dunp(bool audit = false) const;

The member function dump shall print the entire resource pool. The member function print_resour ces shall
be used to initiate the printing. If the argument audit is set to true, the audit trail is printed for each resource
along with the name, value, and scope regular expression.

10.7 uvm_resource
The class uvm_resour ce shall provide the interface to read and write to the resource database.

10.7.1 Class definition

namespace uvm {

tenpl ate <typenanme T = int>
class uvmresource : public uvmresource_base

{
public:

/'l Group: Type Interface
static uvmresource<T>* get_type();
uvm r esour ce_base* get_type_handl e() const;

I/ Group: Set/Get Interface

void set();

voi d set_override(uvmresource_types::override_t override =
uvm r esour ce_t ypes: : BOTH OVERRI DE) ;

static uvmresource<T>* get_by_nane(const std::string& scope,
const std::string& nane,
bool rpterr = true);

static uvmresource<T>* get_by_type(const std::string& scope,
uvm r esour ce_base* type_handle);

/'l Group: Read/Wite Interface
T read(uvm.object*& accessor);

121

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

void wite(const T& t, uvmobject*& accessor);

/Il Group: Priority
void set_priority(uvmresource_types::priority_e pri);
static uvm.resource<T>* get_hi ghest_precedence(uvmresource_types::rsrc_g_t* q);

}; /1 class uvmresource

} /1 namespace uvm

10.7.2 Template parameter T

Thetemplate parameter T specifiesthe object type of the objects being stored in or retrieved from the resource
database.

10.7.3 Type interface

10.7.3.1 get_type

static uvmresource<T>* get_type();

The member function get_type shall return the static type handle. The return type is the type of the
parameterized class.

10.7.3.2 get_type_handle

uvm r esour ce_base* get_type_handl e() const;

The member function get_type handle shall return the static type handle of this resource in a polymorphic
fashion. The return type of get_type handleisuvm_resource base.

NOTE—As the member function is not static, it can only be used by instances of a parameterized resource.
10.7.4 Set/Get interface

10.7.4.1 set

voi d set();

The member function set shall put the resource into the global resource pool.

10.7.4.2 set_override

voi d set_override(uvmresource_types::override_t override =
uvm resour ce_t ypes: : BOTH OVERRI DE) ;

The member function set_override shall put the resource into the global resource pool as an override. This
means it gets put at the head of the list and is searched before other existing resources that occupy the same
position in the name map or the type map. The default is to override both the name and type maps. However,
using the override argument you can specify that either the name map or type map is overridden.

10.7.4.3 get_by_name

static uvmresource<T>* get_by_name(const std::string& scope,
const std::string& nane,

122

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

bool rpterr = true);

The member function get_by nameshall look up aresource by namein the name map. Thefirst resource with
the specified name, whosetypeisthe current type, and isvisiblein the specified scopeisreturned, if oneexists.
The rpterr flag indicates whether or not an error should be reported if the search fails. If the argument rpterr is
set to one then afailure message isissued, including suggested spelling alternatives, based on resource names
that exist in the database, gathered by the spell checker.

10.7.4.4 get_by _type

static uvmresource<T>* get_by_type(const std::string& scope,
uvm r esour ce_base* type_handle);

The member function get_by type shall look up aresource by type handlein the type map. Thefirst resource
with the specified type_handle that is visible in the specified scope is returned, if one exists. The member
function shall return NULL if thereis no resource matching the specifications.

10.7.5 Read/Write interface

10.7.5.1 read

T read(uvm object*& accessor);

The member function read shall return the object stored in the resource container. If an accessor object is
supplied then also update the accessor record for this resource.

10.7.5.2 write

void wite(const T& t, uvmobject*& accessor);

The member function write shall modify the object stored in this resource container. If the resource is read-
only then issue an error message and return without modifying the object in the container. If the resourceis
not read-only and an accessor object has been supplied then also update the accessor record. Lastly, replace
the object value in the container with the value supplied as the argument, t, and release any processes blocked
on uvm_resour ce_base::wait_modified.

10.7.6 Priority interface

10.7.6.1 set_priority
void set_priority(uvmresource_types::priority_e pri);

The member function set_priority shall change the search priority of the resource based on the value of the
priority enum argument, pri.

10.7.6.2 get_highest_precedence

static uvmresource<T>* get_hi ghest_precedence(uvmresource_types::rsrc_q_t* q);

The member function get_highest_precedence shall locate the first resource, in a queue of resources, with
the highest precedence whose typeisT.

123

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

10.8 uvm_resource_types

The classuvm_resour ce_types shall provide typedefs and enums used throughout the resourcesfacility. This
class shall not contain any member function or data members, only typedefs. It's used in lieu of package-
scope types.

10.8.1 Class definition

nanmespace uvm {

cl ass uvm resource_types

{
public:
typedef std::queue<uvm resource_base* > rsrc_q_t;
typedef enum { TYPE_OVERRI DE, NAME_OVERRI DE, BOTH OVERRIDE } override_t;
typedef enum{ PRI_H GH, PRI _LOW} priority_e;

}; /1 class uvmresource_types

} // namespace uvm

10.8.2 Type definitions (typedefs)

10.8.2.1 rsrc_q_t

Thetypedef rsrc_g_t shall define a queue of handles of type uvm_resource base.
10.8.2.2 override _t

The typedef override_t shall define an enumeration to override aresource. Valid values are:
— TYPE_OVERRIDE: Override aresource in the resource pool both by type.
— NAME_OVERRIDE: Override aresource in the resource pool both by name.
— BOTH_OVERRIDE: Override aresource in the resource pool both by name and type.

10.8.2.3 priority_e

The typedef priority_e shall define an enumeration for the priority of aresource. Valid values are:
— PRI_HIGH: High priority, which places the resource at the front of the queue.
— PRI_LOW: Low priority, which places the resource at the back of the queue.

124
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11. Phasing and synchronization classes

The phasing and synchronization concept in UVM defines standardized stages called phases which are
executed in awell defined order. Each UVM component offers dedicated callbacks for each of these phases
to implement application-specific behavior. Phases are executed sequentially, but each phase may consist of
multiple function calls (of components contributing to that phase) in parallel. Besides standardized common
and UVM run-time phases, user-defined phases can be added.

In order to support synchronization during the execution of the run-time phases, which run as concurrent
processes, additional methods are available to coordinate the execution of or status of these processes between
all UVM components or objects.

The following phasing and synchronization classes are defined:
— uvm_phase: The base class for defining a phase’ s behavior, state, context.
— uvm_domain: Phasing schedule node representing an independent branch of the schedule.
— uvm_bottomup_phase: A phase implementation for bottom up function phases.
— uvm_topdown_phase: A phase implementation for top-down function phases.

— uvm_process phase® (uvm_task J)haseT): A phase implementation for phases which are launched
as spawned processes.

— uvm_objection: Mechanism to synchronize phases based on passing execution status information
between running processes.

11.1 uvm_phase
The class uvm_phase shall provide the base class for the UVM phasing mechanism.

11.1.1 Class definition

namespace uvm {

class uvm phase : public uvm object
{
public:
/'l Constructor
explicit uvm phase(const std::string& nane,
uvm phase_t ype phase_type = UVM PHASE SCHEDULE,
uvm phase* parent = NULL);

uvm phase_t ype get_phase_type() const;

/! Goup: State
uvm phase_state get_state() const;

int get_run_count() const;

uvm phase* find_by_name(const std::string& name, bool stay_in_scope = true) const;
uvm phase* find(const uvm phase* phase, bool stay_in_scope = true) const;

bool is(const uvm phase* phase) const;

bool is_before(const uvm phase* phase) const;

bool is_after(const uvm phase* phase) const;

/'l Goup: Callbacks
virtual void exec_func(uvm conponent* conp, uvm phase* phase);
virtual void exec_process(uvm conponent* conp, uvm phase* phase);

/1 Group: Schedul e

voi d add(uvm phase* phase,
uvm phase* with_phase = NULL,
uvm phase* after_phase = NULL,
uvm phase* before_phase = NULL);

125
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm phase* get_parent() const;

virtual const std::string get_full_name() const;

uvm phase* get _schedul e(bool hier = false) const;
std::string get_schedul e_nane(bool hier = false) const;
uvm domai n* get _domai n() const;

std::string get_domai n_nanme() const;

uvm phase* get _i np() const;

/1 Group: Objection

uvm obj ecti on* get_objection() const;

virtual void raise_objection(uvmobject* obj,
const std::string& description = "",
int count =1);

virtual void drop_objection(uvm object* obj,
const std::string& description ="",
int count = 1);
/1 Group: Synchronization
voi d sync(uvm donmi n* target,
uvm phase* phase = NULL,
uvm phase* with_phase = NULL);
voi d unsync(uvm domai n* target,
uvm phase* phase = NULL,
uvm phase* with_phase = NULL);
void wait_for_state(uvmphase_state state, uvmwait_op op = UWWMEQ);
/1 Group: Junping
voi d junmp(const uvm phase* phase);
uvm phase* get_junp_target() const;
}; /1 class uvm phase

} /1 namespace uvm

11.1.2 Construction

11.1.2.1 Constructor

explicit uvm phase(const std::string& nane,
uvm phase_t ype phase_type = UVM PHASE SCHEDULE,
uvm phase* parent = NULL);

The constructor shall create a new phase node, using the arguments name, the type name of type type name
and optionally the pointer to the parent phase parent, as argument.

11.1.2.2 get_phase_type

uvm phase_t ype get_phase_type() const;

The member function get_phase_type shall return the phase type asdefined by uvm_phase type (see Section
17.4.6).

11.1.3 State

11.1.3.1 get_state

uvm phase_state get_state() const;

The member function get_state shall return the current state of this phase.

126
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.1.3.2 uvm_phase_get_run_count
int get_run_count() const;

The member function get_run_count shall return the integer number of times this phase has executed.

11.1.3.3find_by name

uvm phase* find_by_name(const std::string& nane,
bool stay_in_scope = true) const;

The member function find_by name shall locate a phase node with the specified name and return its handle.
If argument stay_in_scope is set to true, it searches only within this phase's schedule or domain.

11.1.3.4 find

uvm phase* find(const uvm phase* phase,
bool stay_in_scope = true) const;

The member function find shall locate the phase node with the specified phase implementation and return its
handle. If argument stay in_scopeis set to true, it searches only within this phase's schedule or domain.

11.1.35is

bool is(const uvm phase* phase) const;

The member function is shall return true if the containing uvm_phase refers to the same phase as the phase
argument; otherwise it shall return false.

11.1.3.6 is_before

bool is_before(const uvm phase* phase) const;

The member function is_befor e shall return true if the containing uvm_phase refers to aphase that is earlier
than the phase argument; otherwise it shall return false.

11.1.3.7 is_after

bool is_after(const uvm phase* phase) const;

The member functionis_after shall return trueif the containing uvm_phase refersto a phase that islater than
the phase argument; otherwise it shall return false.

11.1.4 Callbacks

11.1.4.1 exec_func

virtual void exec_func(uvm conponent* conp, uvm phase* phase);

The member function exec_func shall implement the functor/del egate functionality for a function phase type
comp - the component to execute the functionality upon phase - the phase schedule that originated this phase
cal.

127

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.1.4.2 exec_process® (exec_taskT)

virtual void exec_process(uvm conponent* conp, uvm phase* phase);

The member function exec_process® shall implement the functor/del egate functionality for atask phase type
comp—the component to execute the functionality upon phase—the phase schedule that originated this phase
cal.

NOTE—The member function was called exec_task in UVM in SystemVerilog, but has been renamed in line
with SystemC processes.

11.1.5 Schedule

11.1.5.1 add

voi d add(uvm phase* phase,
uvm phase* with_phase = NULL,
uvm phase* after_phase = NULL,
uvm phase* before_phase = NULL);

The member function add shall build aschedule structure, inserting phase by phase, specifying linkage. Phases
can beadded anywhere, in seriesor parallel with existing nodes. Theargument phaseisthe handle of asingleton
derived phase implementation containing actual functor. By default the new phase shall be appended to the
schedule. When argument with_phase is passed, the new phase shall be added in parallel to the actual phase.
When argument after_phase is passed, the new phase shall be added as successor to the actual phase. When
the argument before _phase is passed, the new phase shall be added as predecessor to the actual phase.
11.1.5.2 get_parent

uvm phase* get_parent() const;

The member function get_par ent shall return the parent schedule node, if any, for hierarchical graph traversal.
11.1.5.3 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full path from the enclosing domain down to this node.
The singleton phase implementations have no hierarchy.

11.1.5.4 get_schedule

uvm phase* get_schedul e(bool hier = false) const;

The member function get_schedule shall return the topmost parent schedule node, if any, for hierarchical
graph traversal.

11.1.5.5 get_schedule_name

std::string get_schedul e_nane(bool hier = false) const;

The member function get_schedule_name shall return the schedule name associated with this phase node.

128

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.1.5.6 get_domain

uvm domai n* get _donai n() const;

The member function get_domain shall return the enclosing domain.
11.1.5.7 get_domain_name

std::string get_domai n_nanme() const;

The member function get_domain_name shall returns the domain name associated with this phase node.

11.1.5.8 get_imp

uvm phase* get_i np() const;

The member function get_imp shall return the phase implementation for this node. It shall return NULL if
this phase typeisnot aUVM_PHASE_|L EAF_NODE.

11.1.6 Synchronization

11.1.6.1 get_objection
uvm obj ecti on* get_objection() const;

The member function get_objection shall return the object of class uvm_objection that gates the termination
of the phase.

11.1.6.2 raise_objection

virtual void raise_objection(uvmobject* obj,
const std::string& description = "",
int count =1);

Themember functionraise_objection shall return the object of classuvm_objection that gatesthe termination
of the phase.

11.1.6.3 drop_objection

virtual void drop_objection(uvmobject* obj,
const std::string& description ="",
int count = 1);

The member function drop_objection shall drop an objection to ending a phase. The drop is expected to be
matched with an earlier raise.

11.1.6.4 sync

voi d sync(uvm donmi n* target,
uvm phase* phase = NULL,
uvm phase* with_phase = NULL);

129

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function sync shall synchronize two domains, fully or partially. The argument target isa handle
of the target domain to synchronize this one to. The optional argument phase is the phase in this domain to
synchronize with; otherwise synchronize to all. The optional argument with_phase is the target-domain phase
to synchronize with; otherwise use phase in the target domain.

11.1.6.5 unsync

voi d unsync(uvm donmi n* target,
uvm phase* phase = NULL,
uvm phase* with_phase = NULL);

The member function unsync shall remove the synchronization between two domains, fully or partialy. The
argument target is a handle of the target domain to remove synchronize from. The optiona argument phase
is the phase in this domain to un-synchronize with; otherwise un-synchronize to all. The optional argument
with_phase is the target-domain phase to un-synchronize with; otherwise use phase in the target domain.

11.1.6.6 wait_for_state
void wait_for_state(uvmphase_state state, uvmwait_op op = UWWMEQ);

The member function wait_for_state shall wait until this phase compares with the given state and op operand.
For UVYM_EQ and UVM _NE operands, several uvm_phase_states can be supplied by their enum constants,
inwhich case the caller shall wait until the phase stateisany of UVM _EQ or none of UVM _NE the provided
states.

11.1.7 Jumping

11.1.7.1 jump

void junp(const uvm phase* phase);

The member function jump shall jump to a specified phase. If the destination phase iswithin the current phase
schedule, asimplelocal jump takes place. If the jump-to phaseis outside of the current schedule then the jump
affects other schedules which share the phase.

11.1.7.2 get_jump_target

uvm phase* get_junp_target() const;

The member function get_jump_target shall return the handle to the target phase of the current jump, or
NULL if no jump isin progress. This member function shall only be used during the phase_ended callback.

11.2 uvm_domain

The class uvm_domain shall provide a phasing schedule node representing an independent branch of the
schedule.

11.2.1 Class definition

namespace uvm {

class uvmdomain : public uvm phase

{

130

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

public:
/1 Constructor
explicit uvmdonain(const std::string& name);

/1 Menber functions

static std::map< std::string, uvmdomai n* > get_donmains();
static uvm phase* get_uvm schedul e();

static uvm domai n* get_common_donai n();

static void add_uvm phases(uvm phase* schedule);

static uvm domai n* get_uvm domai n();

}; I/ class uvm domain

} /1 namespace uvm

11.2.2 Constructor

explicit uvmdomain(const std::string& nane);

The constructor shall create a new instance of a phase domain with the name passed as argument.

11.2.3 Member functions

11.2.3.1 get_domains

static std::map< std::string, uvm domain* > get_domains();

The member function get_domains shall provide alist of al domainsin the provided domains argument.
11.2.3.2 get_uvm_schedule

static uvm phase* get_uvm schedul e();

The member function get_uvm_schedule shall return the “UVM” schedule, which consists of the run-time
phases that all components execute when participating in the “UVM” domain.

11.2.3.3 get_common_domain

static uvm domai n* get_conmmon_domai n() ;

The member function get_common_domain shall return the “common” domain, which consists of the
common phases that all components execute in sync with each other. Phases in the “common” domain are
build, connect, end_of elaboration, start_of simulation, run, extract, check, report, and final.

11.2.3.4 add_uvm_phases

static void add_uvm phases(uvm phase* schedule);

The member function add_uvm_phases shall append to the given schedule the built-in UVM phases.
11.2.3.5 get_uvm_domain

static uvm domai n* get _uvm domain();

The member function get_uvm_domain shall return the handle to the singleton uvm domain.

131

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.3 uvm_bottomup_phase

The classuvm_bottomup_phase shall provide the base class for function phases that operate bottom-up. The
member function execute is called for each component. This is the default traversal so isincluded only for
naming. The bottom-up phase completes when the member function execute has been called and returned on
all applicable componentsin the hierarchy.

11.3.1 Class definition

nanmespace uvm {
class uvm bottonup_phase : public uvm phase
{
public:
/1 Constructor
explicit uvm bottonmup_phase(const std::string& name);
/1 Menber functions
virtual void traverse(uvm conponent* conp,
uvm phase* phase,
uvm phase_state state);

virtual void execute(uvm conponent* conp,
uvm phase* phase);

}; /1 class uvm bottonup_phase

} // namespace uvm

11.3.2 Constructor

explicit uvm bottomup_phase(const std::string& nane);

The constructor shall create a new instance of a bottom-up phase using the name passed as argument.
11.3.3 Member functions

11.3.3.1 traverse

virtual void traverse(uvm.conponent* conp,
uvm phase* phase,
uvm phase_state state);

The member function traver se shall traverse the component tree in bottom-up order, calling member function
execute for each component.

11.3.3.2 execute

virtual void execute(uvm conponent* conp,
uvm phase* phase);

The member function execute shall execute the bottom-up phase phase for the component comp.

11.4 uvm_topdown_phase

The class uvm_topdown_phase shall provide the base class for function phases that operate top-down. The
member function execute is called for each component. This is the default traversal so isincluded only for

132
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

naming. The top-down phase completes when the member function execute has been called and returned on
all applicable componentsin the hierarchy.

11.4.1 Class definition

namespace uvm {

class uvm t opdown_phase : public uvm phase

{
public:
/1 Constructor
explicit uvmtopdown_phase(const std::string& name);

/1 Menber functiond

virtual void traverse(uvm conponent* conp,
uvm phase* phase,
uvm phase_state state);

virtual void execute(uvm conponent* conp,
uvm phase* phase);

}; // class uvm topdown_phase

} // namespace uvm

11.4.2 Constructor
explicit uvm topdown_phase(const std::string& name);

The constructor shall create a new instance of atop-down phase using the name name passed as argument.
11.4.3 Member functions

11.4.3.1 traverse

virtual void traverse(uvm.conponent* conp,
uvm phase* phase,
uvm phase_state state);

The member function traver se shall traverse the component tree in top-down order, calling member function
execute for each component.

11.4.3.2 execute

virtual void execute(uvm conponent* conp,
uvm phase* phase);

The member function execute shall execute the top-down phase phase for the component comp.

11.5uvm_process_phase® (uvm_task_phaseT)

The class uvm_process_phase® shall provide the base class for all process-oriented phases. It is responsible
to create spawned processes as part of the execution of the callback uvm_phase::exec _process for each
component in the hierarchy. The completion of the execution of this callback does not imply, nor isit required
for, the end of phase. Once the phase completes, any remaining spawned processes caused by executing
uvm_phase::exec_process are forcibly and immediately killed. By default, the way for a process phase to
extend over timeisif there is at least one component that raises an objection.

133

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.5.1 Class definition

namespace uvm {

class uvm process_phase® : public uvm phase

{
public:
/1 Constructor
explicit uvm process_phase®(const std::string& nanme);

/1 Menber functions

virtual void traverse(uvm conponent* conp,
uvm phase* phase,
uvm phase_state state);

virtual void execute(uvm conponent* conp,
uvm phase* phase);

}; // class uvm process_phase

} // namespace uvm

11.5.2 Member functions

11.5.2.1 traverse

virtual void traverse(uvm conponent* conp,
uvm phase* phase,
uvm phase_state state);

The member function traver se shall traverse the component tree in bottom-up order, calling member function
execute for each component.

NOTE—The actual order for process-based phases does not really matter, as each component process is
executed in a separate process whose starting order is not deterministic.

11.5.2.2 execute

virtual void execute(uvm.conponent* conp,
uvm phase* phase);

The member function execute shall spawn a process of phase phase for the component comp.

11.6 uvm_objection

The class uvm_objection shall provide a facility for coordinating status information between two or more
participating components, objects, and even module-based IP.

11.6.1 Class definition

namespace uvm {

class uvm objection : public uvm object

{
public:
/1 Constructors
uvm obj ection();
uvm obj ecti on(const std::string& nane);

/'l Group: Objection control
virtual void clear(uvmobject* obj = NULL);
bool trace_node(int node = -1);

134

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void raise_objection(uvmobject* obj,
const std::string& description = "",
int count =1);

virtual void drop_objection(uvm object* obj,
const std::string& description = "",
int count = 1);

voi d set_drain_tine(uvmobject* obj = NULL,
const sc_core::sc_tine& drain = sc_core::SC ZERO TIME);

/'l Group: Callback hooks

virtual void raised(uvm.object* obj,
uvm obj ect* source_obj,
const std::string& description,
int count);

virtual void dropped(uvm.object* obj,
uvm obj ect* source_obj,
const std::string& description,
int count);

virtual void all_dropped(uvm object* obj,
uvm obj ect* source_obj,
const std::string& description,
int count);

/1 Group: Objection status
voi d get_objectors(std::vector<uvm object*>& objlist) const;

voi d wait_for(uvm.objection_event objt_event,
uvm obj ect* obj = NULL);

int get_objection_count(uvm object* obj
int get_objection_total (uvm object* obj

NULL) const;
NULL) const;

const sc_core::sc_tinme get_drain_tinme(uvmobject* obj = NULL) const;

voi d di spl ay_obj ections(uvm object* obj = NULL,
bool show_header = true) const;

}; /1 class uvm objection

} /1 namespace uvm

11.6.2 Constructors

uvm obj ection();
uvm obj ection(const std::string& nane);

The constructor shall create a new objection instance with name name, if specified.
11.6.3 Objection control

11.6.3.1 clear

virtual void clear(uvmobject* obj = NULL);

Themember function clear shall clear the objection stateimmediately. All countsare cleared and any processes
that called wait_for(UVM_ALL_DROPPED, uvm_top) are released An application should passt hi s to the
obj argument for record keeping. Any configured drain times are not affected.

11.6.3.2 trace_mode

bool trace_npde(int node = -1);

135

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function trace_mode shall set or get the trace mode for the objection object. If no argument is
specified (or an argument other than 0 or 1) the current trace mode is unaffected. A trace_mode of 0 turns
tracing off. A trace mode of 1 turnstracing on. The return value is the mode prior to being reset.

11.6.3.3 raise_objection

virtual void raise_objection(uvmobject* obj,
const std::string& description =""
int count =1);

The member function raise objection shall increase the number of objections for the source object by count,
which defaults to 1. The object is usualy the current (t hi s) handle of the caler. If an object is not specified
or NULL, theimplicit top-level component, uvm_root, is chosen.

Raising an objection shall cause the following.

— Thesource and total objection counts for object are increased by count.

— Themember function raised is called, which calls the member function uvm_component::raised for
all of the components up the hierarchy.

The description is a string that marks a specific objection and is used in tracing or debug.

11.6.3.4 drop_objection

virtual void drop_objection(uvmobject* obj,
const std::string& description ="",
int count = 1);

The member function drop_aobjection shall decrease the number of objections for the source object by count,
which defaults to 1. The object is usually the current handle (t hi s) of the caller. If object is not specified or
NULL, theimplicit top-level component, uvm_root, is chosen.

Dropping an objection shall cause the following:

— Thesource and total objection counts for object are decreased by count. It shall be an error to drop the
objection count for object below zero.

— Themember function dropped is called, which callsthe member function uvm_component::dropped
for al of the components up the hierarchy.

If the total objection count has not reached zero for the object, then the drop is propagated up the object
hierarchy aswithraise_objection. Then, each object in the hierarchy shall update its source counts (objections
that they originated) and total counts (the total number of objections by them and all their descendants).

If the total objection count reaches zero, propagation up the hierarchy is deferred until a configurable drain-
time has passed and the uvm_component::all_dropped callback for the current hierarchy level has returned.

For each instance up the hierarchy from the source caller, a process is forked in a non-blocking fashion,
allowing the drop call to return. The forked process then does the following:

— If adrain time was set for the given object, the process waits for that amount of time.

— The objection’s virtual member function all_dropped is called, which calls the member function
uvm_component::all_dropped (if object is a component).
— The process then waits for the all_dropped callback to complete.

— After the drain time has elapsed and the all_dropped callback has completed, propagation of the
dropped objection to the parent proceeds as described in raise_objection, except as described below.

136

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If anew objection for this object or any of its descendentsisraised during the drain time or during execution of
the all_dropped callback at any point, the hierarchical chain described above is terminated and the dropped
callback does not go up the hierarchy. Theraised objection shall propagate up the hierarchy, but the number of
raised propagated up is reduced by the number of drops that were pending waiting for the all_dropped/drain
time completion. Thus, if exactly one objection caused the count to go to zero, and during the drain exactly
one new objection comesin, no raises or drops are propagated up the hierarchy.

As an optimization, if the object has no drain-time set and no registered callbacks, the forked process can be
skipped and propagation proceeds immediately to the parent as described.

11.6.3.5 set_drain_time

voi d set_drain_tine(uvmobject* obj = NULL,
const sc_core::sc_tine& drain = sc_core::SC ZERO TIME);

The member function set_drain_time shall set the drain time on the given object to drain. The drain time is
the amount of time to wait once all objections have been dropped before calling the all_dropped callback and
propagating the objection to the parent. If a new objection for this object or any of its descendentsis raised
during the drain time or during execution of theall_dropped callbacks, thedrain_time/all_dropped execution
is terminated.

11.6.4 Callback hooks

11.6.4.1 raised

virtual void raised(uvm.object* obj,
uvm obj ect* source_obj,
const std::string& description,
int count);

The member function raised shall be called when a raise objection has reached obj. The default
implementation shall call uvm_component::raised (see Section 7.1.7.1).

11.6.4.2 dropped

virtual void dropped(uvmobject* obj,
uvm obj ect* source_obj,
const std::string& description,
int count);

The member function dropped shall be called when a drop_objection has reached obj. The default
implementation shall call uvm_component::dropped (see Section 7.1.7.2).

11.6.4.3 all_dropped

virtual void all_dropped(uvm object* obj,
uvm obj ect* source_obj,
const std::string& description,
int count);

The member function all_dropped shall be caled when a drop_objection has reached obj, and the total
count for obj goes to zero. This callback is executed after the drain time associated with obj. The default
implementation shall call uvm_component::all_dropped (see Section 7.1.7.3).

137
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.6.5 Objections status

11.6.5.1 get_objectors
voi d get _objectors(std::vector<uvm object*>& objlist) const;

The member function get_objectors shall return the current list of objecting objects (objects that raised an
objection but have not dropped it).

11.6.5.2 wait_for

voi d wait_for(uvm.objection_event objt_event,
uvm obj ect* obj = NULL);

The member function wait_for shall wait for the raised, dropped, or all_dropped event to occur in the given
object obj. The member function returns after all corresponding callbacks for that event have been executed.

11.6.5.3 get_objection_count
int get_objection_count(uvmobject* obj = NULL) const;

The member function get_objection_count shall return the current number of objections raised by the given
object obyj.

11.6.5.4 get_objection_total
int get_objection_total (uvmobject* obj = NULL) const;

The member function get_objection_total shall return the current number of objections raised by the given
object obj and all descendants.

11.6.5.5 get_drain_time
const sc_core::sc_tinme get_drain_tinme(uvmobject* obj = NULL) const;

The member function get_drain_time shall return the current drain time set for the given object obj. The
default drain time shall be set to sc_core::SC_ZERO _TIME.

11.6.5.6 display_objections

voi d di spl ay_obj ecti ons(uvm obj ect* obj = NULL,
bool show _header = true) const;

The member function display_objections shall display objection information about the given object obj.
If object is not specified or NULL, the implicit top-level component, uvm_root, is chosen. The argument
show_header allows control of whether a header is output.

11.7 uvm_callback

The class uvm_callback shall provide the base class for user-defined callback classes. Typically, the
component devel oper defines an application-specific callback classthat extendsfromthisclass. Init, he defines

138
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

one or more virtual member functions, called a callback interface, that represent the hooks available for user
override.

The member functions intended for optional override should not be declared pure virtual. Usually, all the
callback member functions are defined with empty implementations so users have the option of overriding
any or al of them. The prototypes for each hook member function are completely application specific with
no restrictions.

11.7.1 Class definition

namespace uvm {

class uvm cal | back : public uvm object

{
public:
/1 Constructor
uvm cal | back(const std::string& name = "uvm cal | back");

/1 Menber functions

bool call back_node(int on = -1);

bool is_enabled();

virtual const std::string get_type_nane() const;

}; I/ class uvmcal | back

} // namespace uvm

11.7.2 Constructor

uvm cal | back(const std::string& name = "uvm cal | back");

The constructor shall create a new object of type uvm_callback, giving it an optional name.
11.7.3 Member functions

11.7.3.1 callback_mode

bool callback_node(int on = -1);

The member function callback_mode shall enable or disable callbacks. If argument on is set 1, callbacks are
enabled. If argument onis set 0, callbacks are disabled.

11.7.3.2 is_enabled

bool is_enabl ed();

The member function is_enabled shall return 1 if the callback is enabled, otherwise it shall return O.
11.7.3.3 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type _name shall return the type name of this callback object.

139

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.8 uvm_callback_iter
The classuvm_callback_iter isaniterator classfor iterating over callback queues of a specific callback type.

11.8.1 Class definition

nanmespace uvm {
tenplate < typename T = uvmobject, typenanme CB = uvm cal | back>

class uvmcal | back_iter

{
public:
/1 Constructor
uvm cal | back_iter(T* obj);
/1 Menber functions
CB* first();
CB* last();
CB* next();
CB* prev():
CB* get_ch();
}; /1 class uvm cal | back

} // namespace uvm

11.8.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB are registered.
This object shall be a derivative of class uvm_aobject.

11.8.3 Template parameter CB

The template parameter T specifiesthe base callback type that is managed by this callback class. Thetemplate
parameter CB isoptional. If not specified, the parameter is assigned the type uvm_callback.

11.8.4 Constructor

uvm cal | back_i ter(T+ obj);

The constructor shall create anew callback iterator object. It isrequired that the object context be provided.
11.8.5 Member functions

11.8.5.1 first

CB* first();

The member function first shall return the first valid (enabled) callback of the callback type (or a derivative)
that isin the queue of the context object. If the queue is empty, then NULL is returned.

11.8.5.2 last
CB* last();
The member function last shall return the last valid (enabled) callback of the callback type (or a derivative)

that isin the queue of the context object. If the queue is empty, then NULL is returned.

140

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.8.5.3 next
CB* next();

The member function next shall return the next valid (enabled) callback of the callback type (or a derivative)
that is in the queue of the context object. If there are no more valid callbacks in the queue, then NULL is
returned.

11.8.5.4 prev
CB* prev();

The member function prev shall return the previous valid (enabled) callback of the callback type (or a
derivative) that is in the queue of the context object. If there are no more valid callbacks in the queue, then
NULL isreturned.

11.8.5.5get_cb
CB* get_cb();

The member function get_cb shall return the last callback accessed viathe call first or next.

11.9 uvm_callbacks

The class uvm_callbacks shall provide a base class for implementing callbacks, which are typically used
to modify or augment component behavior without changing the component class. To work effectively, the
developer of the component class defines a set of “hook” methods that enable users to customize certain
behaviors of the component in a manner that is controlled by the component developer. The integrity of the
component’s overal behavior isintact, while still allowing certain customizable actions by the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined callback interface
implementation as well as the object type associated with the callback. The object type-callback type pair
are associated together using the macro UVM_REGISTER_CB to define avalid pairing; valid pairings are
checked when a user attemptsto add a callback to an object (see Section 13.4.2).

To provide the most flexibility for end-user customization and reuse, it is recommended that the component
developer also define a corresponding set of virtual method hooks in the component itself. This affords
users the ability to customize via inheritance/factory overrides as well as callback object registration. The
implementation of each virtual method would provide the default traversal algorithm for the particular callback
being caled. Being virtual, an application can define subtypes that override the default algorithm, perform
tasks before and/or after calling the base class to execute any registered callbacks, or to not call the base
implementation, effectively disabling that particular hook.

11.9.1 Class definition

namespace uvm {

tenpl ate <typenanme T = uvmobject, typename CB = uvm cal | back>
class uvmcal | backs : public uvmtyped_cal | backs<T>

{
public:
/1 Constructor
uvm cal | backs();

/1 Group: Add/delete inteface

141

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

static void add(T* obj, uvmcallback* cb, uvm apprepend ordering = UVM APPEND);
static void add_by_nane(const std::string& nane,
uvm cal | back* cb,
uvm conponent * root,
uvm apprepend ordering = UVM APPEND);
static void do_del ete°(T* obj, uvmcallback* cb);
static void del ete_by_name(const std::string& nane,
uvm cal | back* cb,
uvm conponent* root);
/'l Group: lterator Interface
static CB* get_first(int&itr, T* obj);
static CB* get_last(int&itr, T* obj);
static CB* get_next(int&itr, T* obj);
static CB* get_prev(int&itr, T* obj);

/'l Group: Debug
static void display(T* obj = NULL);

}; /1 class uvmcal | backs

} /1 namespace uvm

11.9.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB are registered.
This object shall be a derivative of class uvm_object.

11.9.3 Template parameter CB

Thetemplate parameter CB specifiesthe base callback typethat is managed by this callback class. Thetemplate
parameter CB isoptional. If not specified, the parameter is assigned the type uvm_callback.

11.9.4 Constructor

uvm cal | backs();

The constructor shall create a new object of type uvm_callbacks <T, CB>.
11.9.5 Add/delete interface

11.9.5.1 add

static void add(T* obj, uvm.callback* cb, uvm apprepend ordering = UVM APPEND);

The member function add shall register the given calback object, cb, with the given handle obj. The
object handle can be NULL, which allows registration of callbacks without an object context. If ordering is
UVM_APPEND (default), the callback shall be executed after previously added callbacks, else the callback
shall be executed ahead of previously added callbacks. The argument cb isthe callback handle; it shall be non-
NULL, and if the callback has already been added to the object instance then awarning shall be issued.

11.9.5.2 add_by name

static void add_by_nane(const std::string& nane,
uvm cal | back* cb,
uvm conponent * root,
uvm apprepend ordering = UVM APPEND) ;

142
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function add_by name shall register the given callback object, cb, with one or more components
of type uvm_component. The components shall already exist and shall be type T or a derivative. As with
add the CB parameter is optional. Argument root specifies the location in the component hierarchy to start the
search for name. See uvm_root::find_all (Section 4.3.3.2) for more details on searching by name.

11.95.3 do_delete°(de|eteT)

static void do_delete® (T* obj, uvmcallback* cb);

The member function do_delete® shall delete the given callback object, cb, from the queue associated with the
given object handle obj. The object handle can be NULL, which allows de-registration of callbackswithout an
object context. The argument cb is the callback handle; it shall be non-NULL, and if the callback has already
been removed from the object instance then awarning is issued.

11.9.5.4 delete_by name

static void del ete_by_nanme(const std::string& nane,
uvm cal | back* cb,
uvm conponent* root);

Themember function delete by name shall removethe given callback object, ch, associated with one or more
uvm_component callback queues. Argument root specifies the location in the component hierarchy to start
the search for name. See uvm_root::find_all (Section 4.3.3.2) for more details on searching by name.

11.9.6 lterator interfaces

This set of member functions shall provide an iterator interface for callback queues. A facade class,
uvm_callback_iter isalso available, and is the generally preferred way to iterate over callback queues. (See
Section 11.8).

11.9.6.1 get_first
static CB* get_first(int&itr, T* obj);

The member function get_first shall return the first enabled callback of type CB which resides in the queue
for object obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator;
it is being updated with avalue that can be supplied to get_next to get the next callback object. If the queueis
empty, then NULL isreturned. Theiterator classuvm_callback _iter may be used asan alternative, smplified,
iterator interface.

11.9.6.2 get_last
static CB* get_last(int&itr, T* obj);

The member function get_last shall return the last enabled callback of type CB which resides in the queue
for object obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator;
it is being updated with a value that can be supplied to get_prev to get the previous callback object. If the
gueue is empty then NULL isreturned. The iterator class uvm_callback_iter may be used as an aternative,
simplified, iterator interface.

143

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

11.9.6.3 get_next
static CB* get_next(int&itr, T* obj);

The member function get_next shall return the next enabled callback of type CB which resides in the queue
for object obj, using iterator itr as the starting point. If object obj is NULL, then the typewide queue for T
is searched.

The iterator is being updated with a value that can be supplied to get_next to get the next callback object. If
no more callbacks exist in the queue, then NULL isreturned. The member function get_next shall continue to
return NULL in this case until member function get_first or get_last has been used to reset the iterator. The
iterator classuvm_callback_iter may be used as an alternative, simplified, iterator interface.

11.9.6.4 get_prev
static CB* get_prev(int&itr, T* obj);

The member function get_prev shall return the previous enabled callback of type CB which resides in the
gueue for object obj, using iterator itr asthe starting point. If object obj isNULL, then the typewide queue for
T issearched. Theiterator is being updated with avalue that can be supplied to member function get_prev to
get the previous callback object. If no more callbacks exist in the queue, then NULL isreturned. The member
function get_prev shall continue to return NULL in this case until member function get_first or get_last has
been used to reset theiterator. Theiterator classuvm_callback_iter may be used as an aternative, simplified,
iterator interface.

11.9.7 Debug
11.9.7.1 display
static void display(T* obj = NULL);

The member function display shall display callback information for object obj. If object obj is NULL, then it
displays callback information for all objects of type T, including typewide callbacks.

144
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12. Reporting classes

The UVM-SystemC reporting classes provide an additional facility for issuing reports with consistent
formatting. Users can configure what actions to take and what files to send output to based on report severity,
ID, or both severity and ID. Users can also filter messages based on their verbosity settings. It supports a
component-level reporting mechanism by setting the severity level on a per-instance basis. In addition, some
convenience macros are available for the reporting of information, warnings, errors, or fatal errors.

SystemC has already an extensive and highly configurable message-reporting mechanism using the
sc_core:sc_report_handler class and sc_core::sc_report objects. An application may also use this native
SystemC global-level reporting mechanism where appropriate.

The following reporting classes are defined:
— uvm_report_message: The class which provides the fields that are common to all messages.
— uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.

— uvm_report_handler: The class which acting asimplementation for the member functions defined in
the class uvm_report_object.

— uvm_report_server: The class acting as global server that processes al of the reports generated by
the classuvm_report_handler.

— uvm_report_catcher: The class which captures and counts al reports issued by the class
uvm_report_server.

The primary interface to the UVM reporting facility is the class uvm_report_object from which
class uvm_component is derived. The class uvm_report_object delegates most tasks to its internal
uvm_report_handler. If thereport handler determinesthereport isnot filtered based the configured verbosity
setting, it sends the report to the central uvm_report_server for formatting and processing.

12.1 uvm_report_message

The class uvm_report_message shall be used to compose a UVM object message. It provides the fields that
are common to all messages. It also has a message element container and provides the API's necessary to add
integral types, strings and uvm_objects to the container. The report message object can be initialized with the
common fields, and passes through the whole reporting system (i.e. report object, report handler, report server,
report catcher, etc) as an object. The additional elements can be added/deleted to/from the message object
anywhere in the reporting system, and can be printed or recorded along with the common fields.

12.1.1 Class definition

namespace uvm {

class uvmreport_nessage : public uvm object

{
public:

uvm report_mnessage(const std::string& nanme = "uvmreport_nessage");

/1 Goup: Infrastructure References

virtual void do_print(const uvmprinter& printer) const;
virtual uvmreport_object* get_report_object() const;
virtual void set_report_object(uvmreport_object* ro);
virtual uvmreport_handl er* get_report_handl er() const;
virtual void set_report_handler(uvmreport_handler* rh);
virtual uvmreport_server* get_report_server() const;
virtual void set_report_server(uvmreport_server* rs);

/1 G oup: Message Fields
virtual uvmseverity get_severity() const;

145
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void set_severity(uvmseverity sev);

virtual const std::string get_id() const;

virtual void set_id(const std::string&id);

virtual const std::string get_nessage() const;

virtual void set_nessage(const std::string& nmsg);
virtual int get_verbosity() const;

virtual void set_verbosity(int ver);

virtual const std::string get_filenanme() const;
virtual void set_filenane(const std::string& fname);
virtual int get_line() const;

virtual void set_line(int In);

virtual const std::string get_context() const;

virtual void set_context(const std::string& cn);
virtual uvmaction get_action() const;

virtual void set_action(uvmaction act);

virtual UYM FILE get_file() const;

virtual void set_file(U/MFILE fl);

virtual uvmreport_nessage_el ement_contai ner* get_el enent_contai ner() const;

virtual void set_report_nessage(uvm severity severity,
const std::string& id,
const std::string& nessage,
int verbosity,
const std::string& filenane,
int line,
const std::string& context_name);
/'l Group: Message El enment APls
virtual void add_int(const std::string& nane,
uvm bitstreamt val ue,
int size,
uvm radi x_enum r adi X,
uvm action action = (UM LOG | UYM RM RECORD));
virtual void add_string(const std::string& nane,
const std::string& val ue,
uvm action action = (UM LOG | UVM RM RECORD));
virtual void add_object(const std::string& nane,
uvm obj ect* obj,
uvm action action = (UWM LOG | UVM RM RECORD));
}; /1 class uvmreport_nessage

} /1 namespace uvm

12.1.2 Constructor

uvm report_nessage(const std::string& name = "uvmreport_nessage");

The constructor shall create a new report message with the given name.

12.1.3 Infrastructure references

12.1.3.1 do_print

virtual void do_print(const uvmprinter& printer) const;

The member function do_print shall provide UVM printer formatted output of the message.
12.1.3.2 get_report_object

virtual uvmreport_object* get_report_object() const;

The member function get_report_object shall return the uvm_report_object that originated the message.

146
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.1.3.3 set_report_object

virtual void set_report_object(uvmreport_object* ro);

The member function set_report_object shall define the uvm_report_object for the message.
12.1.3.4 get_report_handler

virtual uvmreport_handl er* get_report_handler() const;

The member function get_report_handler shall return theuvm_report_handler.
12.1.3.5 set_report_handler

virtual void set_report_handl er(uvmreport_handler* rh);

The member function set_report_handler shall definethe uvm_report_handler.
12.1.3.6 get_report_server

virtual uvmreport_server* get_report_server() const;

The member function get_report_server shall return theuvm_report_server that isresponsiblefor servicing
the message’ s actions.

12.1.3.7 set_report_server

virtual void set_report_server(uvmreport_server* rs);

The member function set_report_server shall definetheuvm_report_server that isresponsiblefor servicing
the message’ s actions.

12.1.4 Message fields

12.1.4.1 get_severity

virtual uvmseverity get_severity() const;

Themember functionget_severity shall return the severity of themessage (UVM _INFO, UVM_WARNING,
UVM_ERROR or UVM_FATAL). Thevalueof thisfield isdetermined viathe API used (e.g. use of macro’s
UVM_INFO, UVYM_WARING, etc.) and is populated for the application.

12.1.4.2 set_severity

virtual void set_severity(uvmseverity sev);

Themember function set_severity shall definethe severity of themessage (UVM _INFO, UVM_WARNING,
UVM_ERROR or UVM_FATAL).

147

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.1.4.3 get_id

virtual const std::string get_id() const;

The member function get_id shall define theid of the message.
12.1.4.4 set_id

virtual void set_id(const std::string&id);

The member function set_id shall return the id of the message.

NOTE—It is recommended that an application follows a consistent convention. Settings in the
uvm_report_handler alow various messaging controls based on this field. (See Section 12.3).

12.1.4.5 get_message

virtual const std::string get_message() const;

The member function get_message shall return the message content as string.

12.1.4.6 set_message

virtual void set_nessage(const std::string& nsg);

The member function set_message shall set the message content given as string argument.
12.1.4.7 get_verbosity

virtual int get_verbosity() const;

The member function get_verbosity shall return the message threshold value. This value is compared against
settings in theuvm_report_handler to determine whether this message should be executed.

12.1.4.8 set_verbosity

virtual void set_verbosity(int ver);

The member function set_verbosity shall define the message threshold value.
12.1.4.9 get_filename

virtual const std::string get_filename() const;

The member function get_filename shall return the filename from which the message originates. This value
isautomatically populated by the messaging macros.

12.1.4.10 set_filename

virtual void set_filenane(const std::string& fname);

148

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_filename shall define the filename in which the message is created.

12.1.4.11 get_line

virtual int get_line() const;

The member function get_line shall return the line number in the file from which the message originates. This
value isautomatically populate by the messaging macros.

12.1.4.12 set_line

virtual void set_line(int In);

The member function set_line shall define the line number at which the message is created.
12.1.4.13 get_context

virtual const std::string get_context() const;

The member function get_context shall return the context of the message.

12.1.4.14 set_context

virtual void set_context(const std::string& cn);

The member function set_context shall specify the optional user-supplied string that is meant to convey the
context of the message.

12.1.4.15 get_action

virtual uvmaction get_action() const;

The member function get_action shall return the action(s) that the uvm_report_server should perform for
this message.

12.1.4.16 set_action

virtual void set_action(uvmaction act);

The member function set_action shall define the action(s) that the uvm_report_server should perform for
this message.

12.1.4.17 get_file
virtual UYMFILE get_file() const;

The member function get_file shall return the file handle to the file where the message has been written to,
when the message' s actionis UVM_L OG.

149

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.1.4.18 set_file

virtual void set_file(U/MFILE fl);

The member function set_file shall define the file handle to the file where the message is to be written to,
when the message' s actionis UVM_L OG.

12.1.4.19 get_element_container

virtual uvmreport_nessage_el ement_contai ner* get_el enent_container() const;

The member function get_element_container shall return the element container of the message.

12.1.4.20 set_report_message

virtual void set_report_message(uvmseverity severity,
const std::string& id,
const std::string& nessage,
int verbosity,
const std::string& fil enane,
int line,
const std::string& context_nane);

The member function set_report_message shall set all the common fields of the report message.
12.1.5 Message element APIs

12.1.5.1 add_int

virtual void add_int(const std::string& nane,
uvm bitstreamt val ue,
int size,
uvm radi x_enum radi Xx,
uvm action action = (UVWM LOG | UVM RM RECORD));

The member function add_int shall add an integral type of the name name and val ue value to the message. The
required size field indicates the size of value. The required radix field determines how to display and record
the field. The optional print/record bit is to specify whether the element is printed/recorded.

12.1.5.2 add_string

virtual void add_string(const std::string& nane,
const std::string& val ue,
uvm action action = (UWM LOG | UVM RM RECORD));

The member function add_string shall add a string of the name name and value value to the message. The
optional print/record bit is to specify whether the element is printed/recorded.

12.1.5.3 add_object

virtual void add_object(const std::string& nane,
uvm obj ect* obj,
uvm action action = (UWWM LOG | UM RM RECORD));

The member function add_object shall add auvm_object of the name name and reference obj to the message.
The optional print/record bit is to specify whether the element is printed/recorded.

150

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2 uvm_report_object

The classuvm_report_object shall provide the primary interface to the UVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. An application can configure
what actions are taken and what file(s) are output for individual messages from a particular component or
for al messages from all components in the environment. Defaults are applied where there is no explicit
configuration.

A report consists of an id string, severity, verbosity level, and the textual message itself. They may optionally
include the filename and line number from which the message came. If the verbosity level of areport isgreater
than the configured maximum verbosity level of its report object, it isignored. If areport passes the verbosity
filter in effect, the report’s action is determined. If the action includes output to a file, the configured file
descriptor(s) are determined.

Actions can be set for (in increasing priority) severity, id, and (severity, id) pair. They include output to
thescreenor logfile(UVM_DISPLAY or UVM_L OG respectively), whether the message counters
should be incremented (UVM_COUNT), whether a ssimulation should be finished (UVM_EXIT)
or stopped (UVM_STOP). The action can also specify if a specific callback should be called as
soon as the reporting occurs (UVM_CALL_HOOK). Actions are of type uvm_action and can take
the value UVM_NO_ACTION, or it can be a bitwise OR of any combination of UVM_DISPLAY,
UVM_LOG,UVM_COUNT,UVM_STOP,UVM_EXIT,and UVYM_CALL_HOOK. (See Section
17.4.7).

Default actions: The following provides the default actions assigned to each severity. These can be
overridden by any of the member function set_report_id_action.

Severity Default action(s)

UVM_INFO UVM_DISPLAY

UVM_WARNING UVM_DISPLAY, UVM_COUNT
UVM_ERROR UVM_DISPLAY, UVM_COUNT
UVM_FATAL UVM_DISPLAY, UVM_COUNT, UVM_EXIT

File descriptors: These can be set by (in increasing priority) default, severity level, anid, or (severity,
id) pair. File descriptors are of type UVM_FILE. They may refer to more than one file. It is the
application’ s responsibility to open and close the files.

Default file handle: The default file handle is 0, which means that reports are not sent to a file even
if aUVM_LOG attribute is set in the action associated with the report. This can be overridden
by the member function set_report_default file, set_report_severity file, set_report_id_file or
set_report_severity_id_file. Assoon asthefile descriptor isset and the action UVM _L OG isset, the
report is sent to its associated file descriptor.

12.2.1 Class definition

namespace uvm {

class uvmreport_object : public uvm object

{

public:

/1 Constructors

uvm report_object();

explicit uvmreport_object(const std::string& name);

/1 Goup: Reporting
bool uvm report_enabled(int verbosity,

uvm severity_type severity = UM I NFO,
const std::string&id ="");

virtual void uvmreport_info(const std::string& id,

const std::string& nmessage,
int verbosity = UYM MEDI UM

151

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

const std::string& filename = "",
int line =0) const;

virtual void uvmreport_warning(const std::string& id,
const std::string& nessage,
int verbosity = UYM MEDI UM
const std::string& filename = "",
int line =0) const;

virtual void uvmreport_error(const std::string& id,
const std::string& nessage,
int verbosity = UVM LOW
const std::string& filename = "",
int line =0) const;

virtual void uvmreport_fatal (const std::string& id,
const std::string& nessage,
int verbosity = UVM NONE,
const std::string& filename = "",
int line =0) const;

/'l Group: Verbosilty Configuration
int get_report_verbosity_|level (uvmseverity_type severity = UVM | NFO
const std::string& id ="") const;

voi d set_report_verbosity_level (int verbosity_|evel);
voi d set_report_id_verbosity(const std::string& id, int verbosity);
voi d set_report_severity_id_verbosity(uvmseverity severity,

const std::string& id,

int verbosity);

/1 Action configuration
int get_report_action(uvmseverity severity,
const std::string& id) const;
voi d set_report_severity_action(uvmseverity severity,
uvm action action);
voi d set_report_id_action(const std::string& id,
uvm action action);
voi d set_report_severity_id_action(uvmseverity severity,
const std::string& id,
uvm action action);

/1l File configuration
UVM FI LE get _report_fil e_handl e(uvmseverity severity,
const std::string& id) const;

voi d set_report_default_file(UM FILE file);
void set_report_id_file(const std::string& id, UWWMFILE file);
voi d set_report_severity_file(uvmseverity severity, UWMFILE file);
voi d set_report_severity_id_file(uvmseverity severity,

const std::string& id,

UWM FILE file);

/1 Override Configuration
voi d set_report_severity_override(uvmseverity cur_severity,
uvm severity new severity);

voi d set_report_severity_id_override(uvmseverity cur_severity,
const std::string& id,
uvm severity new_severity);

I/ Group: Report Handler Configuration
voi d set_report_handl er(uvmreport_handl er* handler);
uvm report_handl er* get_report_handl er() const;
voi d reset_report_handler();
}; /1 class uvmreport_object

} /1 namespace uvm

12.2.2 Constructors

uvm report_object();
explicit uvmreport_object(const std::string& nanme);

152

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The constructors shall create a new report object with the given name. This member function shall also create
anew uvm_report_handler object to which most tasks are delegated.

12.2.3 Reporting

The member functions uvm_report_info, uvm_report_warning and uvm_report_fatal are the primary
reporting methods in UVM. They ensure a consistent output and central control over where output is directed
and any actions that result. All reporting member functions have the same arguments, although each has a
different default verbosity:

— id: aunique id of type std::string for the report or report group that can be used for identification
and therefore targeted filtering. An application can configure an individual report’ s actions and output
file(s) using thisid.

— message: the message body, preformatted to a single string of type std::string.

— verbosity: the verbosity of the message, indicating its relative importance. The verbosity shall be
specified as an enumeration of type uvm_verbosity. If the equivalent verbosity value is less than or
equal to the effective verbosity level (see Section 12.2.4.2), then the report is issued, subject to the
configured action and file descriptor settings. Verbosity is ignored for warnings, errors, and fatals.
However, if awarning, error or fatal is demoted to an info message using the uvm_report_catcher,
then the verbosity is taken into account. The predefined uvm_verbosity values are UVM_NONE,
UVM_LOW, UVYM_MEDIUM, UVM_HIGH, and UVYM_FULL.

— filename (optional): The file from which the report was issued. An application can use the predefined
macros__ FILE _and __ LINE__. If specified, it is displayed in the output.

— line (optional): The location from which the report was issued. An application can use the predefined
macro __LINE__. If specified, it is displayed in the output.

12.2.3.1 uvm_report_enabled

bool uvmreport_enabl ed(int verbosity,
uvm severity_type severity = UM I NFO,
const std::string&id ="");

The member function uvm_report_enabled shall return true if the configured verbosity for this severity/id is
greater than or equal to the given argument verbosity; otherwise it shall return false.

12.2.3.2 uvm_report_info

virtual void uvmreport_info(const std::string& id,
const std::string& nmessage,
int verbosity = UYM MEDI UM
const std::string& filename = "",
int line = 0) const;

The member function uvm_report_info shall issue an info message using the current messages report object.

12.2.3.3 uvm_report_warning

virtual void uvmreport_warning(const std::string& id,
const std::string& nessage,
int verbosity = UM MEDI UM
const std::string& filename = ""
int line =0) const;

The member function uvm_report_war ning shall issue awarning message using the current messages report
object.

153

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2.3.4 uvm_report_error

virtual void uvmreport_error(const std::string& id,
const std::string& nessage,
int verbosity = U/M LOW
const std::string& filename = ""
int line =0) const;

The member function uvm_report_error shall issue an error message using the current messages report
object.

12.2.3.5 uvm_report_fatal

virtual void uvmreport_fatal (const std::string& id,
const std::string& nessage,
int verbosity = UVM NONE,
const std::string& filename = "",
int line =0) const;

The member function uvm_report_fatal shall issue afatal message using the current messages report object.
12.2.4 Verbosity configuration

12.2.4.1 get_report_verbosity level

int get_report_verbosity_level (uvmseverity_type severity = UVM. I NFQ
const std::string&id ="") const;

Themember functionget_report_verbosity level shall get theverbosity level in effect for thisobject. Reports
issued with verbosity greater than this shall be filtered out. The severity and tag arguments check if the
verbosity level has been modified for specific severity/tag combinations.

12.2.4.2 set_report_verbosity_level
voi d set_report_verbosity_level (int verbosity_level);

The member function set_report_verbosity level shal set the maximum verbosity level for reports for this
component. Any report from this component whose verbosity exceeds this maximum isignored.

12.2.4.3 set_report_id_verbosity

voi d set_report_id_verbosity(const std::string& id, int verbosity);

Themember function set_report_id_verbosity shall associate the specified verbosity with reports of the given
id. A verbosity associated with a particular id takes precedence over a verbosity associated with a severity.

12.2.4.4 set_report_severity_id_verbosity

voi d set_report_severity_id_verbosity(uvmseverity severity,
const std::string& id,
int verbosity);

The member function set_report_severity id_verbosity shall associate the specified verbosity with reports
of the given severity-id pair. A verbosity associated with a particular severity-id pair takes precedence over a
verbosity associated with id, which take precedence over a verbosity associated with a severity.

154

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2.5 Action configuration

12.2.5.1 get_report_action

int get_report_action(uvmseverity severity,
const std::string& id) const;

The member function get_report_action shall get the action associated with reports having the given severity
andid.

12.2.5.2 set_report_severity _action

voi d set_report_severity_action(uvmseverity severity,
uvm action action);

The member function set_report_severity action shall associate the specified action or actions with
the given severity. An action associated with a particular severity-id pair or id, using the member
functions set_report_severity id_action or set_report_id_action respectively, shall take precedence over
the association set by this member function.

12.2.5.3 set_report_id_action

voi d set_report_id_action(const std::string& id,
uvm action action);

The member function set report_id_action shall associate the specified action or actions with
the given id. An action associated with a particular severity-id pair, using the member functions
set_report_severity id_action, shall take precedence over the association set by this member function.

12.2.5.4 set_report_severity_id_action

voi d set_report_severity_id_action(uvmseverity severity,
const std::string& id,
uvm action action);

The member function set_report_severity id_action shall associate the specified action or actions with the
givenid. An action associated with aparticular severity-id pair shall take precedence over an action associated
with id, which takes precedence over an action associated with a severity.

12.2.6 File configuration

12.2.6.1 get_report_file_handle

UVM FI LE get _report_file_handl e(uvmseverity severity,
const std::string& id) const;

The member function get_report_file_handle shall get the file descriptor associated with reports having the
given severity and id.

12.2.6.2 set_report_default_file

void set_report_default_file(UYVMFILE file);

155

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_report_default_file shall configure the report handler to direct some or al of its
output to the default file descriptor of type UVM_FILE. A file associated with a particular severity-id pair
shall take precedence over a FILE associated with id, which shall take precedence over afile associated with
a severity, which shall takes precedence over the association set by this member function.

12.2.6.3 set_report_id_file
void set_report_id_file(const std::string& id, U/WMFILE file);

The member function set_report_id_file shall configure the report handler to direct reports of the given id to
the file descriptor of type UVM_FILE. A file associated with a particular severity-id shall take precedence
over the association set by this member function.

12.2.6.4 set_report_severity file

voi d set_report_severity_file(uvmseverity severity, UWMFILE file);

The member function set_report_severity_fileshall configure the report handler to direct reports of the given
severity to the file descriptor of type UVM_FILE. A file associated with a particular severity-id or associated
with a specific id, shall take precedence over the association set by this member function.

12.2.6.5 set_report_severity _id_file

void set_report_severity_id_file(uvmseverity severity,
const std::string& id,
UVM FI LE file);

The member function set_report_severity id_file shall configure the report handler to direct reports of the
given severity-id pair to the given file descriptor of type UVM_FILE. A file associated with a particular
severity-id pair shall take precedence over a file associated with id, which shall take precedence over afile
associated with a severity, which takes precedence over the default file descriptor.

12.2.7 Override configuration

12.2.7.1 set_report_severity_override

voi d set_report_severity_override(uvmseverity cur_severity,
uvm severity new severity);

The member function set_report_severity override shall provide the ability to upgrade or downgrade a
message in terms of severity given severity. An upgrade or downgrade for aspecific id, using member function
set_report_severity id_override, shall take precedence over an upgrade or downgrade set by this member
function.

12.2.7.2 set_report_severity_id_override

voi d set_report_severity_id_override(uvmseverity cur_severity,
const std::string& id,
uvm severity new_severity);

The member function set_report_severity id_override shall provide the ability to upgrade or downgrade a
message in terms of severity given severity. An upgrade or downgrade for a specific id takes precedence over
an upgrade or downgrade associated with a severity.

156

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.2.8 Report handler configuration

12.2.8.1 set_report_handler

voi d set _report_handl er(uvmreport_handl er* handler);

The member function set_report_handler shall set the report handler, overwriting the default instance. This
allows more than one component to share the same report handler.

12.2.8.2 get_report_handler

uvm report_handl er* get_report_handl er() const;

The member function get_report_handler shall return the underlying report handler to which most reporting
tasks are delegated.

12.2.8.3 reset_report_handler

voi d reset _report_handl er();

The member function reset_report_handler shall reset the underlying report handler to its default
settings. This clears any settings made with the member functions set_report_id_verbosity hier,
set_report_severity id_verbosity hier, set report_severity action_hier, set report_id_action_hier,
set_report_severity_id_action_hier, set_report_default_file hier, set_report_severity file hier,
set_report_id_file hier, set report_severity id_file hier and set_report_verbosity level hier. (See
Section 7.1.9).

12.3 uvm_report_handler

Theclassuvm_report_handler isthe classto which most member functionsin uvm_report_object delegate.
It stores the maximum verbosity, actions, and files that affect the way reports are handled.

The report handler is not intended for direct use. See Section 12.2 for information on the UVM reporting
mechanism.

The relationship between class uvm_report_object, which is a base class for uvm_component, and
class uvm_report_handler is typically one to one, but it can be many to one if severa objects of type
uvm_report_object are configured to use the same uvm_report_handler. (See Section 12.2.8.1).

The relationship between an object of type uvm_report_handler and an object of type uvm_report_server
ismany to one.

12.3.1 Class definition

namespace uvm {

class uvmreport_handl er

{

public:
uvm report_handl er();
int get_verbosity_level (uvmseverity severity = UVM | NFO
const std::string&id ="");
uvm action get_action(uvmseverity severity,
157

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

const std::string&id);

UVM FI LE get_file_handl e(uvmseverity severity,
const std::string&id);

virtual void report(uvmseverity severity,
const std::string& nane,
const std::string& id,
const std::string& nessage,
int verbosity_level = UYM MEDI UM
const std::string& filename = "",
int line = 0,
uvmreport_object* client = NULL);
std::string format_action(uvm action action);
}; /1 class uvmreport_handl er

} /1 namespace uvm

12.3.2 Constructor

uvm report_handl er ();

The constructor shall create and initialize a new handler object.
12.3.3 Member functions
12.3.4 get_verbosity_level

int get_verbosity_level (uvmseverity severity

UVM_| NFO,
const std::string& id ")

)i

The member function get_verbosity level shall return the verbosity associated with the given severity and id.

First, if there is a verbosity associated with the pair (severity, id), return that. Else, if there is a verbosity
associated with the id, return that. Else, return the maximum verbosity setting.

12.3.5 get_action

uvm action get_action(uvmseverity severity,
const std::string&id);

The member function get_action shall return the action associated with the given severity and id. First, if there
is an action associated with the pair(severity, id), return that. Else, if there is an action associated with theid,
return that. Else, if there is an action associated with the severity, return that. Else, return the default action
associated with the severity.

12.3.6 get_file_handle

UVM FI LE get _file_handl e(uvmseverity severity,
const std::string&id);

The member function get_file_handle shall return the file descriptor UVM_FILE associated with the given
severity and id. First, if there is a file handle associated with the pair(severity, id), return that. Else, if there
is afile handle associated with the id, return that. Else, if there is a file handle associated with the severity,
return that. Else, return the default file handle.

158

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.3.7 report

virtual void report(uvmseverity severity,
const std::string& nane,
const std::string&id,
const std::string& nessage,
int verbosity_level = UM MEDI UM
const std::string& filename = ""
int line = 0,
uvm report_object* client = NULL);

The member function report shall be used by the four core reporting member functions, uvm_report_error,
uvm_report_info, uvm_report_warning, uvm_report_fatal, of classuvm_report_object.

12.3.8 format_action

std::string format_action(uvmaction action);

The member function format_action shall return a string representation of the action, e.g., “DISPLAY".

12.4 uvm_report_server

The class uvm_report_server shall act as a global server that processes all of the reports generated by a
uvm_report_handler.

The uvm_report_server is an abstract class which declares many of its member functions as pure virtual .
UVM definesthe classuvm_default_report_server asitsdefault report server.

12.4.1 Class definition

nanmespace uvm {

class uvmreport_server : public uvm object

{
public:

virtual void set_max_quit_count(int count, bool overridable = true) = 0;
virtual int get_max_quit_count() const = O;

virtual void set_quit_count(int quit_count) = O;
virtual int get_quit_count() const = O;

virtual void set_severity_count(uvmseverity severity, int count)
virtual int get_severity_count(uvmseverity severity) const = O;

1
&

virtual void set_id_count(const std::string& id, int count) = O;
virtual int get_id_count(const std::string& id) const = O;

virtual void get_id_set(std::vector<std::string>& q) const = O;
virtual void get_severity_set(std::vector<uvmseverity>& q) const = O;

voi d do_copy(const uvmobject& rhs);

virtual void execute_report_nessage(uvmreport_nessage* report_nessage,
const std::string& conposed_nessage) = 0;

virtual std::string conpose_report_nessage(uvmreport_nessage* report_nessage,
const std::string& report_object_nanme =

) const = 0;
virtual void report_sumarize(UWMFILE file = 0) const = 0;

static void set_server(uvmreport_server* server);
static uvmreport_server* get_server();

}; // class uvmreport_server

159

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} /1 namespace uvm

12.4.2 Member functions

12.4.2.1 set_max_quit_count

virtual void set_max_quit_count(int count, bool overridable = true) = 0;

The member function set_max_quit_count shall set the maximum number of COUNT actions that can be
tolerated beforeaUVM _EXIT actionistaken. The default is0, which specifies no maximum. When argument
overridableis set to false, the set quit count cannot be changed again.

12.4.2.2 get_max_quit_count

virtual int get_max_quit_count() const = O;

The member function get_max_quit_count shall return the currently configured maximum number of
COUNT actionsthat can be tolerated beforeaUVM _EXIT action istaken. The member function shall return
0if no maximum is set.

12.4.2.3 set_quit_count

virtual void set_quit_count(int quit_count) = O;

The member function set_quit_count shall set the current number of UVM_QUIT actions already passed
through thisuvm_report_server.

12.4.2.4 get_quit_count

virtual int get_quit_count() const = 0;

The member function get_quit_count shall return the current number of UVM _QUIT actions already passed
through this server.

12.4.2.5 set_severity_count

virtual void set_severity_count(uvmseverity severity, int count) = O0;

The member function set_severity count shall set the counter for the given severity to counter value count.
12.4.2.6 get_severity_count

virtual int get_severity_count(uvmseverity severity) const = O;

The member function get_severity_count shall return the counter value for the given severity.

12.4.2.7 set_id_count

virtual void set_id_count(const std::string& id, int count) = O;

The member function set_id_count shall set the counter for reports with the given id.

160

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.4.2.8 get_id_count
virtual int get_id_count(const std::string& id) const = O;

The member function get_id_count shall return the counter for reports with the given id.

12.4.2.9 get_id_set
virtual void get_id_set(std::vector<std::string>& q) const = 0;

The member function get_id_set shall return the set of id's already used by thisuvm_report_server.
12.4.2.10 get_severity_set

virtual void get_severity_set(std::vector<uvm severity>& q) const = O;

The member function get_severity set shall return the set of severities already used by this
uvm_report_server.

12.4.2.11 do_copy

voi d do_copy(const uvmobject& rhs);

The member function do_copy shall copy al message statistic severity, id counts to the destination
uvm_report_server. The copy is cummulative, which means only items from the source are transferred,
already existing entries are not del eted, existing entries/counts are overridden when they exist in the source set.

12.4.2.12 execute_report_message

virtual void execute_report_nessage(uvmreport_nessage* report_nessage,
const std::string& conposed_nessage) = O;

The member function execute report_message shall process the provided message per the actions contained
within. An applicatio could overload this member function to customize action processing.

12.4.2.13 compose_report_message

virtual std::string conpose_report_mnessage(uvmreport_message* report_nessage,
const std::string& report_object_name = "") const = O;

The member function compose_report_message shall construct the actual string sent to the file or command
line from the severity, component name, report id, and the message itself. An application can overload this
member function to customize report formatting.

12.4.2.14 report_summarize

virtual void report_sumarize(UWMFILE file = 0) const = 0;

The member function report_summarize shall output statistical information on the reports issued by this
central report server. Thisinformation is sent to the standard output (stdout) if there is no argument specified
or if the argument file is O; otherwise the information is send to a file using the argument file as file handle.
The member function uvm_root::run_test shall call this member function at the end of simulation.

161

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.4.2.15 set_server

static void set_server(uvmreport_server* server);

The member function set_server shall set the global report server to use for reporting. The report server is
responsible for formatting messages. This member function is provided as a convenience wrapper around
setting the report server viathe member function uvm_coreservice t::set_report_server.

12.4.2.16 get_server

static uvmreport_server* get_server() = O;

The member function get_server shall get the global report server. This member function shall always return
avalid handleto areport server. Thismember function is provided as a convenience wrapper around retrieving
the report server viathe member function uvm_coreservice t::get_report_server.

12.5 uvm_default_report_server
The classuvm_default_report_server shall define the default implementation of the UVM report server.

12.5.1 Class definition

nanmespace uvm {

class uvmdefaul t _report_server : public uvmreport_server

{
public:

uvm def aul t _report_server(const std::string& name = "uvmdefault_report_server");
/1 Group: Quit count

voi d set_max_quit_count(int count, bool overridable = true);
int get_max_quit_count() const;

void set_quit_count(int quit_count);

int get_quit_count() const;

void incr_quit_count();

void reset_quit_count();

bool is_quit_count_reached();

/'l Group: Severity count

voi d set_severity_count(uvmseverity severity, int count);

int get_severity_count(uvmseverity severity) const;

void incr_severity_count(uvmseverity severity);

voi d reset _severity_counts();

virtual void get_severity_set(std::vector<uvmseverity>& q) const;

/1 Group: id count

void set_id_count(const std::string& id, int count);

int get_id_count(const std::string& id) const;

void incr_id_count(const std::string&id);

virtual void get_id_set(std::vector<std::string>& q) const;

/1 Group: Message processing

virtual void execute_report_nessage(uvmreport_nessage* report_nessage,
const std::string& conposed_nessage);

virtual std::string conpose_report_nessage(uvmreport_nessage* report_nessage,
const std::string& report_object_name = "") const;

virtual void report_sumarize(UWMFILE file = 0) const;
virtual void do_print(const uvmeprinter& printer) const;

162

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

}; /1 class uvmdefaul t _report_server

} /1 namespace uvm

12.5.2 Constructor

uvm defaul t _report_server(const std::string& name = "uvmdefault_report_server");

The constructor shall create auvm_report_server object, if not already created. Else, it does nothing.
12.5.3 Quit count

12.5.3.1 set_max_quit_count

voi d set_max_quit_count(int count, bool overridable = true);

The member function set_max_quit_count shall set the maximum number of COUNT actions that can be
tolerated beforeaUVM _EXI T action istaken. The default is O, which specifies no maximum. When argument
overridable is set to false, the set quit count cannot be changed again.

12.5.3.2 get_max_quit_count

int get_max_quit_count() const;

The member function get_max_quit_count shall return the currently configured maximum number of
COUNT actionsthat can be tolerated beforeaUVM _EXIT action istaken. The member function shall return
0if no maximum is set.

12.5.3.3 set_quit_count

voi d set_quit_count(int quit_count);

The member function set_quit_count shall set the current number of UVM_QUIT actions already passed
through thisuvm_report_server.

12.5.3.4 get_quit_count
int get_quit_count() const;

The member function get_quit_count shall return the current number of UVM_QUI T actions already passed
through this server.

12.5.3.5 incr_quit_count
void incr_quit_count();

The member function incr_quit_count shall increase the quit count with one, i.e., the number of COUNT
actions.

163

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.5.3.6 reset_quit_count

void reset_quit_count();

The member function reset_quit_count shall reset the quit count, i.e., the number of COUNT actions, to 0.
12.5.3.7 is_quit_count_reached

bool i s_quit_count_reached();

The member function is_quit_count_reached shall return true when the quit counter has reached the
maximum.

12.5.4 Severity count

12.5.4.1 set_severity_count

voi d set_severity_count(uvmseverity severity, int count);

The member function set_severity count shall set the counter for the given severity to counter value count.
12.5.4.2 get_severity_count

int get_severity count(uvmseverity severity) const;

The member function get_severity _count shall return the counter value for the given severity.

12.5.4.3 incr_severity_count

voi d incr_severity_count(uvmseverity severity);

The member function incr_severity count shall increase the counter value for the given severity with one.
12.5.4.4 reset_severity_counts

voi d reset_severity_counts();

The member function reset_severity counts shall reset all severity countersto O.

12.5.4.5 get_severity_set

virtual void get_severity_set(std::vector<uvmseverity>& q) const = O;

The member function get severity set shal return the set of severities already used by this
uvm_report_server.

12.5.5 ID count

12.5.5.1 set_id_count

voi d set_id_count(const std::string& id, int count);

164

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_id_count shall set the counter for reports with the given id.

12.5.5.2 get_id_count

int get_id_count(const std::string&id) const;

The member function get_id_count shall return the counter for reports with the given id.

12.5.5.3 incr_id_count

void incr_id_count(const std::string&id);

The member function incr_id_count shall increase the counter for reports with the given id with one.

12.5.5.4 get_id_set

virtual void get_id_set(std::vector<std::string>& q) const = 0;

The member function get_id_set shall return the set of id's already used by thisuvm_report_server.
12.5.6 Message processing
12.5.6.1 execute_report_message

virtual void execute_report_nessage(uvmreport_nessage* report_nessage,
const std::string& conposed_nessage);

The member function execute report_message shall process the provided message per the actions contained
within. An applicatio could overload this member function to customize action processing.

12.5.6.2 compose_report_message

virtual std::string conpose_report_nessage(uvmreport_nessage* report_nessage,
const std::string& report_object_name = "") const;

The member function compose _report_message shall construct the actual string sent to the file or command
line from the severity, component name, report id, and the message itself. An application can overload this
member function to customize report formatting.

12.5.6.3 report_summarize

virtual void report_sumrmarize(UVMFILE file = 0) const;

The member function report_summarize shall output statistical information on the reports issued by this
central report server. Thisinformation is sent to the standard output (stdout) if there is no argument specified
or if the argument file is O; otherwise the information is send to a file using the argument file as file handle.
The member function uvm_root::run_test shall call this member function at the end of simulation.

12.5.6.4 do_print

virtual void do_print(const uvmeprinter& printer) const;

165

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function do_print shall provide UVM printer formatted output of the current configuration.

12.6 uvm_report_catcher

Theclassuvm_report_catcher shall be used to catch messagesissued by theuvm report server. Catchersare
objects of type uvm_callbacks<uvm_report_object, uvm_report_catcher>, so al facilities in the classes
uvm_callback and uvm_callbacks<T, CB> areavailablefor registering catchersand controlling catcher state.

Multiplereport catchers can beregistered with areport object. The catchers can beregistered asdefault catchers
which catch all reports on al reporters of type uvm_report_object, or catchers can be attached to specific
report objects (i.e. components).

User extensions of uvm_report_catcher need to implement the member function catch in which the action
to be taken on catching the report is specified. The member function catch can return CAUGHT, in which
case further processing of the report isimmediately stopped, or return THROW in which case the (possibly
modified) report is passed on to other registered catchers. The catchers are processed in the order in which
they are registered.

On catching a report, the member function catch can modify the severity, id, action, verbosity or the report
string itself before the report is finally issued by the report server. The report can be immediately issued from
within the catcher class by calling the member function issue.

The catcher maintains a count of al reports with severity UVM_FATAL, UVM_ERROR or
UVM_WARNING severity and a count of all reports with severity UVM_FATAL, UVM_ERROR or
UVM_WARNING whose severity was lowered. These statistics are reported in the summary of the
uvm_report_server.

12.6.1 Class definition

namespace uvm {

class uvmreport_catcher : public uvmcall back
{
public:
typedef enum { UNKNOWN_ACTI ON, THROW CAUGHT} action_e;

uvm report_catcher(const std::string& name = "uvmreport_catcher");

I/ Group: Current Message State

uvm report_object* get_client() const;
uvm severity get_severity() const;

int get_verbosity() const;

std::string get_id() const;
std::string get_nessage() const;

uvm action get_action() const;
std::string get_fname() const;

int get_line() const;

/'l Group: Change Message State

prot ect ed:

voi d set_severity(uvmseverity severity);
voi d set_verbosity(int verbosity);

void set_id(const std::string&id);

voi d set_nessage(const std::string& nessage);

voi d set_action(uvm.action action);

/'l Group: Debug

static uvmreport_catcher* get_report_catcher(const std::string& nane);
static void print_catcher(UWMFILE file =0);

/'l Group: Callback interface
virtual action_e do_catch’() = O;

166

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

/'l Group: Reporting
prot ect ed:
void uvmreport_fatal (const std::string&id,
const std::string& nessage,
int verbosity,
const std::string& fname = "",
int line =0);
void uvmreport_error(const std::string&id,
const std::string& nessage,
int verbosity,
const std::string& fname = "",
int line =0);
voi d uvm report_warni ng(const std::string& id,
const std::string& nessage,
int verbosity,
const std::string& fname = "",
int line =0);
void uvmreport_info(const std::string&id,
const std::string& nessage,
int verbosity,
const std::string& fname = "",
int line =0);

voi d issue();
static void sumuarize_report_catcher(U/MFILE file);

}; /1 class uvmreport_catcher

} /1 namespace uvm

12.6.2 Constructor

uvm report_catcher(const std::string& name = "uvmreport_catcher");

The constructor shall create a new report catcher object. The argument name is optional, but should generally
be provided to aid in debugging.

12.6.3 Current message state

12.6.3.1 get_client

uvm report_object* get_client() const;

The member function get_client shall return the uvm_report_object that has generated the message that is
currently being processed.

12.6.3.2 get_severity

uvm severity get_severity() const;

The member function get_severity shall return the uvm_severity of the message that is currently being
processed. If the severity was modified by a previously executed report object (which re-threw the message),
then the returned severity is the modified value.

12.6.3.3 get_verbosity

int get_verbosity() const;

167

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Themember function get_ver bosity shall return the verbosity of the messagethat is currently being processed.
If the verbosity was modified by a previously executed report object (which re-threw the message), then the
returned verbosity is the modified value.

12.6.3.4 get_id

std::string get_id() const;

The member function get_id shall return the string id of the message that is currently being processed. If the
id was modified by a previously executed report object (which re-threw the message), then the returned id is
the modified value.

12.6.3.5 get_message

std::string get_nessage() const;

The member function get_message shall return the string message of the message that is currently being
processed. If the message was modified by a previously executed report object (which re-threw the message),
then the returned message is the modified value.

12.6.3.6 get_action

uvm action get_action() const;

The member function get_action shall returnthe uvm_action of the messagethat is currently being processed.
If the action was modified by a previously executed report object (which re-threw the message), then the
returned action is the modified value.

12.6.3.7 get_fname

std::string get_fname() const;

The member function get_fname shall return the file name of the message.
12.6.3.8 get_line

int get_line() const;

The member function get_line shall return the line number of the message.

12.6.4 Change message state

12.6.4.1 set_severity

voi d set_severity(uvmseverity severity);

The member function set_severity shall change the severity of the message to severity. Any other report
catchers will see the modified value.

168
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.6.4.2 set_verbosity

voi d set_verbosity(int verbosity);

The member function set_severity shall change the verbosity of the message to verbosity. Any other report
catcherswill see the modified value.

12.6.4.3 set_id
void set_id(const std::string&id);

The member function set_id shall change the id of the message to id. Any other report catchers will see the
modified value.

12.6.4.4 set_message

voi d set_nmessage(const std::string& nmessage);

The member function set_message shall change the text of the message to message. Any other report catchers
will see the modified value.

12.6.4.5 set_action

voi d set_action(uvmaction action);

The member function set_action shall change the action of the message to action. Any other report catchers
will see the modified value.

12.6.5 Debug

12.6.5.1 get_report_catcher

static uvmreport_catcher* get_report_catcher(const std::string& name);

The member function get_report_catcher shall return the first report catcher that has name.
12.6.5.2 print_catcher

static void print_catcher(UWMFILE file =0);

The member function print_catcher shall print information about all of the report catchersthat are registered.
For finer grained detail, the member function uvm_callbacks<T,CB>::display can be used by calling
uvm_report_cb::display(uvm_report_object).

12.6.6 Callback interface

12.6.6.1 do_catch® (catchT)

virtual action_e do_catch®°() =0

169

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Themember function do_catch® shall be called for each registered report catcher. The member functionsinthe
current message state interface can be used to access information about the current message being processed
(see Section 12.6.3).

12.6.7 Reporting

12.6.7.1 uvm_report_fatal

void uvmreport_fatal (const std::string& id,
const std::string& nessage,
int verbosity,
const std::string& fname = ""
int line =0);

The member function uvm_report_fatal shall issue afatal message using the current messages report object.
This message shall bypass any message catching callbacks.

12.6.7.2 uvm_report_error

void uvmreport_error(const std::string&id,
const std::string& nessage,
int verbosity,
const std::string& fname = "",
int line =0);

The member function uvm_report_error shall issue an error message using the current messages report
object. This message shall bypass any message catching callbacks.

12.6.7.3 uvm_report_warning

voi d uvmreport_warni ng(const std::string& id,
const std::string& nessage,
int verbosity,
const std::string& fname = "",
int line =0);

The member function uvm_report_war ning shall issue awarning message using the current messages report
object. This message shall bypass any message catching callbacks.

12.6.7.4 uvm_report_info

void uvmreport _info(const std::string& id,
const std::string& nessage,
int verbosity,
const std::string& fname = ""
int line =0);

The member function uvm_report_info shall issue an info message using the current messages report object.
This message shall bypass any message catching callbacks.

12.6.7.5 issue

voi d issue();

The member function issue shall immediately issue the message which is currently being processed. Thisis
useful if the messageisbeing CAUGHT but should still be emitted. 1ssuing a message shall update the report
server stats, possibly multiple timesif the messageis not CAUGHT.

170

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

12.6.7.6 summarize_report_catcher
static void sumrari ze_report_catcher(UYMFILE file);

The member function summarize_report_catcher shal print the statistics for the active catchers. It shall be
called automatically by the member function uvm_report_server::summarize.

171
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

13. Macros

UV M-SystemC defines macros for the following functions:
— Component and object registration.
— Reporting.
— Seguence execution.
— Cadlbacks.

13.1 Component and object registration macros

These macros shall register components and objects with the uvm_factory, using the component registry
uvm_component_registry or uvm_object_registry, respectively. In addition, they shall implement the
member functionsget_typeand get_type nameto facilitate debugging and factory configuration or overrides.

13.1.1 Macro definitions

namespace uvm {

#define UVYM OBJECT_UTILS(inpl ementation-defined) inplenmentation-defined

#defi ne UVM_OBJECT_PARAM UTI LS(i npl ement ati on-defined) inplenmentation-defined
#defi ne UVM_COVPONENT_UTI LS(i npl enent ati on-defined) inplenentation-defined

#def i ne UVM_COVPONENT_PARAM UTI LS(i npl enent ati on-defined) inplenentation-defined

} // namespace uvm

13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS

#define UVM_ OBJECT_UTI LS(i npl ement ati on-defined) inplenmentation-defined
#defi ne UVM_OBJECT_PARAM UTI LS(i npl ement ati on-defined) inplenmentation-defined

ThemacrosUVM_OBJECT_UTILSandUVM_OBJECT_PARAM_UTIL Sshall implement thefollowing
functionality:

— Implement the virtual member function get_type name with the following signature:
virtual const std::string get_type_nane() const;
This member function shall return the name of the class, which is provided as argument to this macro,
as string.

— Implement the static member function get_type with the following signature:

static uvm obj ect_regi stry<cl assname>* get_type();

This member function shall return the factory proxy object as pointer of type uvm_object_registry.
— Register the class with the factory.

NOTE—An implementation may use the concept of variadic macros to be able to accept a variable number
of macro arguments.

13.1.3 UVM_COMPONENT_UTILS, UVYM_COMPONENT_PARAM_UTILS

#defi ne UYM_COVPONENT_UTI LS(i npl enent ati on-defined) inplenentation-defined
#def i ne UYM_COVPONENT_PARAM UTI LS(i npl enent ati on-defined) inplenentation-defined

172
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The macrosUVM_COMPONENT_UTILSand UVYM_COMPONENT_PARAM_UTIL Sshall implement
the following functionality:

— Implement the virtual member function get_type _name with the following signature:
virtual const std::string get_type_nanme() const;
This member function shall return the name of the class, which is provided as argument to this macro,
as string.

— Implement the static member function get_type with the following signature:
stati c uvm conponent _regi stry<cl assname>* get_type();
This member function shall return the factory proxy object as pointer of type
uvm_component_registry.

— Register the class with the factory

NOTE—An implementation may use the concept of variadic macros to be able to accept a variable number
of macro arguments.

13.2 Reporting macros

The report macros shall provide additional functionality to the UVM reporting classes to facilitate efficient
filtering messages based on verbosity, id and severity information, as well as annotating file and line number
information to the reported messages.

13.2.1 Macro definitions

namespace uvm {

#define UWWM.INFQ(I D, MSG VERBCSITY) inplenentation-defined
#define UWWM WARNING(| D, MSG) inplenentation-defined

#define UVWM ERROR(ID, MSG) inplenentation-defined

#define UVM FATAL(ID, MSG) inplenentation-defined

} /1 namespace uvm

13.2.2 UVM_INFO

#define UVWM_INFQ(1D, MSG VERBOSITY) inplenentation-defined

The macro UVM _INFO shall only call member function uvm_report_info if argument VERBOSITY is
lower than the configured verbosity of the associated reporter. Argument ID is given as the message tag and
argument MSG is given as the message text. The file and line number are also sent to the member function
uvm_report_info by means of using the predefined macros__ FILE__and __ LINE__.

13.2.3 UVM_WARNING
#define UWWM WARNING | D, MSG) inplenentation-defined

The macro UVM_WARNING shall call the member function uvm_report_warning with a verbosity of
UVM_NONE. The message cannot be turned off using the reporter’s verbosity setting, but can be turned off
by setting the action for the message. Argument ID is given as the message tag and argument MSG is given

173

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

as the message text. The file and line number are also sent to the member function uvm_report_warning by
means of using the predefined macros __ FILE _and __ LINE__.

13.2.4 UVM_ERROR

#define UWM ERROR(ID, MSG) inplenentation-defined

The macro UVM_ERROR shal call the member function uvm_report_error with a verbosity of
UVM_NONE. The message cannot be turned off using the reporter’s verbosity setting, but can be turned off
by setting the action for the message. Argument ID is given as the message tag and argument MSG isgiven as
the message text. Thefile and line number are also sent to the member function uvm_report_error by means
of using the predefined macros__ FILE__and _ LINE__.

13.2.5 UVM_FATAL

#define UVM_FATAL(ID, MSG) inplenentation-defined

The macro UVM_FATAL shall call member function uvm_report_fatal with averbosity of UVYM_NONE.
The message cannot be turned off using the reporter’s verbosity setting, but can be turned off by setting the
action for the message. Argument ID is given as the message tag and argument MSG is given as the message
text. Thefile and line number are also sent to the member function uvm_report_fatal by means of using the
predefined macros FILE _and _ LINE_ .

13.3 Sequence execution macros

The segquence execution macros are shall provide a convenience layer to start sequences or sequence items on
adefault sequencer, if not specified, or on another sequencer if specified.

NOTE—It is strongly recommended not to use the sequence execution macros in an application. Instead, for
a seguence item to start, it is recommended to use the member functions start_item (see Section 9.3.7.2) and
finish_item (see Section 9.3.7.3). To start a sequence, it is recommended to use the member function start
(see Section 9.3.4.1).

13.3.1 Macro definitions

namespace uvm {

#define UM DO(SEQ OR I TEM) i npl enent ati on-defi ned

#define UWM DO PRI (SEQ OR ITEM PRICRITY) inplenentation-defined

#define UWM DO ON(SEQ OR ITEM SEQR) inplenmentation-defined

#define UWM DO ON PRI (SEQ OR ITEM SEQR, PRIORITY) inplenentation-defined
#defi ne UVM_CREATE(SEQ OR_I TEM) i npl ement ati on-defi ned

#define UVM_ CREATE_ON(SEQ OR ITEM SEQR) inplenentation-defined

#defi ne UVM_DECLARE_P_SEQUENCER(SEQR) i npl ement ati on-defi ned

} // namespace uvm
13.3.2 UVM_DO
#define UWM DO SEQ OR I TEM) inplenentation-defined

The macro UVM_DO shall start the execution of a sequence or sequence item. It takes as an argument
SEQ OR ITEM, which is an object of type uvm_sequence item or object of type uvm_sequence.

174

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Inthe case of a sequence, the sub-sequence shall be started using member function uvm_sequence base::start
with argument call_pre_post set to false. In the case of a sequence item, the item shall be sent to the driver
through the associated sequencer.

NOTE—Randomization is not yet supported in UVM-SystemC.

13.3.3 UVM_DO _PRI
#define UWM DO PRI (SEQ OR ITEM PRICRITY) inplenentation-defined

The macro UVM_DO_PRI shall implement the same functionality as UVM_DO, except that the sequence
item or sequence is executed with the priority specified in the argument PRIORITY.

13.3.4 UVM_DO_ON
#define UVM DO ON(SEQ OR ITEM SEQR) inpl ementati on-defined

The macro UVM_DO_ON shall implement the same functionality as UVM_DO, except that it also sets the
parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified
argument SEQR.

13.3.5 UVM_DO_ON_PRI
#define UUM DO ON PRI (SEQ OR ITEM SEQR, PRIORITY) inplenentation-defined

The macro UVM_DO_ON_PRI shall implement the same functionality as UVM_DO_PRI, except that it
also sets the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the
specified argument SEQR.

13.3.6 UVYM_CREATE

#def i ne UYM_CREATE(SEQ OR I TEM) i npl ement ati on- def i ned

The macro UVM_CREATE shall create and register the sequence item or sequence using the factory. It
intentionally does not start the execution.

NOTE—ATfter calling this member function, an application can manually set values and start the execution.
13.3.7 UVM_CREATE_ON

#defi ne UVM_CREATE_ON(SEQ OR I TEM SEQR) inpl enentation-defined

The macro UVM_CREATE_ON shall implement the same functionality as UVM_CREATE, except that it
also sets the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the
specified argument SEQR.

13.3.8 UVM_DECLARE_P_SEQUENCER

#defi ne UYM DECLARE_P_SEQUENCER(SEQR) i npl enent ati on-defi ned

ThemacroUVM_DECLARE_P_SEQUENCER shall declareavariable p_sequencer whosetypeisspecified
by the argument SEQR.

175

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

13.4 Callback macros
The callback macros shall register and execute callbacks which are derived from class uvm_callbacks.

13.4.1 Macro definitions

nanmespace uvm {

#define UWM REG STER CB(T, CB) inplenentation-defined
#define UVM DO _CALLBACKS(T, CB, METHCD) inpl enentation-defined

} // namespace uvm

13.4.2 UVM_REGISTER_CB

#define UVWM REG STER CB(T, CB) inplenentation-defined

The macro UVM_REGISTER_CB shall register the given callback type CB with the given object type T.
If atype-calback pair is not registered, then awarning is issued if an attempt is made to use the pair (add,
delete, etc.).

13.4.3 UVM_DO_CALLBACKS

#defi ne U/M DO CALLBACKS(T, CB, METHOD) i npl enent ati on-defi ned

The macro UVM_DO_CALLBACKS shal call the given METHOD of al callbacks of type CB registered
with the calling object (i.e. this object), which isor is based on type T.

This macro executes all of the callbacks associated with the calling object (i.e. this object). The macro takes
three arguments:

— CBisthe class type of the callback objects to execute. The class type shall have a function signature
that matches the argument METHOD.

— Tisthetypeassociated withthe callback. Typically, aninstance of type T ispassed asonethe arguments
in the METHOD call.

— METHOD isthe method call to invoke, with all required arguments as if they were invoked directly.

176
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14. TLM classes

The TLM classes of UVM-SystemC shall be derived from the SystemC TLM interface definitions as defined
in|EEE Std. 1666-2011. Ascommunication between UVM componentsis primarily based on TLM-1 message
passing semantics, dedicated ports and exports are defined compliant with these semantics.

Thefollowing TLM-1 ports are defined in UVM-SystemC:

— Ports based on TLM-1 blocking interfaces: uvm_blocking put_port, uvm_blocking_get port,
uvm_blocking peek_port, and uvm_blocking_get_peek port.

— Ports based on TLM-1 non-blocking interfaces: uvm_nonblocking_put_port,
uvm_nonblocking_get_port, uvm_nonblocking peek port, and
uvm_nonblocking_get_peek_port.

— Anaysis port and export classess uvm_analysis port, uvm_analysis export, and
uvm_analysis imp.

— Request-response channel class: uvm_tlm_req_rsp_channdl.

— Sequencer interface classes: uvm_sqr_if base, uvm_seq_item_pull_port,
uvm_seq_item_pull_export, and uvm_seq_item_pull_imp.

NOTE 1—UVM-SystemC does not define TLM-1 FIFO and FIFO interface classes. Instead, an application
should use the SystemC FIFO base classes tim::tlm_fifo or tlm::tlm_analysis fifo, or FIFO interfaces
tim::tim_fifo_debug_if, tim::tIm_fifo_put_if, and tim::tIm_fifo_get_if.

NOTE 2—UVM-SystemC does not define the TLM-2.0 blocking and non-blocking transport interfaces, direct
memory interface (DMI), nor a debug transport interface. Instead, an application should use the SystemC
TLM-2.0 interfaces.

14.1 uvm_blocking_put_port

The classuvm_blocking_put_port offers aconvenience layer for UVM users to access the SystemC TLM-1
blocking interface tim::tim_blocking_put_if. Asthis port class shall be derived from classuvm_port_base,
it inherits the UVM specific member functions connect, get_name, get_full_name and get_type name.

14.1.1 Class definition

namespace uvm {

tenpl ate <typenane T>
class uvm bl ocki ng_put _port : public uvmport_base< tIm:tlmblocking_put_if<T> >

{
public:
/1 Constructors
uvm bl ocki ng_put _port();
uvm bl ocki ng_put _port(const std::string& nane);

/1 Menber functions
virtual const std::string get_type_name() const;
virtual void put(const T& val);

}; // class uvm bl ocki ng_put _port

} // namespace uvm

14.1.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

177

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.1.3 Constructor

uvm bl ocki ng_put _port();
uvm bl ocki ng_put _port(const std::string& nane);

The constructor shall create anew port with TLM-1 blocking put interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.1.4 Member functions

14.1.4.1 get_type_name
virtual const std::string get_type_name() const;

The member function get_type _name shall return the string “uvm::uvm_blocking_put_port”.

14.1.4.2 put

virtual void put(const T& val);

The member function put shall send the transaction of type T to the recipient. It shall call the member function
put of the associated interface which is bound to this port.

According to the TLM-1 blocking put semantics, the member function put shall not return until the recipient
has indicated that the transaction object has been processed, by calling member function get or peek.
Subsequent calls to the member function put shall be treated as distinct transaction instances, regardless of
whether or not the same transaction object or message is passed.

14.2 uvm_blocking_get_port

The classuvm_blocking_get_port offers a convenience layer for UVM users to access the SystemC TLM-1
blocking interface tim::tlm_blocking_get_if. Asthis port class shall be derived from class uvm_port_base,
it inherits the UVM specific member functions connect, get_name, get_full_name and get_type name.

14.2.1 Class definition

namespace uvm {

tenpl ate <typenane T>
class uvm bl ocki ng_get _port : public uvmport_base< tIm:tlmblocking_get_if<T> >

{
public:
/1 Constructors
uvm bl ocki ng_get _port();
uvm bl ocki ng_get _port(const std::string& nane);

/1 Menber functions
virtual const std::string get_type_nanme() const;
virtual void get(T& val);

}; /1 class uvm bl ocki ng_get _port

} /1 namespace uvm

14.2.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

178
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.2.3 Constructor

uvm bl ocki ng_get _port();
uvm bl ocki ng_get _port(const std::string& nane);

The constructor shall create anew port with TLM-1 blocking get interface semantics. If specified, the argument
name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.2.4 Member functions

14.2.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type _name shall return the string “uvm::uvm_blocking_get_port”.

14.2.4.2 get

virtual void get(T& val);

Themember function get shall retrieve atransaction of type T from the sender. It shall call the member function
get of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsegquent calls to the member
function get shall return a different transaction object. This actually means that a call to get shall consume
the transaction from the sender.

14.3 uvm_blocking_peek_port

The classuvm_blocking_peek_port offersaconveniencelayer for UVM usersto accessthe SystemC TLM-1
blocking interfacetim::tim_blocking_peek_if. Asthisport class shall be derived from classuvm_port_base,
it inherits the UVM specific member functions connect, get_name, get_full_name and get_type name.

14.3.1 Class definition

namespace uvm {

tenpl ate <typenane T>
class uvm bl ocki ng_peek_port : public uvmport_base< tlm:tlmblocking_peek_if<T> >

{
public:
/1 Constructors
uvm bl ocki ng_peek_port();
uvm bl ocki ng_peek_port(const std::string& name);

/1 Menber functions
virtual const std::string get_type_nanme() const;
virtual void peek(T& val) const;

}; /1 class uvm bl ocki ng_peek_port

} /1 namespace uvm

14.3.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

179

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.3.3 Constructor

uvm bl ocki ng_peek_port();
uvm bl ocki ng_peek_port(const std::string& nane);

The congtructor shall create a new port with TLM-1 blocking peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.3.4 Member functions
14.3.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type _name shall return the string “uvm::uvm_blocking_peek port”.

14.3.4.2 peek

virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member
function peek of the associated interface which is bound to this port.

According to the TLM-1 blocking peek semantics, the member function peek shall not return until atransaction
object has been delivered by the sender by means of its member function put. Subsegquent calls to the member
function peek shall return exactly the same transaction object. This actually meansthat a call to peek shall not
consume the transaction from the sender. A transaction shall only be consumed by means of acall to get.

14.4 uvm_blocking_get peek port

The class uvm_blocking_get_peek_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tIm::tim_blocking_get_peek_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type _name.

14.4.1 Class definition

namespace uvm {

tenpl ate <typenane T>
class uvm bl ocki ng_get _peek_port : public uvmport_base< tlm:tlmblocking_get_peek_if<T> >

{
public:
/1 Constructor
uvm bl ocki ng_get _peek_port();
uvm bl ocki ng_get _peek_port(const std::string& nane);

/1 Menber functions

virtual const std::string get_type_nanme() const;
virtual void get(T& val);

virtual void peek(T& val) const;

}; /1 class uvm bl ocki ng_get _peek_port

} /1 namespace uvm

180
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.4.2 Template parameter T
The template parameter T specifies the type of transaction to be received by the port.

14.4.3 Constructor

uvm bl ocki ng_get _peek_port();
uvm bl ocki ng_get _peek_port(const std::string& nanme);

The constructor shall create anew port with TLM-1 blocking get and peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.4.4 Member functions
14.4.4.1 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type _name shall return the string “uvm::uvm_blocking_get_peek port”.

14.4.4.2 get

virtual void get(T& val);

Themember function get shall retrieve atransaction of type T from the sender. It shall call the member function
get of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction
object has been delivered by the sender by means of its member function put. Subsegquent calls to the member
function get shall return a different transaction object. This actually means that a call to get shall consume
the transaction from the sender.

14.4.4.3 peek
virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member
function peek of the associated interface which is bound to this port.

According to the TLM-1 blocking peek semantics, the member function peek shall not return until atransaction
object has been delivered by the sender by means of its member function put. Subseguent calls to the member
function peek shall return exactly the same transaction object. This actually meansthat acall to peek shall not
consume the transaction from the sender. A transaction shall only be consumed by means of a call to get.

14.5 uvm_nonblocking_put_port

The class uvm_nonblocking_put_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tim::tim_nonblocking put_if. As this port class shal be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type _name.

181

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.5.1 Class definition

namespace uvm {
tenpl ate <typenane T>

cl ass uvm nonbl ocki ng_put_port : public uvm port_base< tlm:tlmnonblocking_put_if<T> >

{
public:
/'l Constructors
uvm nonbl ocki ng_put _port();
uvm nonbl ocki ng_put _port(const std::string& nanme);
/1 Menber functions
virtual const std::string get_type_nane() const;
virtual bool try_put(const T& val);
virtual bool can_put() const;
}; // class uvm nonbl ocki ng_put _port

} // namespace uvm

14.5.2 Template parameter T
The template parameter T specifies the type of transaction to be communicated by the port.

14.5.3 Constructor

uvm _nonbl ocki ng_put _port();
uvm _nonbl ocki ng_put _port(const std::string& nanme);

The constructor shall create a new port with TLM-1 non-blocking put interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.5.4 Member functions
14.5.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type name shall return the string “uvm::uvm_nonblocking_put_port”.

14.5.4.2 try_put

virtual bool try_put(const T& val);

The member function try_put shall send the transaction of type T to the recipient, if possible. It shall call the
corresponding non-blocking put member function of the associated interface which isbound to this port. If the
recipient is able to respond immediately, then the member function shall return true. Otherwise, the member
function shall return false, and shall not accept or return the next transaction.

14.5.4.3 can_put

virtual bool can_put() const;

The member function can_put shall return true if the recipient is able to respond immediately; otherwise it
shall return false.

182

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.6 uvm_nonblocking_get_port

The class uvm_nonblocking_get_port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tim::tlm_nonblocking_get_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type name.

14.6.1 Class definition

nanmespace uvm {
tenpl ate <typenane T>

cl ass uvm nonbl ocki ng_get_port : public uvm port_base< tlm:tlmnonblocking_get_if<T> >

{
public:
/'l Constructor
uvm nonbl ocki ng_get _port();
uvm nonbl ocki ng_get _port(const std::string& nanme);
/1 Menber functions
virtual const std::string get_type_nane() const;
virtual bool try_get(T& val);
virtual bool can_get() const;
}; // class uvm nonbl ocki ng_get _port

} // namespace uvm
14.6.2 Template parameter T
The template parameter T specifies the type of transaction to be communicated by the port.

14.6.3 Constructor

uvm _nonbl ocki ng_get _port();
uvm _nonbl ocki ng_get _port(const std::string& nanme);

The constructor shall create a new port with TLM-1 non-blocking get interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.6.4 Member functions

14.6.4.1 get_type_name

virtual const std::string get_type nanme() const;

The member function get_type name shall return the string “uvm::uvm_nonblocking_get_port”.

14.6.4.2 can_get

virtual bool can_get() const;

The member function can_get shall return true if anew transaction can be provided immediately upon request.
Otherwiseit shall return false.

183
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.7 uvm_nonblocking_peek_port

The class uvm_nonblocking_peek port offers a convenience layer for UVM users to access the SystemC
TLM-1 blocking interface tIm::tlm_nonblocking_peek_if. As this port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type name.

14.7.1 Class definition

nanmespace uvm {
tenpl ate <typenane T>

cl ass uvm nonbl ocki ng_peek_port : public uvmport_base< tlm:tlmnonbl ocking_peek_if<T> >

{
public:
/'l Constructors
uvm nonbl ocki ng_peek_port();
uvm nonbl ocki ng_peek_port(const std::string& nanme);
/1 Menber functions
virtual const std::string get_type_nane() const;
virtual bool try_peek(T& val);
virtual bool can_peek() const;
}; /1 class uvm nonbl ocki ng_peek_port

} // namespace uvm

14.7.2 Template parameter T
The template parameter T specifies the type of transaction to be communicated by the port.

14.7.3 Constructor

uvm nonbl ocki ng_peek_port ();
uvm nonbl ocki ng_peek_port(const std::string& nane);

The constructor shall create a new port with TLM-1 non-blocking peek interface semantics. If specified, the
argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.7.4 Member functions
14.7.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type name shall return the string “uvm::uvm_nonblocking_peek_port”.

14.7.4.2 try_peek

virtual bool try_peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call
the corresponding non-blocking peek member function of the associated interface which is bound to this port.

If atransaction isimmediately available, then it is written to the argument val and the member function shall
return true. Otherwise, the output argument is not modified and the member function shall return false.

184

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.7.4.3 can_peek

virtual bool can_peek() const;

The member function can_peek shall return true if a new transaction can be provided immediately upon
request. Otherwise it shall return false.

14.8 uvm_nonblocking_get_peek_port

Theclassuvm_nonblocking_get peek port offersaconveniencelayer for UVM usersto accessthe SystemC
TLM-1 blocking interface tim::tim_nonblocking_get peek_if. Asthis port class shall be derived from class
uvm_port_base, it inherits the UVM specific member functions connect, get_name, get_full_name and
get_type _name.

14.8.1 Class definition

namespace uvm {

tenpl ate <typenane T>
cl ass uvm nonbl ocki ng_get _peek_port
: public uvmport_base< tIm:tlmnonbl ocking_get_peek_if<T> >

{
public:
/1 Constructors
uvm nonbl ocki ng_get _peek_port();
uvm nonbl ocki ng_get _peek_port(const std::string& nane);

/1 Menber functions
virtual const std::string get_type_name() const;
virtual bool try_get(T& val);
virtual bool can_get() const;
virtual bool try_peek(T& val);
virtual bool can_peek() const;
}; /1 class uvm nonbl ocki ng_get _peek_port

} // namespace uvm

14.8.2 Template parameter T
The template parameter T specifies the type of transaction to be communicated by the port.

14.8.3 Constructor

uvm nonbl ocki ng_get _peek_port();
uvm nonbl ocki ng_get _peek_port(const std::string& nane);

Theconstructor shall createanew port with TLM-1 non-blocking get and peek interface semantics. If specified,
the argument name shall define the name of the port. Otherwise, the name of the port is implementation-
defined.

14.8.4 Member functions

14.8.4.1 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type name shall return the string “uvm::uvm_nonblocking_get peek port”.

185

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.8.4.2 try_get

virtual bool try_get(T& val);

The member function try_get shall retrieve a new transaction of type T. It shall call the corresponding non-
blocking get member function of the associated interface which is bound to this port.

If atransaction isimmediately available, then it is written to the argument val and the member function shall
return true. Otherwise, the output argument is not modified and the member function shall return false.

14.8.4.3 can_get

virtual bool can_get() const;

The member function can_get shall return true if anew transaction can be provided immediately upon request.
Otherwiseit shall return false.

14.8.4.4 try_peek

virtual bool try_peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call
the corresponding non-blocking peek member function of the associated interface which is bound to this port.

If atransaction isimmediately available, then it is written to the argument val and the member function shall
return true. Otherwise, the output argument is not modified and the member function shall return false.

14.8.4.5 can_peek

virtual bool can_peek() const;

The member function can_peek shall return true if a new transaction can be provided immediately upon
request. Otherwise it shall return false.

14.9 uvm_analysis_port

Theclassuvm_analysis port offersaconvenience layer for UVM users and is compatible with the SystemC
tim::tim_analysis port, sinceit shall be derived from this class. Primary reason to introduce this derived port
classisto offer the UV M specific member function connect asalternative to the SystemC bind and oper ator ()
to connect analysis ports with exports.

14.9.1 Class definition

namespace uvm {

tenpl ate <typenane T>
class uvm anal ysis_port : public tlm:tlmanalysis_port<T>

{
public:
/1 Constructors
uvm anal ysi s_port();
uvm anal ysi s_port(const std::string& nane);

/1 menber functions
virtual const std::string get_type_name() const;

186

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void connect(tlm:tlmanalysis_if<T>& _if);
void wite(const T&t);

}; /1 class uvm anal ysis_port

} /1 namespace uvm

14.9.2 Template parameter T
The template parameter T specifies the type of transaction to be communicated by the analysis port.

14.9.3 Constructor

uvm anal ysi s_port();
uvm anal ysi s_port(const std::string& nane);

The constructor shall create a new analysis port. If specified, the argument name shall define the name of the
port. Otherwise, the name of the port isimplementation-defined.

NOTE—UVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments
min_size and max_size to specify the minimum and maximum number of interfaces, respectively, that are
connected to this port by the end of elaboration.

14.9.4 Member functions

14.9.4.1 get_type_name
virtual const std::string get_type_nane() const;

The member function get_type name shall return the string “uvm::uvm_analysis port”.

14.9.4.2 connect
virtual void connect(tim:tlmanalysis_if<T>& _if);

The member function connect shall register the subscriber passed as an argument, so that any call to the
member function write of such analysis port instance shall be passed on to the registered subscriber. Multiple
subscribers may be registered with asingle analysis port instance.

NOTE 1—The member function connect implements the same functionality asthe SystemC member function
bind.

NOTE 2—There may be zero subscribers registered with any given analysis port instance, in which case calls
to the member function write shall not be propagated.

14.9.4.3 write

void wite(const T&t);

The member function write shall call the member function write of every subscriber which is bound to this
analysis port, by passing on the argument as a const reference.

187
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.10 uvm_analysis_export

Theclassuvm_analysis_export offersaconveniencelayer for UVM usersandiscompatiblewith the SystemC
export type sc_core::sc_export<tim::tim_analysis if<T> > since it shall be derived from this class. Primary
reason to introduce this export class is to offer the member function connect as alternative to the SystemC
bind and operator () to connect analysis ports with exports.

14.10.1 Class definition

nanmespace uvm {
tenpl ate <typenane T>

class uvm anal ysis_export : public sc_core::sc_export< tlm:tlmanalysis_if<T> >
{
public:
/'l Constructors
uvm anal ysi s_export();
uvm anal ysi s_export(const std::string& nane);
/1 Menber functions
virtual const std::string get_type_nane() const;
virtual void connect(tim:tlmanalysis_if<T>& _if);
}; /1 class uvm anal ysis_export

} // namespace uvm

14.10.2 Template parameter T
The template parameter T specifies the type of transaction to be communicated by the analysis port.

14.10.3 Constructor

uvm anal ysi s_export();
uvm anal ysi s_export(const std::string& nane);

The constructor shall create a new analysis export. If specified, the argument name shall define the name of
the export. Otherwise, the name of the export isimplementation-defined.

NOTE—UVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments
min_size and max_size to specify the minimum and maximum number of interfaces, respectively, that are
connected to this port by the end of elaboration.

14.10.4 Member functions

14.10.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type name shall return the string “uvm::uvm_analysis export”.

14.10.4.2 connect

virtual void connect(tim:tlmanalysis_if<T>& _if);

188

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function connect shall register the subscriber passed as an argument, so that any call to the
member functionwrite of such analysisexport instance shall be passed on to theregistered subscriber. Multiple
subscribers may be registered with a single analysis export instance.

NOTE 1—The member function connect implements the same functionality asthe SystemC member function
bind.

NOTE 2—There may be zero subscribers registered with any given analysis export instance, in which case
calls to the member function write shall not be propagated.

14.11 uvm_analysis_imp

The classuvm_analysis imp shall serve astermination point of analysis port and export connections. It shall
call themember function write of the component type passed as second template argument viaits own member
function write, without modification of the value passed to it.

14.11.1 Class definition

namespace uvm {
tenpl ate <typenanme T = int, typenanme |MP = int>

class uvmanalysis_inp : public tlm:tlmanalysis_port<T>

{
public:
/1 Constructors
uvm anal ysi s_i np();
uvm anal ysi s_i np(const std::string& name);
/1 Menber functions
virtual const std::string get_type_nanme() const;
virtual void connect(tim:tlmanalysis_if<T>& _if);
void wite(const T&t);
}; /1 class uvm anal ysis_i np

} /1 namespace uvm

14.11.2 Template parameters

The template parameter T specifies the type of transaction to be communicated by the analysis port. The
template parameter |IMP specifies the component type which implements the member function write.

14.11.3 Constructors

uvm anal ysi s_i np();
uvm anal ysi s_i np(const std::string& nanme);

The constructor shall create a new analysis implementation. If specified, the argument name shall define the
name of the export. Otherwise, the name of the export is implementation-defined.

14.11.4 Member functions
14.11.4.1 get_type_name

virtual const std::string get_type_nane() const;

The member function get_type name shall return the string “uvm::uvm_analysis imp”.

189

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.11.4.2 connect

virtual void connect(tim:tlmanalysis_if<T>& _if);

The member function connect shall register the subscriber passed as an argument, so that any call to the
member functionwrite of such analysisimplementation instance shall be passed onto the regi stered subscriber.
Multiple subscribers may be registered with asingle analysis export instance.

NOTE—The member function connect implements the same functionality as the SystemC member function
bind.

14.11.4.3 write

void wite(const T&t);

The member function write shall shall call the member function write of the associated subscriber which is
specified as second template argument, by passing on the argument as a const reference.

14.12 uvm_tim_req_rsp_channel

The classuvm_tIm_req_rsp_channel offers a convenience layer for UVM users and is compatible with the
SystemC tIm::tim_req_rsp_channel, sinceit shall be derived from this class. It offers some UVM additional
capabilities such as the analysis ports for request and response monitoring.

The class uvm_tIm_req_rsp_channel contains a request FIFO of default type tim::tim_fifo<REQ> and
response FIFO of default type tim::tim_fifo<RSP>. These FIFOs can be of any size. This channdl is
particularly useful for dealing with pipelined protocol s where the request and response are not tightly coupled.

14.12.1 Class definition

namespace uvm {

tenpl ate < typename REQ
typename RSP = REQ
typename REQ CHANNEL
t ypenane RSP_CHANNEL
class uvmtlmreq_rsp_channel
public tIm:tlmreqg_rsp_channel <REQ RSP, REQ CHANNEL, RSP_CHANNEL>

tIm:tlmfifo<REQ>,
tIm:tlmfifo<RSP> >

{
public:

/1 Ports and exports

uvm anal ysi s_port <REQ> request _ap;

uvm anal ysi s_port <RSP> response_ap;

sc_core::sc_export< tim:tlmfifo_put_if<REQ > put_request_export;
sc_core::sc_export< tlm:tlmfifo_put_if<RSP> > put_response_export;
sc_core::sc_export< tim:timfifo_get_if<REQ > get_request_export;
sc_core::sc_export< tlm:tlmfifo_get_if<RSP> > get_response_export;
sc_core::sc_export< tlm:tlmfifo_get_if<REQ> > get_peek_request_export;
sc_core::sc_export< tim:timfifo_get_if<RSP> > get_peek_response_export;
sc_core::sc_export< tlm:tlmmaster_if<REQ RSP> > naster_export;
sc_core::sc_export< tlm:tlmslave_if<REQ RSP> > slave_export;

/'l Constructors
uvmtlimreqg_rsp_channel (int reqg_size =1, int rsp_size =1);
uvm tl mreqg_rsp_channel (uvm conponent_nane nane, int req_size = 1, int rsp_size =1);

}; /1 class uvmtlmreq_rsp_channel

} // namespace uvm

190

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.12.2 Template parameters

The template parameters REQ and RSP specify the request and response aobject types, respectively. The
template parameters REQ_CHANNEL and RSP_CHANNEL specify the type of the request and response
FIFO, respectively. If parameters REQ CHANNEL or RSP_CHANNEL are not specified, the interface uses
FIFOs of typetim::tim_fifo.

14.12.3 Ports and exports

14.12.3.1 request_ap
uvm anal ysi s_port <REQ> request _ap;

The analysis port request_ap shall send the request transactions, which are passed via the member function
put or nb_put (viaany port connected to the export put_request_export), viaits member function write, to
all connected analysis exports and imps.

14.12.3.2 response_ap

uvm anal ysi s_port <RSP> response_ap;

Theanalysisport response_ap shall send the response transactions, which are passed viathe member function
put or nb_put (via any port connected to the export put_response_export), via its member function write,
to al connected analysis exports and imps.

14.12.3.3 put_request_export
sc_core::sc_export< tim:tImfifo_put_if<REQ > put_request_export;

The export put_request_export shall provide both the blocking and non-blocking put interface member
functions to the request FIFO based on interface tim::tim_fifo_put_if, being member functions put, nb_put
and nb_can_put. Any put port variant can connect and send transactions to the request FIFO viathis export,
provided the transaction types match.

14.12.3.4 put_response_export
sc_core::sc_export< tlm:tlmfifo_put_if<RSP> > put_response_export;

The export put_response export shall provide both the blocking and non-blocking put interface member
functionsto the response FIFO based on interface tim::tim_fifo_put_if, being put, nb_put and nb_can_put.
Any put port variant can connect and send transactions to the response FIFO via this export, provided the
transaction types match.

14.12.3.5 get_request_export
sc_core::sc_export< tim:tImfifo_get_if<REQ > get_request_export;

The export get_request_export shall provide both the blocking and non-blocking get and peek interface
member functionsto therequest FIFO based oninterfacetim::tim_fifo_get_if, beingget, nb_get, nb_can_get,
peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the request FIFO
viathis export, provided the transaction types match.

191

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

NOTE—This member function is functionally equivalent to get_peek_request_export.
14.12.3.6 get_response_export

sc_core::sc_export< tlm:tlmfifo_get_if<RSP> > get_response_export;

The export get_response_export shall provide both the blocking and non-blocking get and peek interface
member functions to the response FIFO based on interface tim::tim_fifo get if, being get, nb_get,
nb_can_get, peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactionsto the
response FIFO viathis export, provided the transaction types match.

NOTE—This member function is functionally equivalent to get_peek response export.

14.12.3.7 get_peek_request_export

sc_core::sc_export< tim:tImfifo_get_if<REQ > get_peek_request_export;

Theexport get_peek_request_export shall provide both the bl ocking and non-blocking get and peek interface
member functionsto therequest FIFO based oninterfacetim::tim_fifo_get_if, beingget, nb_get, nb_can_get,
peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactionsto the request FIFO
viathis export, provided the transaction types match.

NOTE—This member function is functionally equivalent to get_request_export.

14.12.3.8 get_peek_response_export

sc_core::sc_export< tim:tlmfifo_get_if<RSP> > get_peek_response_export;

The export get_peek_response_export shall provide both the blocking and non-blocking get and peek
interface member functions to the response FIFO based on interface tim::tim_fifo_get_if, being get, nb_get,
nb_can_get, peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactionsto the
response FIFO viathis export, provided the transaction types match.

NOTE—This member function is functionally equivalent to get_response_export.
14.12.3.9 master_export

sc_core::sc_export< tlm:tlmmaster_i f<REQ RSP> > naster_export;

The export master_export shall provide a single interface that allows a master to put requests and get or
peek responses. It is a combination of the functionality offered by the exports put_request_export and
get_peek_response _export.

14.12.3.10 slave_export

sc_core::sc_export< tlm:tlmslave_if<REQ RSP> > s|lave_export;

The export slave_export shall provide a single interface that allows a slave to get or peek requests and to
put responses. It is a combination of the functionality offered by the exports get_peek request_export and
put_response_export.

192
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.12.4 Constructors

uvmtlimreqg_rsp_channel (int reqg_size =1, int rsp_size =1);
uvm tl mreg_rsp_channel (uvm conponent_nane nane, int req_size = 1, int rsp_size =1);

The constructor shall create a new TLM-1 interface containing a request and response FIFO. The argument
req_size specifiesthe size of the request FIFO. The argument rsp_size specifies the size of the response FIFO.
If not specified, default size of these FIFOs is 1. If specified, the argument name shall define the name of the
interface. Otherwise, the name of the interface isimplementation-defined.

14.13 uvm_sqr_if_base

The classuvm_sqgr_if base shall define an interface for sequence drivers to communicate with sequencers.
The driver requires the interface via a port, and the sequencer implementsiit and providesit viaan export.

14.13.1 Class definition

namespace uvm {

tenpl ate <typename REQ typename RSP = REQ>
class uvmsqr_if_base : public virtual sc_core::sc_interface
{
public:
/1 Menber functions
virtual void get_next_item(REQ&% req) 0;
virtual bool try_next_item(REQ&% req) 0;
virtual void itemdone(const RSP& item) = O;
virtual void itemdone() = 0;
virtual void put(const RSP& rsp) = 0;
virtual void get(REQ& req) = O;
virtual void peek(REQ& req) = O;

prot ect ed:
/'l Constructor
uvm sqr_i f_base();
}; /1 class uvmsqr_if_base

} // namespace uvm

14.13.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These
object types shall be a derivative of classuvm_sequence item.

14.13.3 Member functions

14.13.3.1 get_next_item
virtual void get_next_itenm{ REQ& req) = O;

The member function get_next_item shall retrieve the next available item from a sequence. The call blocks
until an item is available. The following steps occur on this cal:

a) Arbitrate among reguesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked
relevant sequence, then re-arbitrate.

b) The chosen sequence returns from member function wait_for_grant (see Section 9.3.7.4).
¢) Thechosen sequence’ s member function uvm_sequence base::pre doiscalled (see Section 9.3.4.4).

193
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

d) The chosen sequence item is randomized.
€) Thechosen sequence’smember functionuvm_sequence base::post_doiscalled (see Section 9.3.4.7).
f) Return with areferenceto the item.

Once member function get_next_item iscalled, the member functionitem_done needsto be called to indicate
the completion of the request to the sequencer.

14.13.3.2 try_next_item
virtual bool try_next_item(REQ% req) = O;

The member functiontry_next_item shall retrieve the next available item from a sequenceif oneisavailable.
If available, it shall return true. Otherwise, the member function shall return false. The following steps occur
on thiscal:

a) Arbitrate among regquesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, the member function returns
false.

b) The chosen sequence returns from member function uvm_sequence base::wait_for_grant (see
Section 9.3.7.4).

c) Thechosen sequence’ s member function uvm_sequence base::pre doiscalled (see Section 9.3.4.4).
d) The chosen sequence item israndomized.

€) The chosen sequence uvm_sequence base::post_do is called (see Section 9.3.4.7).

f) Return with areference to the item.

Oncethe member functiontry _next_item iscalled, the member functionitem_done shall be called toindicate
the completion of the request to the sequencer. This removes the request item from the sequencer FIFO.

14.13.3.3 item_done

virtual void itemdone(const RSP& item) = O;
virtual void itemdone() = 0;

The member function item_done shall indicate that the request is completed to the sequencer. Any
uvm_sequence base::wait_for_item_done calls made by a sequence for this item shall return.

The current item is removed from the sequencer FIFO.

If aresponseitemisprovided, thenit shall be sent back to the requesting sequence. Theresponseitem shall have
itssequence | D and transaction I D set correctly, using the member function uvm_sequence _item::set_id_info.

Before the member function item_doneis called, any callsto the member function peek retrieves the current
item that was obtained by member function get_next_item. After the member function item_done s called,
member function peek causes the sequencer to arbitrate for a new item.

14.13.3.4 get
virtual void get(REQ& req) = O;

The member function get shall retrieve the next available item from a sequence. The call blocks until an item
is available. The following steps occur on this cal:

194

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

a) Arbitrate among reguesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked
relevant sequence, then re-arbitrate.

b) The chosen sequence returns from member function uvm_sequence base:wait_for_grant (see
Section 9.3.7.4).

¢) Thechosen sequence’ s member function uvm_sequence base::pre doiscalled (see Section 9.3.4.4).
d) The chosen sequence item is randomized.

€) Thechosen sequence’'smember functionuvm_sequence base::post_doiscalled (see Section 9.3.4.7).
f) Indicateitem_done to the sequencer.

0) Return with areference to the item.

When the member function get is called, the member function item_done may not be called. A new item can
be obtained by calling the member function get again, or aresponse may be sent using either member function
put, or uvm_driver::rsp_port.write().

14.13.3.5 peek
virtual void peek(REQ& req) = O;

The member function peek shall return the current request item if one isin the sequencer FIFO. If no item
isin the FIFO, then the call blocks until the sequencer has a new request. The following steps shall occur if
the sequencer FIFO is empty:

a) Arbitrate among reguesting, unlocked, relevant sequences - choose the highest priority sequence based
on the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked
relevant sequence, then re-arbitrate.

b) The chosen sequence returns from member function uvm_sequence base:wait_for_grant (see
Section 9.3.7.4).

¢) Thechosen sequence’ s member function uvm_sequence base::pre doiscalled (see Section 9.3.4.4).
d) The chosen sequence item is randomized.
€) Thechosen sequence’'smember functionuvm_sequence base::post_doiscalled (see Section 9.3.4.7).

Once arequest item has been retrieved and isin the sequencer FIFO, subsequent callsto member function peek
returns the sameitem. The item staysin the FIFO until either the member function get or item_doneiscalled.

14.13.3.6 put

virtual void put(const RSP& rsp) = O;

The member function put shall send a response back to the sequence that issued the request. Before the
response is put, it shall have its sequence ID and transaction ID set to match the request. This can be done
using the member function uvm_sequence_item::set_id_info.

This member function shall not block. The response is put into the sequence response queue or it is sent to
the sequence response handler.

14.14 uvm_seq_item_pull_port

The classuvm_seq_item_pull_port shall define the port for use in sequencer-driver communication.

195

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.14.1 Class definition

namespace uvm {
tenpl ate <typenanme REQ typenane RSP = REQ>

class uvmseq_itempull _port : public uvmport_base< uvm sqr_if_base<REQ RSP> >
{

public:

/1 Constructor

uvm seq_i tem pul | _port(const char* nane);

/1 Menber function
virtual const std::string get_type_nane() const;

}; /1 class uvmseq_item pul | _port

} // namespace uvm

14.14.2 Template parameters
The template parameters REQ and RSP specify the request and response object types, respectively.

14.14.3 Constructor

uvm seq_i tempul | _port(const char *nane);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise,
the name of the export isimplementation-defined.

14.14.4 Member functions
14.14.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type name shall return the string “uvm::uvm_seq_item_pull_port”.

14.15 uvm_seq_item_pull_export
The classuvm_seq_item_pull_export shall define the export for use in sequencer-driver communication.

14.15.1 Class definition

namespace uvm {

tenpl ate <typenane REQ typename RSP = REQ>
class uvm seq_item pul | _export : public uvm export_base< uvm sqr_if_base<REQ RSP> >

{
public:
/1 Constructor
uvm seq_i tem pul | _export(const char* name);

/1 Menber function
virtual const std::string get_type_name() const;

}; /1 class uvm seq_item pul | _export

} /1 namespace uvm

196

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

14.15.2 Template parameters
The template parameters REQ and RSP specify the request and response object types, respectively.

14.15.3 Constructor

uvm seq_i tem pul | _export(const char* nane);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise,
the name of the export isimplementation-defined.

14.15.4 Member functions
14.15.4.1 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type name shall return the string “uvm::uvm_seq_item_pull_export”.

14.16 uvm_seq_item_pull_imp
The classuvm_seq_item_pull_imp shall implement the interface used in sequencer-driver communication.

14.16.1 Class definition

nanmespace uvm {

tenpl ate <typenane REQ = int, typenanme RSP = REQ typenane |IMP = int>

class uvmseq_itempul | _inmp : public uvmexport_base< uvm sqr_if_base<REQ RSP> >
{
public:
/1 Constructor
uvm seq_i tem pul | _i np(const char* nane);

/1 Menber function
virtual const std::string get_type_nane() const;

}; /1 class uvmseq_itempul |l _imp

} // namespace uvm

14.16.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. The
template parameter IMP specifies the type of the component implementing the interface.

14.16.3 Member functions
14.16.3.1 get_type_name

virtual const std::string get_type_nanme() const;

The member function get_type _name shall return the string “uvm::uvm_seq_item_pull_imp”.

197

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15. Register abstraction classes

The UVM register abstraction layer defines several base classes that, when properly extended, abstract the
read/write operations to registers and memoriesin aDUT.

The UVM register abstraction classes are not usable as-is. They only provide generic and introspection
capabilities. They need to be specialized via extensions to provide an abstract view that corresponds to the
actual registers and memoriesin a design. Due to the large number of registersin a design and the numerous
small details involved in properly configuring the UVM register layer classes, this specialization is normally
done by a model generator. Model generators work from a specification of the registers and memoriesin a
design and are thus able to provide an up-to-date, correct-by-construction register model. Model generators
are outside the scope of the UVM standard.

15.1 uvm_reg_block

Theclassuvm_reg block isthe base classfor regisiter blocks. A register block represents adesign hierarchy.
It can contain registers, register files, memories and sub-blocks. A block has one or more address maps, each
corresponding to aphysical interface on the block.

15.1.1 Class definition

namespace uvm {

class uvmreg_bl ock : public uvm object

{
public:

/1 Constructor
uvm reg_bl ock(const std::string& nane = "",
i nt has_coverage = UYM NO COVERAGE);

/1 Group: Initialization

voi d configure(uvmreg_bl ock* parent = NULL,
const std::string& hdl _path ="");

virtual uvmreg_map* create_map(const std::string& nane,
uvm reg_addr_t base_addr,
unsi gned int n_bytes,
uvm endi anness_e endi an,
bool byte_addressing = true);

static bool check_data_w dth(unsigned int width);
voi d set_defaul t_map(uvm.reg_nmap* nap);

uvm reg_map* get_defaul t_map() const;

virtual void | ock_nodel ();

bool is_locked() const;

/1 Group: Introspection

virtual const std::string get_name() const;

virtual const std::string get_full_name() const;

virtual uvmreg_bl ock* get_parent() const;

static void get_root_blocks(std::vector<uvmreg_bl ock*>& bl ks);

static int find_blocks(std::string nane,
std::vector<uvmreg_bl ock*>& bl ks,
uvm reg_bl ock* root = NULL,
uvm obj ect* accessor = NULL);

static uvmreg_bl ock* find_block(const std::string& nane,
uvm reg_bl ock* root = NULL,
uvm obj ect* accessor = NULL);

virtual void get_blocks(std::vector<uvmreg_bl ock*>& bl ks,
uvm hier_e hier = WMHER) const;

198
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void get_maps(std::vector<uvmreg_map*>& maps) const;

virtual void get_registers(std::vector<uvmreg*>& regs,
uvm hier_e hier = UWMH ER) const;

virtual void get_fields(std::vector<uvmreg_field*>& fields,
uvm hier_e hier = WMHER) const;

voi d get_nenories(std::vector<uvm nent>& nens,
uvm hier_e hier = WMHER) const;

voi d get_virtual _registers(std::vector<uvmyvreg*>& regs,
uvm hier_e hier = UWMHER) const;

void get_virtual _fields(std::vector<uvmuvreg_field*>& fields,
uvm hier_e hier = WMHER) const;

uvm reg_bl ock* get_bl ock_by_nanme(const std::string& nane) const;
uvm reg_map* get_map_by_nanme(const std::string& name) const;
uvmreg* get_reg_by_name(const std::string& name) const;
uvmreg_field* get_field_by_name(const std::string& nane) const;
uvm nment get_nem by_name(const std::string& name) const;

uvm vreg* get_vreg_by_nane(const std::string& nane) const;
uvmyvreg_field* get_vfield_by_name(const std::string& name) const;

/1 Group: Coverage

prot ect ed:
uvmreg_cvr_t build_coverage(uvmreg_cvr_t nodels);
virtual void add_coverage(uvmreg_cvr_t nodels);

public:

bool has_coverage(uvmreg_cvr_t nodels) const;
uvmreg_cvr_t set_coverage(uvmreg_cvr_t is_on);

bool get_coverage(uvmreg_cvr_t is_on = WMCVR ALL) const;

prot ect ed:

virtual void sanple(uvmreg_addr_t offset,
bool is_read,
uvm.reg_nmap* map);

public:

voi d sanpl e_val ues();

/'l Group: Access

uvm pat h_e get _defaul t _path() const;
voi d reset(const std::string& kind = "HARD");
bool needs_update();

virtual void update(uvmstatus_e status,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void mrror(uvmstatus_e status,
uvm check_e check = UVM NO_CHECK,
uvm path_e path = UVM DEFAULT_PATH,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void wite_reg_by_nanme(uvmstatus_e status,
const std::string& nane,
uvmreg_data_t data,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnanme = ""
int lineno = 0);

199
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void read_reg_by_name(uvmstatus_e status,
const std::string& nane,
uvmreg_data_t data,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void wite_nmemby_nane(uvm status_e status,
const std::string& nane,
uvmreg_addr_t offset,
uvmreg_data_t data,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnane = "",
int lineno = 0);

virtual void read_nem by_name(uvm status_e status,
const std::string& nane,
uvm reg_addr_t offset,
uvmreg_data_t data,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

/1 Group: Backdoor
uvm r eg_backdoor * get _backdoor (bool inherited = true) const;

voi d set_backdoor (uvmreg_backdoor* bkdr,
const std::string& fname = "",
int lineno = 0);

voi d cl ear_hdl _path(const std::string& kind = "RTL");

voi d add_hdl _path(const std::string& path, const std::string& kind = "RTL");

bool has_hdl _path(const std::string& kind = "") const;

voi d get_hdl _path(std::vector<std::string>& paths, const std::string& kind = "") const;

void get_full_hdl _path(std::vector<std::string>& paths,
std::string kind = "",
const std::string& separator = ".") const;
voi d set_defaul t_hdl _path(const std::string& kind);
std::string get_defaul t_hdl _path() const;
voi d set_hdl _path_root(const std::string& path, std::string kind = "RTL");
bool is_hdl _path_root(std::string kind ="") const;
/1 Data nenbers

uvm reg_map* defaul t _map;
uvm pat h_e defaul t _path;

}; /1 class uvmreg_bl ock

} /1 namespace uvm

15.1.2 Constructor

uvm reg_bl ock(const std::string& name = "",
int has_coverage = UVM NO COVERAGE);

200

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The constructor shall create an instance of a block abstraction class with the specified name. The argument
has_coverage specifieswhich functional coverage models are present in the extension of the block abstraction
class. Multiple functional coverage models may be specified by adding their symbolic names, as defined by
the uvm_coverage model_etype.

15.1.3 Initialization

15.1.3.1 configure

voi d configure(uvmreg_bl ock* parent = NULL,
const std::string& hdl _path ="");

The member function configur e shall specify the parent block of this block. A block without parent is aroot
block. If the block file correspondsto ahierarchical RTL structure, itscontribution tothe HDL pathis specified
as the argument hdl_path. Otherwise, the block does not correspond to a hierarchical RTL structure (e.g. it
is physically flattened) and does not contribute to the hierarchical HDL path of any contained registers or
memories.

15.1.3.2 create_map

virtual uvmreg_map* create_map(const std::string& nane,
uvm reg_addr_t base_addr,
unsi gned int n_bytes,
uvm endi anness_e endi an,
bool byte_addressing = true);

The member function create_map shall create an address map with the specified name, then configures it
with the following properties:

— base addr: the base address for the map. All registers, memories, and sub-blocks within the map shall
be at offsets to this address.

— n_bytes: the byte-width of the bus on which thismap is used
— endian: the endian format. See uvm_endianness_e (Section 15.16.2.4) for possible values.

— byte addressing: specifies whether consecutive addresses refer are 1 byte apart (true) or n_bytes apart
(false). Default valueistrue

15.1.3.3 check_data_width

static bool check_data_w dth(unsigned int width);

The member function check _data width shall check that the specified datawidth (in bits) islessthan or equal
tothevalueof UVM_REG_DATA_WIDTH.

NOTE—This member function is designed to be called by a static initializer.
15.1.3.4 set_default_map

voi d set_defaul t _map(uvmreg_map* map);

The member function set_default_map shall define the specified address map as the default_map for this
block.

201

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.1.3.5 get_default_map
uvm reg_map* get_default_map() const;

The member function get_default_map shall return the specified address map for this block.

15.1.3.6 lock_model

virtual void | ock_nodel ();

The member function lock_model shall recursively lock an entire register model and build the address mapsto
enable the member functionsuvm_reg_map::get_reg by offset and uvm_reg map::get_ mem_by offset.
Oncelocked, no further structural changes, such as adding registersor memories, can be made. It isnot possible
to unlock a model.

15.1.3.7 is_locked

bool is_locked() const;

The member function is_locked shall return true if the mode islocked, otherwise it shall return false.
15.1.4 Introspection
15.1.4.1 get_name

virtual const std::string get_nane() const;

The member function get_name shall return the simple object name of this block.
15.1.4.2 get_full_name

virtual const std::string get_full_name() const;

Themember functionget_full_nameshall return the hierarchal name of thisblock. The base of the hierarchical
name is the root block.

15.1.4.3 get_parent

virtual uvmreg_bl ock* get_parent() const;

The member function get_parent shall return the parent block. If this atop-level block, it shall return NULL.

15.1.4.4 get_root_blocks

static void get_root_bl ocks(std::vector<uvmreg_bl ock*>& bl ks);

The member function get_root_blocks shall return an array of all root blocks.

15.1.4.5find_blocks

static int find_blocks(std::string nane,
std::vector<uvmreg_bl ock*>& bl ks,

202

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm reg_bl ock* root = NULL,
uvm obj ect* accessor = NULL);

The member function find_blocks shall search for the blocks whose hierarchical names match the specified
name glob. If aroot block is specified, the name of the blocks are relative to that block, otherwise they are
absolute. The member function returns the number of blocks found.

15.1.4.6 find_block

static uvmreg_bl ock* find_block(const std::string& nane,
uvm reg_bl ock* root = NULL,
uvm obj ect* accessor = NULL);

The member function find_block shall return the first block whose hierarchical names match the specified
name glob. If aroot block is specified, the name of the blocks are relative to that block, otherwise they are
absolute. The member function returns the first block found or null otherwise. A warning isissued if more
than one block is found.

15.1.4.7 get_blocks

virtual void get_blocks(std::vector<uvmreg_bl ock*>& bl ks,
uvm hier_e hier = WMHER) const;

The member function get_blocks shall return the blocks instantiated in this block. If argument hier is set to
true, it recursively includes any subblock.

15.1.4.8 get_maps

virtual void get_maps(std::vector<uvmreg_map*>& maps) const;

The member function get_mayps shall return the address maps instantiated in this block.

15.1.4.9 get_registers

virtual void get_registers(std::vector<uvmreg*>& regs,
uvm hier_e hier = UWWMHER) const;

The member function get_register s shall return the registersinstantiated in this block. If argument hier is set
to true, it recursively includes the registers in the sub-blocks.

Note that registers may be located in different and/or multiple address maps. To get the registers in a specific
address map, use member function uvm_reg_map::get_registers (see Section 15.2.4.13).

15.1.4.10 get_fields

virtual void get_fields(std::vector<uvmreg_field*>& fields,
uvm hier_e hier = WMHER) const;

The member function get_fields shall return the fields in the registers instantiated in this block. If argument
hier is set to true, it recursively includes the fields of the registers in the sub-blocks.

15.1.4.11 get_memories

voi d get_nenories(std::vector<uvm nent>& nens,

203

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm hier_e hier = WMHER) const;

The member function get_ memories shall return the memories instantiated in this block. If argument hier is
set to true, it recursively includes the memories in the sub-blocks.

Notethat memories may belocated in different and/or multiple address maps. To get the memoriesin aspecific
address map, use member function uvm_reg_map::get_memories (see Section 15.2.4.15).

15.1.4.12 get_virtual_registers

voi d get_virtual _registers(std::vector<uvmyvreg*>& regs,
uvm hier_e hier = UWWMHER) const;

The member function get_virtual_registers shall return the virtual registers instantiated in this block. If
argument hier is set to true, it recursively includes the virtual registers in the sub-blocks.

15.1.4.13 get_virtual_fields

voi d get _virtual _fields(std::vector<uvmuvreg_field*>& fields,
uvm hier_e hier = WMHER) const;

The member function get_virtual_fields shal return the virtua fields from the virtual registers instantiated
in this block. If argument hier is set to true, it recursively includes the virtual fields in the virtual registers
in the sub-blocks.

15.1.4.14 get_block_by name

uvm reg_bl ock* get_bl ock_by_nane(const std::string& nane) const;

The member function get_block by name shall search for the sub-block with the specified simple name. The
argument name is the simple name of the block, not the hierarchical name. If no block with that nameisfound
in this block, the sub-blocks are searched for a block of that name and the first one to be found is returned. If
no blocks are found, the member function shall return NULL.

15.1.4.15 get_map_by name
uvm reg_map* get_map_by_nanme(const std::string& name) const;

The member function get_map_by name shall search for an address map with the specified simple name.
The argument name is the simple name of the address map, not the hierarchical name. If no map with that
name is found in this block, the sub-blocks are searched for a map of that name and the first one to be found
isreturned. If no address maps are found, the member function shall return NULL.

15.1.4.16 get_reg_by_name

uvmreg* get_reg_by_name(const std::string& name) const;

The member function get_reg_by name shall search for a register with the specified simple name. The
argument name is the simple name of the register, not the hierarchical name. If no register with that nameis
found in this block, the sub-blocks are searched for a register of that name and the first one to be found is
returned. If no registers are found, the member function shall return NULL.

204

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.1.4.17 get_field_by name

uvmreg_field* get_field_by_name(const std::string& nane) const;

The member function get_field_by name shall search for the field with the specified simple name. The
argument name is the simple name of the field, not the hierarchical name. If no field with that name is found
in this block, the sub-blocks are searched for afield of that name and the first one to be found is returned. If
no fields are found, the member function shall return NULL.

15.1.4.18 get_mem_by name

uvm nment get_nem by_name(const std::string& name) const;

The member function get_mem_by name shall search for the memory with the specified simple name. The
argument name is the ssimple name of the memory, not the hierarchical name. If no memory with that name
is found in this block, the sub-blocks are searched for a memory of that name and the first oneto be found is
returned. If no memories are found, the member function shall return NULL.

15.1.4.19 get_vreg_by_name

uvm vreg* get_vreg_by_name(const std::string& name) const;

The member function get_vreg_by name shall search for the virtua register with the specified simple name.
The argument name is the simple name of the virtual register, not the hierarchical name. If no virtual register
with that name is found in this block, the sub-blocks are searched for a virtual register of that name and the
first one to be found is returned. If no virtual registers are found, the member function shall return NULL.

15.1.4.20 get_vfield_by name

uvmyvreg_field* get_vfield_by_nane(const std::string& name) const;

The member function get_vfield_by name shall search for the virtual field with the specified simple name.
The argument name is the simple name of the virtual field, not the hierarchical name. If no virtua field with
that name is found in this block, the sub-blocks are searched for avirtual field of that name and the first one
to be found is returned. If no virtual fields are found, the member function shall return NULL.

15.1.5 Coverage

NOTE—Functional coverageis not yet availablein UVM-SystemC.

15.1.5.1 build_coverage

protected: uvmreg_cvr_t buil d_coverage(uvmreg_cvr_t nodels);

The member function build_cover age shall check which of the specified coverage model needsto be built in
thisinstance of the block abstraction class, as specified by callsto uvm_reg::include_coverage. Models are
specified by adding the symbolic value of individual coverage model as defined in uvm_coverage model_e.
The member function returns the sum of all coverage modelsto be built in the block model.

15.1.5.2 add_coverage

protected: virtual void add_coverage(uvmreg_cvr_t nodels);

205

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function add_coverage shall specify that additional coverage models are available. Add the
specified coverage model to the coverage models available in this class. models are specified by adding the
symbolic value of individual coverage model as defined in uvm_coverage model_e. This member function
shall be called only in the constructor of subsequently derived classes.

15.1.5.3 has_coverage

bool has_coverage(uvmreg_cvr_t nodels) const;

The member function has_coverage shall return true if the block abstraction class contains a coverage model
for al of the models specified. Models are specified by adding the symbolic value of individual coverage
model as defined in uvm_coverage model_e.

15.1.54 set_coverage
uvmreg_cvr_t set_coverage(uvmreg_cvr_t is_on);

The member function set_cover age shall specify the collection of functional coverage measurements for this
block and all blocks, registers, fieldsand memorieswithinit. Thefunctional coverage measurement isturned on
for every coverage model specified using uvm_coverage model_e symbolic identifiers. Multiple functional
coverage models can be specified by adding the functional coverage model identifiers. All other functional
coverage models are turned off. The member function returnsthe sum of al functional coverage modelswhose
measurements were previously on. This member function can only control the measurement of functional
coverage models that are present in the various abstraction classes, then enabled during construction. See
Section 15.1.5.3 to identify the available functional coverage models.

15.1.5.5 get_coverage
virtual bool get_coverage(uvmreg_cvr_t is_on = UM CVR ALL) const;

The member function get_coverage shall returns true if measurement for al of the specified functiona
coverage models are currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See Section 15.1.5.4 for more details.

15.1.5.6 sample

protected: virtual void sanple(uvmreg_addr_t offset,
bool is_read,
uvmreg_nmap* nap);

The member function sample shall specify the functional coverage measurement method.

This member function isinvoked by the block abstraction class whenever an address within one of its address
map is successfully read or written. The specified offset is the offset within the block, not an absolute address.
This member function may be extended by the abstraction class generator to perform the required sampling
in any provided functional coverage model.

15.1.5.7 sample_values

voi d sanpl e_val ues();

206

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function sample_values shall specify the functional coverage measurement method for field
values.

This member function isinvoked by the user or by the member function uvm_reg_block::sample values of
the parent block to trigger the sampling of the current field valuesin the block-level functional coverage model.
It recursively invokes the member functionsuvm_reg_block::sample valuesand uvm_reg::sample values
in the blocks and registers in this block. This member function may be extended by the abstraction class
generator to perform the required sampling in any provided field-value functional coverage model. If this
member function is extended, it shall call the member function sample_values of its base class.

15.1.6 Access

15.1.6.1 get_default_path

uvm pat h_e get_defaul t_path() const;

The member function get_default_path shall return the default access path for this block.

15.1.6.2 reset
voi d reset(const std::string& kind = "HARD");

The member function reset shall set the mirror value of all registers in the block and sub-blocks to the reset
value corresponding to the specified reset event (see also Section 15.5.5.4). This member function does not
actually set the value of the registersin the design, only the values mirrored in their corresponding mirror.

15.1.6.3 needs_update

bool needs_update();

The member function needs update shall check if DUT registers need to be written. If amirror value has been
modified in the abstraction model without actually updating the actual register (either through randomization
or viathe member function uvm_reg::set, the mirror and state of the registers are outdated. The corresponding
registersinthe DUT need to be updated. This member function returnstrueif the state of at |east oneregisterin
the block or sub-blocks needs to be updated to match the mirrored values. The mirror values, or actual content
of registers, are not modified. For additional information, see Section 15.1.6.4.

15.1.6.4 update

virtual void update(uvmstatus_e status,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function update shall perform abatch update of the register. Using the minimum number of write
operations, updates the registersin the design to match the mirrored values in this block and sub-blocks. The
update can be performed using the physical interfaces (front-door access) or back-door accesses. This member
function performs the reverse operation of uvm_reg_block::mirror (see Section 15.1.6.5).

207

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.1.6.5 mirror

virtual void mirror(uvmstatus_e status,
uvm check_e check = UVM NO _CHECK,
uvm path_e path = UVM DEFAULT_PATH,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

Themember function mirror shall perform an updatethemirrored values. Read all of theregistersin thisblock
and sub-blocks and update their mirror valuesto match their corresponding valuesin the design. The mirroring
can be performed using the physical interfaces (front-door access) or back-door accesses. If the check argument
is specified as UVM_CHECK, an error message is issued if the current mirrored value does not match the
actua valuein the design. This member function performs the reverse operation of uvm_reg_block::update
(see Section 15.1.6.4).

15.1.6.6 write_reg_by_name

virtual void wite_reg_by_nanme(uvmstatus_e status,
const std::string& nane,
uvmreg_data_t data,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnane = "",
int lineno = 0);

The member function write reg by name shall write the named register. Equivalent to get_reg_by name
(see Section 15.1.4.16) followed by uvm_reg::write (see Section 15.4.5.9).

15.1.6.7 read_reg_by name

virtual void read_reg_by_name(uvm status_e status,
const std::string& nane,
uvmreg_data_t data,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function read_reg_by name shall Read the named register. Equivalent to get_reg_by name
(see Section 15.1.4.16) followed by uvm_reg::read (see Section 15.4.5.10).

15.1.6.8 write_mem_by name

virtual void wite_nemby nane(uvm status_e status,
const std::string& nane,
uvm reg_addr_t offset,
uvmreg_data_t data,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extensi on = NULL,
const std::string& fname = "",
int lineno = 0);

208
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function write_ mem_by name shall write the named memory. Equivalent to
get_mem_by name (see Section 15.1.4.18) followed by uvm_mem::write (see Section 15.6.5.1).

15.1.6.9 read_mem_by_name

virtual void read_nem by _nanme(uvm status_e status,
const std::string& nane,
uvm reg_addr_t offset,
uvmreg_data_t data,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

Themember functionread_mem_by nameshall eead the named memory. Equivalenttoget_ mem_by name
(see Section 15.1.4.18) followed by uvm_mem::read (see Section 15.6.5.2).

15.1.7 Backdoor
NOTE—Backdoor accessis not yet available in UVM-SystemC.

15.1.7.1 get_backdoor

uvm r eg_backdoor * get _backdoor (bool inherited = true) const;

Themember functionget_backdoor shall return the user-defined backdoor for all registersinthisblock, unless
overridden by a backdoor set in alower-level block or in the register itself.

If no argument is given or argument inherited is set to true, the member function returns the backdoor of the
parent block if none have been specified for this block.

15.1.7.2 set_backdoor

voi d set _backdoor(uvmreg_backdoor* bkdr,
const std::string& fname = "",
int lineno = 0);

The member function set_backdoor shall specify the user-defined backdoor for al registersin this block.

It defines the backdoor mechanism for all registersinstantiated in this block and subblocks, unless overridden
by a definition in alower-level block or register.

15.1.7.3 clear_hdl_path
voi d clear_hdl _path(const std::string& kind = "RTL");

The member function clear _hdl_path shall remove any previously specified HDL path to the block instance
for the specified design abstraction.

15.1.7.4 add_hdI_path

voi d add_hdl _path(const std::string& path, const std::string& kind = "RTL");

209

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function add_hdl_path shall add the specified HDL path to the block instance for the specified
design abstraction. This member function may be called more than once for the same design abstraction if the
block is physicaly duplicated in the design abstraction.

15.1.7.5 has_hdl|_path

bool has_hdl _path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the block instance has a HDL path defined for the
specified design abstraction. If no design abstractionis specified, it usesthe default design abstraction specified
for this block or the nearest block ancestor with a specified default design abstraction.

15.1.7.6 get_hdlI_path

voi d get_hdl _path(std::vector<std::string>& paths, const std::string& kind = "") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
in the block instance. It returns only the component of the HDL paths that corresponds to the block, not afull
hierarchical path. If no design abstraction is specified, the default design abstraction for this block is used.

15.1.7.7 get_full_hdl_path

void get_full_hdl _path(std::vector<std::string>& paths,
std::string kind = "",
const std::string& separator = ".") const;

Themember functionget_full_hdl_path shall returnthefull hierarchical HDL path(s) defined for the specified
design abstraction in the block instance. There may be more than one path returned even if only one path was
defined for the block instance, if any of the parent components have more than one path defined for the same
design abstraction. If no design abstraction is specified, the default design abstraction for each ancestor block
is used to get each incremental path.

15.1.7.8 set_default_hdl_path

voi d set_defaul t _hdl _path(const std::string& kind);

Themember function set_default_hdl_path shall specify the default design abstraction for thisblock instance.

15.1.7.9 get_default_hdl_path

std::string get_defaul t_hdl _path() const;

The member function get_default_hdl_path shall return the default design abstraction for this block instance.
If adefault design abstraction has not been explicitly set for this block instance, it returns the default design
abstraction for the nearest block ancestor. It returns an empty string if no default design abstraction has been
specified.

15.1.7.10 set_hdl_path_root

voi d set_hdl _path_root(const std::string& path, std::string kind = "RTL");

210

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_hdl_path_root shall specify the specified path as the absolute HDL path to the
block instance for the specified design abstraction. This absolute root path is prepended to al hierarchical
paths under this block. The HDL path of any ancestor block isignored. This member function overrides any
incremental path for the same design abstraction specified using add_hdl_path.

15.1.7.11 is_hdl_path_root

bool is_hdl _path_root(std::string kind ="") const;

The member function is_hdl_path_root shall return true if an absolute HDL path to the block instance for
the specified design abstraction has been defined. If no design abstraction is specified, the default design
abstraction for this block is used.

15.1.8 Data members (variables)

15.1.8.1 default_map
uvm reg_map* defaul t _map;

The data member default_map shall define the default address map for this block, to be used when no address
map is specified for aregister operation and that register is accessible from more than one address map.

It is also the implicit address map for a block with a single, unnamed address map because it has only one
physical interface.

15.1.8.2 default_path

uvm pat h_e defaul t _path;

Thedatamember default_path shall definethe default access path for the registers and memoriesin thisblock.

15.2 uvm_reg_map

This class uvm_reg_map shall represent an address map. An address map is a collection of registers and
memoriesaccessibleviaaspecific physical interface. Address maps can be composed into higher-level address

maps.

15.2.1 Class definition

namespace uvm {

class uvmreg_map : public uvm object

{
public:

/1 Constructor
explicit uvmreg_map(const std::string& name = "uvmreg_nap");

/1 Group: Initialization

voi d configure(uvmreg_bl ock* parent,
uvmreg_addr_t base_addr,
unsi gned int n_bytes,
uvm endi anness_e endi an,
bool byte_addressing = true);

virtual void add_reg(uvmreg* rg,

211
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

virtual

virtual

virtual

virtual

virtual
virtual
virtual

/1 Group
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual
/1 Group
voi d set
bool get
voi d set
bool get

virtual

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvmreg_addr_t offset,

const std::string& rights = "RW,

bool unnapped = fal se,

uvm reg_frontdoor* frontdoor = NULL);

voi d add_nmen{ uvm nent nem
uvmreg_addr_t offset,
const std::string& rights = "RW,
bool unnmapped = fal se,
uvmreg_frontdoor* frontdoor = NULL);

voi d add_submap(uvm reg_map* child_nmap,
uvmreg_addr_t offset);

voi d set_sequencer(uvm sequencer_base* sequencer,
uvm reg_adapter* adapter = NULL);

voi d set_submap_of fset (uvmreg_map* submap,
uvmreg_addr_t offset);

uvm reg_addr_t get_submap_of fset(const uvmreg_map* submap) const;
voi d set_base_addr(uvmreg_addr_t offset);
voi d reset(const std::string& kind = "SOFT");

: Introspection

const std::string get_nanme() const;

const std::string get_full_name() const;

uvm reg_map* get_root _map() const;

uvm reg_bl ock* get_parent() const;

uvm reg_map* get_parent_map() const;

uvm reg_addr_t get_base_addr(uvmhier_e hier = UUM H ER) const;
unsi gned int get_n_bytes(uvmhier_e hier = UUMH ER) const;
unsi gned int get_addr_unit_bytes() const;

uvm endi anness_e get _endi an(uvm_ hier_e hier = WMH ER) const;
uvm sequencer _base* get_sequencer(uvmhier_e hier = WMH ER) const;
uvm reg_adapter* get_adapter(uvmhier_e hier = UWUMHER) const;

voi d get_submaps(std::vector&<uvmreg_map*>& nmaps,
uvm hier_e hier = UWMH ER) const;

voi d get_registers(std::vector&uvmreg*>& regs,
uvm hier_e hier = UWMHER) const;

void get_fields(std::vector&uvmreg_field*>& fields,
uvm hier_e hier = WMHER) const;

voi d get _nmenories(std::vector&uvm nment>& nmens,
uvm hier_e hier = WMHER) const;

voi d get_virtual _registers(std::vector&<uvmvreg*>& vregs,
uvm hier_e hier = UUM H ER) const;

void get_virtual _fields(std::vector&uvmyvreg_field*>& fields,
uvm hier_e hier = WMH ER) const;

int get_physical _addresses(uvmreg_addr_t base_addr,
uvmreg_addr_t nmemoffset,
unsi gned int n_bytes,
std::vector&uvmreg_addr_t>& addr) const;

uvmreg* get_reg_by_offset(uvmreg_addr_t offset,
bool read = true) const;

uvm nment get_nem by_of fset(uvmreg_addr_t offset) const;
: Bus Access

_auto_predict(bool on = true);
_auto_predict() const;
_check_on_read(bool on = true);
_check_on_read() const;

voi d do_bus_wite(uvmreg_iten¥ rw,
uvm sequencer _base* sequencer,
uvm reg_adapter* adapter);

212

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void do_bus_read(uvmreg_itent rw,
uvm sequencer _base* sequencer,
uvm reg_adapter* adapter);

virtual void do_wite(uvmreg_itent rw);
virtual void do_read(uvmreg_itent rw);

/'l Group: Backdoor

static uvmreg_nmap* backdoor();

}; /1 class uvmreg_nap

} /1 namespace uvm

15.2.2 Constructor
explicit uvmreg_map(const std::string& name = "uvmreg_map");

The constructor shall create an instance of an address map with the specified name.
15.2.3 Initialization

15.2.3.1 configure

voi d configure(uvmreg_bl ock* parent,
uvm reg_addr _t base_addr,
unsi gned int n_bytes,
uvm endi anness_e endi an,
bool byte_addressing = true);

The member function configure shall configure this map with the following properties:
— parent: the block in which thismap is created and applied.

— base addr: the base address for this map. All registers, memories, and sub-blocks shall be at offsets
to this address.

— n_bytes: the byte-width of the bus on which this map is used.
— endian: the endian format, see Section 15.16.2.4.

— byte addressing: specifies whether the address increment is on a per-byte basis. For example,
consecutive memory locations with n_bytes=4 (32-hit bus) are 4 apart: 0, 4, 8, and so on. Default value
istrue.

15.2.3.2 add_reg

virtual void add_reg(uvmreg* rg,
uvm reg_addr_t offset,
const std::string& rights = "RW,
bool unmapped = fal se,
uvm reg_frontdoor* frontdoor = NULL);

The member function add_reg shall add the specified register instance rg to this address map.
Theregister islocated at the specified address offset from this maps configured base address.

The rights specify the register’s accessibility via this map. Valid values are “RW”, “RO”, and “WO".
Whether a register field can be read or written depends on both the field's configured access policy (see
uvm_reg_field::configure, Section 15.5.3.1) and theregister’ srightsin the map being used to accessthefield.

213
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The number of consecutive physical addresses occupied by the register depends on the width of the register
and the number of bytesin the physical interface corresponding to this address map.

If unmapped is set to true, the register does not occupy any physical addresses and the base addressisignored.
Unmapped registers require a user-defined frontdoor to be specified.

A register may be added to multiple address mapsif it isaccessible from multiple physical interfaces. A register
may only be added to an address map whose parent block is the same as the register’s parent block.

15.2.3.3 add_mem

virtual void add_nmenm(uvm nent nem
uvm reg_addr_t offset,
const std::string& rights = "RW,
bool unmapped = fal se,
uvmreg_frontdoor* frontdoor = NULL);

The member function add_mem shall add the specified memory instance to this address map. The memory is
located at the specified base address and has the specified accessrights (“RW”, “RO” or “WQ"). The humber
of consecutive physical addresses occupied by the memory depends on the width and size of the memory and
the number of bytesin the physical interface corresponding to this address map.

If argument unmapped is set to true, the memory does not occupy any physical addresses and the base address
isignored. Unmapped memories require a user-defined frontdoor to be specified.

A memory may be added to multiple address maps if it is accessible from multiple physical interfaces. A
memory may only be added to an address map whose parent block is the same as the memory’ s parent block.

15.2.3.4 add_submap

virtual void add_submap(uvmreg_map* child_map,
uvmreg_addr_t offset);

The member function add_submap shall add the specified address map instance to this address map. The
address map is located at the specified base address. The number of consecutive physical addresses occupied
by the submap depends on the number of bytes in the physical interface that corresponds to the submap, the
number of addresses used in the submap and the number of bytes in the physical interface corresponding to
this address map.

An address map may be added to multiple address maps if it is accessible from multiple physical interfaces.
An address map may only be added to an address map in the grandparent block of the address submap.

15.2.3.5 set_sequencer

virtual void set_sequencer(uvm sequencer_base* sequencer,
uvm reg_adapter* adapter = NULL);

Themember function set_sequencer shall set the sequencer and adapter associated with thismap. Thismember
function shall be called before starting any sequences based on uvm_reg_sequence.

15.2.3.6 set_submap_offset

virtual void set_submap_of fset(uvmreg_nap* subnmap,
uvm reg_addr_t offset);

214

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_submap_offset shall set the offset of the given submap to offset.

15.2.3.7 get_submap_offset
virtual uvmreg_addr_t get_submap_of fset(const uvmreg_nap* submap) const;

The member function get_submap_offset shall return the offset of the given submap.

15.2.3.8 set_base_addr

virtual void set_base_addr(uvmreg_addr_t offset);

The member function set_base addr shall set the base address of this map.

15.2.3.9 reset

virtual void reset(const std::string& kind = "SOFT");

The member function reset shall set the mirror value of all registersin this address map and all of its submaps
to the reset value corresponding to the specified reset event (see also Section 15.5.5.4). Does not actually set
thevalue of theregistersin the design, only the values mirrored in their corresponding mirror. Notethat, unlike
the other member functions reset, the default reset event for this member functionsis* SOFT”.

15.2.4 Introspection

15.2.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this address map.
15.2.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this address map. The base of the
hierarchical name isthe root block.

15.2.4.3 get_root_map

virtual uvmreg_map* get_root_map() const;

The member function get_root_map shall return the top-most address map where this address map is
instantiated. It corresponds to the externally-visible address map that can be accessed by the verification
environment.

15.2.4.4 get_parent

virtual uvmreg_bl ock* get_parent() const;

The member function get_parent shall return the block that is the parent of this address map.

215
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.2.4.5 get_parent_map

virtual uvmreg_nap* get_parent_nmap() const;

The member function get_parent_map shall return the address map in which this address map is mapped.
The member function returns NULL if thisis atop-level address map.

15.2.4.6 get_base_addr

virtual uvmreg_addr_t get_base_addr(uvm hier_e hier = UWM H ER) const;

The member function get_base addr shall return the base offset address for this map. If this map is the root
map, the base address is that set with the argument base_addr to uvm_reg_block::create_ map. If thismapis
a submap of ahigher-level map, the base address is offset given this submap by the parent map. See Section
15.2.3.6.

15.2.4.7 get_n_bytes

virtual unsigned int get_n_bytes(uvmhier_e hier = UWUMHER) const;

The member function get_n_bytes shall return the width in bytes of the bus associated with this map. If the
argument hier isUVM_HIER, it returns the effective bus width relative to the system level. The effective bus
width is the narrowest bus width from this map to the top-level root map. Each bus access shall be limited
to this bus width.

15.2.4.8 get_addr_unit_bytes

virtual unsigned int get_addr_unit_bytes() const;

The member function get_addr_unit_bytes shall return the number of bytesin the smallest addressable unit
in the map. It shall returns 1 if the address map was configured using byte-level addressing, otherwise it shall
return get_n_bytes (see Section 15.2.4.7).

15.2.4.9 get_endian
virtual uvm endi anness_e get_endi an(uvm hier_e hier = UUM H ER) const;

The member function get_endian shall return the endianness of the bus associated with this map (see Section
15.16.2.4). If argument hier isset to UVM_HIER, it shall return the system-level endianness.

15.2.4.10 get_sequencer

virtual uvm sequencer_base* get_sequencer(uvmhier_e hier = UUM H ER) const;

The member function get_sequencer shall return the sequencer for the bus associated with this map. If
argument hier is set to UVM_HIER, it shall get the sequencer for the bus at the system-level. (See Section
15.2.3.5).

15.2.4.11 get_adapter

virtual uvmreg_adapter* get_adapter(uvmhier_e hier = WMHER) const;

216
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Themember functionget_adapter shall return the busadapter for the busassociated with thismap. If argument
hier isset to UVM_HIER, it shall get the adapter for the bus used at the system-level. (See Section 15.2.3.5).

15.2.4.12 get_submaps

virtual void get_submaps(std::vector&uvmreg_nmap*>& naps,
uvmhier_e hier = WMHER) const;

The member function get_submaps shall return the address maps instantiated in this address map. If argument
hier issetto UVM_HIER, it recursively includes the address maps in the sub-maps.

15.2.4.13 get_registers

virtual void get_registers(std::vector&uvmreg*>& regs,
uvm hier_e hier = UWMH ER) const;

The member function get_register sshall return the registersinstantiated in this address map. If argument hier
issetto UVM_HIER, it recursively includes the registers in the sub-maps.

15.2.4.14 get_fields

virtual void get_fields(std::vector&uvmreg_field*>& fields,
uvm hier_e hier = WMHER) const;

The member function get_fields shall return the fields in the registers instantiated in this address map. If
argument hier isset to UVM_HIER, it recursively includes the fields of the registersin the sub-maps.

15.2.4.15 get_memories

virtual void get_nenories(std::vector&uvm nenf>& nens,
uvm hier_e hier = WMHER) const;

The member function get_memories shall return the memories instantiated in this address map. If argument
hier issetto UVM_HIER, it recursively includes the memories in the sub-maps.

15.2.4.16 get_virtual_registers

virtual void get_virtual _registers(std::vector&uvmvreg*>& vregs,
uvm hier_e hier = UUM H ER) const;

The member function get_virtual_register s shall return the virtual registers instantiated in this address map.
If argument hier isset to UVM_HIER, it recursively includes the virtual registers in the sub-maps.

15.2.4.17 get_virtual_fields

virtual void get_virtual _fields(std::vector&uvmuvreg_field*>& fields,
uvm hier_e hier = WMH ER) const;

The member function get_virtual_fields shall return the virtual fields from the virtual registers instantiated
in this address map. If argument hier is set to UVM_HIER, it recursively includes the virtual fields in the
virtua registersin the sub-maps.

217

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.2.4.18 get_physical_addresses

virtual int get_physical _addresses(uvmreg_addr_t base_addr,
uvmreg_addr_t nmemoffset,
unsi gned int n_bytes,
std::vector&uvmreg_addr_t>& addr) const;

The member function get_physical_addresses shall translate alocal address into external addresses.

It shall identify the sequence of addressesthat need to be accessed physically to access the specified number of
bytes at the specified addresswithin thisaddress map. It returnsthe number of bytes of valid datain each access.

Argument addr shall return alist of addressin little endian order, with the granularity of the toplevel address
map.

A register is specified using a base address with mem_offset as 0. A location within a memory is specified
using the base address of the memory and the index of the location within that memory.

15.2.4.19 get_reg_by_offset

virtual uvmreg* get_reg_by_offset(uvmreg_addr_t offset,
bool read = true) const;

The member function get_reg by offset shall return the register mapped at the given offset. It shall identify
theregister located at the specified offset within this address map for the specified type of access. The member
function shall return NULL if no such register is found.

The model needs to be locked using member function uvm_reg_block::lock_model to enable this
functionality (see Section 15.1.3.6).

15.2.4.20 get_mem_by offset

virtual uvmnment get_memby_offset(uvmreg_addr_t offset) const;

The member function get_mem_by_offset shall return the memory mapped at the given offset. It shall identify
thememory located at the specified offset within thisaddress map. The offset may refer to any memory location
in that memory. The member function shall return NULL if no such memory is found.

The model needs to be locked using member function uvm_reg_block::lock_model to enable this
functionality (see Section 15.1.3.6).

15.2.5 Bus access
15.2.5.1 set_auto_predict

voi d set_auto_predict(bool on = true);

The member function set_auto_predict shall specify the auto-predict mode for this map.

When the argument on is set to true, the register model shall automatically update its mirror (what it thinks
should be in the DUT) immediately after any bus read or write operation via this map.

218

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Beforeauvm_reg::write (see Section 15.4.5.9) or uvm_reg::read (see Section 15.4.5.10) operation returns,
the register’s member function uvm_reg::predict (see Section 15.4.5.15) is called to update the mirrored
valuein theregister.

When the argument on is set to false, bus reads and writes via this map do not automatically update the
mirror. For real-time updates to the mirror in this mode, an application shall connect a uvm_reg_predictor
(see Section 16.5) instance to the bus monitor. The predictor takes observed bus transactions from the bus
monitor, looks up the associated uvm_reg register given the address, then callsthat register’ smember function
uvm_reg::predict. While more complex, thismode shall capture all register read/write activity, including that
not directly descendant from callsto uvm_reg::write and uvm_reg::read.

By default, auto-prediction is turned off.
15.2.5.2 get_auto_predict

bool get_auto_predict() const;

The member function get_auto_predict shall return the auto-predict mode setting for this map.

15.2.5.3 set_check_on_read

voi d set_check_on_read(bool on = true);

The member function set_check _on_read shall specify the check-on-read mode for his map and al of its
submaps.

When the argument on is set to true, the register model shall automatically check any vaue read
back from a register or field against the current value in its mirror and report any discrepancy. This
effectively combines the functionality of the member functions uvm_reg::read (see Section 15.4.5.10) and
uvm_reg::mirror(UVM_CHECK) (see Section 15.4.5.14). This mode is useful when the register model is
used passively.

When the argument on is set to false, no check is made against the mirrored value.

At the end of the read operation, the mirror value is updated based on the value that was read regardless of
this mode setting.

By default, auto-prediction is turned off.

15.2.5.4 get_check_on_read

bool get_check_on_read() const;

The member function get_check_on_read shall return the check-on-read mode setting for this map.

15.2.5.5do_bus_write

virtual void do_bus_wite(uvmreg_itent rw,
uvm sequencer _base* sequencer,
uvm reg_adapter* adapter);

The member function do_bus write shall perform a bus write operation.

219

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.2.5.6 do_bus_read

virtual void do_bus_read(uvmreg_iten* rw,
uvm sequencer _base* sequencer,
uvm reg_adapter* adapter);

The member function do_bus read shall perform a bus read operation.

15.2.5.7 do_write

virtual void do_wite(uvmreg_itent rw);

The member function do_write shall perform awrite operation.

15.2.5.8 do_read

virtual void do_read(uvmreg_itent rw);

The member function do_read shall perform aread operation.
15.2.6 Backdoor
NOTE—Backdoor accessis not yet available in UVM-SystemC.

15.2.6.1 backdoor

static uvmreg_map* backdoor();

The member function backdoor shall return the backdoor pseudo-map singleton. This pseudo-map is used to
specify or configure the backdoor instead of areal address map.

15.3 uvm_reg_file

The class uvm_reg_file defines the abstraction base class for a register file. A register file is a collection of
register files and registers used to create regular repeated structures.

15.3.1 Class definition

namespace uvm {

class uvmreg_file : public uvm object

{
public:

/1 Constructor
explicit uvmreg_file(const std::string& name = "");

/1 Goup: Initialization

voi d configure(uvmreg_bl ock* bl k_parent,
uvmreg_file* regfile_parent,
const std::string& hdl _path ="");

/1 Group: Introspection

virtual const std::string get_nanme() const;
virtual const std::string get_full_name() const;
virtual uvmreg_bl ock* get_parent() const;

220

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual uvmreg_file* get_regfile() const;
/1 Group: Backdoor
voi d cl ear_hdl _path(const std::string& kind = "RTL");
voi d add_hdl _path(const std::string& path, const std::string& kind = "RTL");
bool has_hdl _path(const std::string& kind = "") const;
voi d get_hdl _path(std::vector<std::string>& paths, const std::string& kind = "") const;
voi d get_full_hdl _path(std::vector<std::string>& paths,
const std::string& kind = "",
const std::string& separator = ".") const;

voi d set_defaul t_hdl _path(const std::string& kind);
std::string get_defaul t_hdl _path() const;

}; Il class uvmreg_file

} /1 namespace uvm

15.3.2 Constructor

uvm reg_bl ock(const std::string& name = "",
int has_coverage = UVM NO COVERAGE);

The constructor shall create an instance of aregister file abstraction class with the specified name.
15.3.3 Initialization

15.3.3.1 configure

voi d configure(uvmreg_bl ock* bl k_parent,
uvmreg_file* regfile_parent,
const std::string& hdl _path ="");

The member function configur e shall specify the parent block and register file of the register file instance. If
theregister fileisinstantiated in ablock, regfile_parent is specified asNULL. If the register fileisinstantiated
in aregister file, blk_parent shall be the block parent of that register file and regfile parent is specified as
that register file.

If the register file corresponds to a hierarchical RTL structure, its contribution to the HDL path is specified
as the hdl_path. Otherwise, the register file does not correspond to a hierarchical RTL structure (e.g. it is
physically flattened) and does not contribute to the hierarchical HDL path of any contained registers.

15.3.4 Introspection

15.3.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this register file.

15.3.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this register file. The base of the
hierarchical name is the root block.

221

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.3.4.3 get_parent
virtual uvmreg_bl ock* get_parent() const;

The member function get_parent shall return the parent block.

15.3.4.4 get_redfile
virtual uvmreg_file* get_regfile() const;

The member function get_regfile shall return the parent register file. It returns NULL if this register file is
instantiated in a block.

15.3.5 Backdoor
NOTE—Backdoor accessis not yet available in UVM-SystemC.

15.3.5.1 clear_hdl_path

voi d cl ear_hdl _path(const std::string& kind = "RTL");

The member function clear_hdl_path shall remove any previously specified HDL path to the register file
instance for the specified design abstraction.

15.3.5.2 add_hdl_path

voi d add_hdl _path(const std::string& path, const std::string& kind = "RTL");

The member function add_hdl_path shall add the specified HDL path to the register file instance for the
specified design abstraction. This member function may be caled more than once for the same design
abstraction if the register fileis physically duplicated in the design abstraction.

15.3.5.3 has_hdl|_path
bool has_hdl _path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the register file instance has a HDL path defined for
the specified design abstraction. If no design abstraction is specified, it uses the default design abstraction
specified for the nearest enclosing register file or block If no design abstraction is specified, the default design
abstraction for thisregister file is used.

15.3.5.4 get_hdl_path

voi d get_hdl _path(std::vector<std::string>& paths, const std::string& kind ="") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
intheregister fileinstance. If no design abstraction is specified, it usesthe default design abstraction specified
for the nearest enclosing register file or block. It returns only the component of the HDL pathsthat corresponds
totheregister file, not afull hierarchical path If no design abstraction is specified, the default design abstraction
for thisregister fileis used.

222

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.3.5.5 get_full_hdl_path

voi d get _full_hdl _path(std::vector<std::string>& paths,
const std::string& kind =""
const std::string& separator = ".") const;

Themember functionget_full_hdl_path shall returnthefull hierarchical HDL path(s) defined for the specified
design abstraction in the register file instance. If no design abstraction is specified, uses the default design
abstraction specified for the nearest enclosing register file or block. There may be more than one path returned
even if only one path was defined for the register file instance, if any of the parent components have more
than one path defined for the same design abstraction. If no design abstraction is specified, the default design
abstraction for each ancestor register file or block is used to get each incremental path.

15.3.5.6 set_default_hdl_path

voi d set_defaul t_hdl _path(const std::string& kind);

The member function set_default_hdl_path shall specify the default design abstraction for this register file
instance.

15.3.5.7 get_default_hdl_path

std::string get_default_hdl _path() const;

The member function get_default_hdl_path shall return the default design abstraction for this register file
instance. If a default design abstraction has not been explicitly set for this register file instance, it returns the
default design abstraction for the nearest register file or block ancestor. It returns an empty string if no default
design abstraction has been specified.

15.4 uvm_reg

The class uvm_reg defines the register abstraction base class. A register represents a set of fields that are
accessibleasasingle entity. A register may be mapped to one or more address maps, each with different access
rights and policy.

15.4.1 Class definition

namespace uvm {

class uvmreg : public uvm object

{
public:

uvmreg(const std::string& nane,
unsi gned int,
int has_coverage);

/1 Group: Initialization

voi d configure(uvmreg_bl ock* bl k_parent,
uvmreg_file* regfile_parent = NULL,
const std::string& hdl _path ="");

voi d set_of fset(uvmreg_map* nap,
uvm reg_addr_t offset,
bool unnmepped = false);

/'l Group: Introspection

223

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual const std::string get_name() const;

virtual const std::string get_full_name() const;

virtual uvmreg_bl ock* get_parent() const;

virtual uvmreg_file* get_regfile() const;

virtual int get_n_nmaps() const;

bool is_in_map(uvmreg_nmap* map) const;

virtual void get_maps(std::vector<uvmreg_map*>& maps) const;

virtual std::string get_rights(uvmreg_map* map = NULL) const;

virtual unsigned int get_n_bits() const;

virtual unsigned int get_n_bytes() const;

static unsigned int get_max_size();

virtual void get_fields(std::vector<uvmreg_field*>& fields) const;
virtual uvmreg_field* get_field_by_name(const std::string& name) const;
virtual uvmreg_addr_t get_offset(uvmreg_map* map = NULL) const;
virtual uvmreg_addr_t get_address(const uvmreg_map* map = NULL) const;

virtual int get_addresses(std::vector<uvmreg_addr_t>& addr,
const uvmreg_nmap* nmap = NULL) const;

/| Group: Access
virtual void set(uvmreg_data_t val ue,

const std::string& fnane =
int lineno = 0);

virtual uvmreg_data_t get(const std::string& fname =
int lineno = 0) const;

virtual uvmreg_data_t get_mirrored_val ue(const std::string& fnane = "",
int lineno = 0) const;

virtual bool needs_update() const;
virtual void reset(const std::string& kind = "HARD");
virtual uvmreg_data_t get_reset(const std::string& kind = "HARD") const;

virtual bool has_reset(const std::string& kind = "HARD",
bool do_delete = false);

virtual void set_reset(uvmreg_data_t val ue,
const std::string& kind = "HARD");

virtual void wite(uvmstatus_e& status,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnane = ""
int lineno = 0);

virtual void read(uvmstatus_e& status,
uvmreg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void poke(uvm status_e& status,
uvmreg_data_t val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = ""
int lineno =0);

virtual void peek(uvmstatus_e& status,
uvm reg_data_t & val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,

const std::string& fname = .
int lineno =0);

224

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void update(uvm status_e& status,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void mrror(uvmstatus_e& status,
uvm check_e check = UVM NO_CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual bool predict(uvmreg_data_t val ue,
uvmreg_byte_en_t be = -1,
uvm predi ct _e kind = UVM_PREDI CT_DI RECT,
uvm path_e path = UVM FRONTDOOR,
uvm reg_nap* map = NULL,
const std::string& fnanme = "",
int lineno = 0);
bool is_busy() const;
/1 Group: Frontdoor
voi d set_frontdoor(uvmreg_frontdoor* ftdr,
uvm reg_nap* map = NULL,
const std::string& fnane = "",
int lineno = 0);
uvm reg_frontdoor* get_frontdoor(uvmreg_map* map = NULL) const;
/1 Group: Backdoor
voi d set_backdoor (uvmreg_backdoor* bkdr,
const std::string& fname = "",
int lineno =0);
uvm r eg_backdoor * get _backdoor (bool inherited = true) const;

voi d clear_hdl _path(const std::string& kind = "RTL");

voi d add_hdl _path(std::vector<uvm hdl _path_slice> slices,
const std::string& kind = "RTL");

voi d add_hdl _path_slice(const std::string& nane,

int offset,

int size,

bool first = false,

const std::string& kind = "RTL");
bool has_hdl _path(const std::string& kind = "") const;

voi d get_hdl _path(std::vector<uvm hdl _path_concat>& pat hs,
const std::string& kind = "") const;

voi d get _hdl _path_kinds(std::vector<std::string>& kinds) const;
voi d get _full _hdl _path(std::vector<uvm hdl _path_concat>& pat hs,
const std::string& kind = "",
const std::string& separator = ".") const;
virtual void backdoor_read(uvmreg_itent rw);
virtual void backdoor_write(uvmreg_itent rw);
virtual void backdoor_watch();

/'l Group: Coverage

static void include_coverage(const std::string& scope,

225

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvmreg_cvr_t nodels,
uvm obj ect* accessor = NULL);

prot ect ed:
uvmreg_cvr_t build_coverage(uvmreg_cvr_t nodels);
virtual void add_coverage(uvmreg_cvr_t nodels);

public:

virtual bool has_coverage(uvmreg_cvr_t nodels) const;
virtual uvmreg_cvr_t set_coverage(uvmreg_cvr_t is_on);
virtual bool get_coverage(uvmreg_cvr_t is_on) const;

prot ect ed:

virtual void sanple(uvmreg_data_t data,
uvmreg_data_t byte_en,
bool is_read,
uvm.reg_nmap* map);

public:
virtual void sanpl e_val ues();

/'l Group: Callbacks

virtual void pre_wite(uvmreg_itent rw);
virtual void post_wite(uvmreg_iten¥ rw);
virtual void pre_read(uvmreg_itent rw);
virtual void post_read(uvmreg_itent rw);

}; /1 class uvmreg

} /1 namespace uvm

15.4.2 Constructor

uvm reg(const std::string& nane,
unsi gned int,
int has_coverage);

The constructor shall create an instance of aregister abstraction class with the specified name. The argument
n_hits specifies the total number of bits in the register. Not all bits need to be implemented. This value is
usualy a multiple of 8. The argument has_coverage specifies which functional coverage models are present
in the extension of the register abstraction class. Multiple functional coverage models may be specified by
adding their symbolic names, as defined by the uvm_coverage model_e type (see Section 15.16.2.9).

15.4.3 Initialization

15.4.3.1 configure

voi d configure(uvmreg_bl ock* bl k_parent,
uvmreg_file* regfile_parent = NULL,
const std::string& hdl _path ="");

The member function configur e shall specify the parent block of thisregister. It may also set a parent register
filefor this register using argument regfile parent.

If the register is implemented in a single HDL variable, its name is specified as the hdl_path. Otherwise, if
the register isimplemented as a concatenation of variables (usually one per field), then the HDL path shall be
specified using the member functionsadd_hdl_path or add_hdl_path_dlice.

15.4.3.2 set_offset

voi d set_of fset(uvmreg_map* nap,
uvm reg_addr_t offset,
bool unnmepped = false);

226
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_offset shall specify the offset of a register within an address map. It shall use the
member function uvm_reg_map::add_reg (see Section 15.2.3.2). This member function is used to modify
that offset dynamically.

Modifying the offset of a register makes the register model diverge from the specification that was used to
createit.

15.4.4 Introspection

15.4.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of this register.
15.4.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full name shall return the hierarchal name of this register. The base of the
hierarchical name isthe root block.

15.4.4.3 get_parent
virtual uvmreg_bl ock* get_parent() const;
The member function get_parent shall return the parent block.

15.4.4.4 get_regfile

virtual uvmreg_file* get_regfile() const;

The member function get_regfile shall return the parent register file. It returns NULL if this register fileis
instantiated in a block.

15.4.4.5 get_n_maps

virtual int get_n_maps() const;

The member function get_n_maps shall return the number of address maps this register is mapped in.
15.4.4.6 is_in_map

bool is_in_map(uvmreg_nap* map) const;

The member function is_in_map shall return true if this register is in the specified address map, otherwise
return false.

15.4.4.7 get_maps

virtual void get_maps(std::vector<uvmreg_nmap*>& nmaps) const;

227
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_maps shall return all of the address maps where this register is mapped.

15.4.4.8 get_rights
virtual std::string get_rights(uvmreg_map* map = NULL) const;

The member function get_rights shall return the accessibility (“RW, “RQ", or “WQ") of this register in the
given map.

If no address map is specified and the register is mapped in only one address map, that address map is used.
If the register is mapped in more than one address map, the default address map of the parent block is used.

Whether aregister field can beread or written depends on both thefield' s configured access policy (see Section
15.5.3.1) and the register’ s accessibility rights in the map being used to access the field.

If an address map is specified and the register is not mapped in the specified address map, an error message
isissued and “RW" isreturned.

15.4.4.9 get_n_bits

virtual unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in bits, of thisregister.
15.4.4.10 get_n_bytes

virtual unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the width, in bytes, of this register. Rounds up to next whole
byteif register is not amultiple of 8.

15.4.4.11 get_max_size

static unsigned int get_max_size();

The member function get_max_size shall return the maximum width, in bits, of all registers.
15.4.4.12 get_fields

virtual void get_fields(std::vector<uvmreg_field*>& fields) const;

The member function get_fields shall return thefieldsin thisregister. Fields are ordered from |east-significant
position to most-significant position within the register.

15.4.4.13 get_field_by name

virtual uvmreg_field* get_field_by_name(const std::string& name) const;

The member function get_field_by name shall return the named field in this register. The member function
shall find afield with the specified name in this register and returnsits abstraction class. If no fields are found,
it returnsNULL.

228

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.4.14 get_offset
virtual uvmreg_addr_t get_offset(uvmreg_map* map = NULL) const;

The member function get_offset shall return the offset of this register in an address map. If no address map
is specified and the register is mapped in only one address map, that address map is used. If the register is
mapped in more than one address map, the default address map of the parent block is used. If an address map
is specified and the register is not mapped in the specified address map, an error message is issued.

15.4.4.15 get_address

virtual uvmreg_addr_t get_address(const uvmreg_map* map = NULL) const;

The member function get_address shall return the base external physical address of this register if accessed
through the specified address map.

If no address map is specified and the register is mapped in only one address map, that address map is used.
If the register is mapped in more than one address map, the default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address map, an error message
isissued.

15.4.4.16 get_addresses

virtual int get_addresses(std::vector<uvmreg_addr_t>& addr,
const uvmreg_map* map = NULL) const;

The member function get_addr esses shall identify the external physical address(es) of a memory location.
It computes al of the external physical addresses that needs to be accessed to completely read or write the
specified location in this memory. The addressed are specified in little endian order. Returns the number of
bytestransferred on each access. If no address map is specified and the memory is mapped in only one address
map, that address map is used. If the memory is mapped in more than one address map, the default address
map of the parent block isused. If an address map is specified and the memory is not mapped in the specified
address map, an error message is issued.

15.4.5 Access

15.4.5.1 set

virtual void set(uvmreg_data_t val ue,
const std::string& fname = ""
int lineno = 0);

The member function set shall specify the desired value of thefieldsin theregister to the specified value. It does
not actually set the value of the register in the design, only the desired value in its corresponding abstraction
classin the register model. The member function uvm_reg::update is used to update the actual register with
the mirrored value or member function uvm_reg::writeisused to set the actual register and itsmirrored value.

Unless this member function is used, the desired value is equal to the mirrored value.

See Section 15.5.5.1 for more details on the effect of setting mirror values on fields with different access
policies.

229

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

To modify the mirrored field values to a specific value, and thus use the mirrored as a scoreboard for the
register valuesin the DUT, the member function uvm_reg::predict is used (see Section 15.4.5.15).

15.4.5.2 get

virtual uvmreg_data_t get(const std::string& fname = ""
int lineno = 0) const;

The member function get shall return the desired value of the fields in the register. It does not actually read
the value of the register in the design, only the desired value in the abstraction class. Unless set to a different
value using the uvm_reg::set (see Section 15.4.5.1), the desired value and the mirrored value are identical.

Use the member function uvm_reg::read (see Section 15.4.5.10) or uvm_reg::peek (see Section 15.4.5.12)
to get the actual register value.

If theregister containswrite-only fields, the desired/mirrored valuefor thosefieldsarethe valuelast written and
assumed to reside in the bits implementing these fields. Although a physical read operation would something
different for these fields, the returned value is the actual content.

15.4.5.3 get_mirrored_value

virtual uvmreg_data_t get_mirrored_val ue(const std::string& fnane = "",
int lineno = 0) const;

The member function get_mirrored_value shall return the mirrored value of thefieldsin the register. It does
not actually read the value of the register in the design.

If theregister containswrite-only fields, the desired/mirrored valuefor thosefields arethe valuelast written and
assumed to reside in the bits implementing these fields. Although a physical read operation would something
different for these fields, the returned value is the actual content.

15.4.5.4 needs_update

virtual bool needs_update() const;

The member function needs_update shall return true if any of the fields need updating (see Section 15.5.5.8).
Use the uvm_reg::update to actually update the DUT register (see Section 15.4.5.13).

15.4.5.5 reset
virtual void reset(const std::string& kind = "HARD"');

The member function reset shall set the desired and mirror value of the fields in this register to the reset value
for the specified reset kind. See Section 15.5.5.4 for more details.

Also resets the semaphore that prevents concurrent access to the register. This semaphore shall be explicitly
reset if athread accessing this register array was killed in before the access was compl eted.

15.4.5.6 get_reset
virtual uvmreg_data_t get_reset(const std::string& kind = "HARD") const;
The member function get_reset shall return the reset value for this register for the specified reset kind.

230

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.5.7 has_reset

virtual bool has_reset(const std::string& kind = "HARD",
bool do_delete = false);

The member function has reset shall check if any field in the register has a reset value specified for the
specified reset kind. If argument do_delete is set to true, it removes the reset value, if any.

15.4.5.8 set_reset

virtual void set_reset(uvmreg_data_t val ue,
const std::string& kind = "HARD");

The member function set_reset shall specify or modify the reset value for all the fields in the register
corresponding to the cause specified by kind.

15.4.5.9 write

virtual void wite(uvmstatus_e& status,
uvmreg_data_t val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function write shall write the specifed value in the DUT register that corresponds to this
abstraction class instance using the specified access path. If the register is mapped in more than one address
map, an address map shall be specified if a physical accessis used (front-door access). If a back-door access
path is used, the effect of writing the register through a physical accessis mimicked. For example, read-only
bits in the registers shall not be written.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

15.4.5.10 read

virtual void read(uvm status_e& status,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function read shall read and return value from the DUT register that corresponds to this
abstraction class instance using the specified access path. If the register is mapped in more than one address
map, an address map shall be specified if a physical accessis used (front-door access). If a back-door access
path is used, the effect of reading the register through a physical access is mimicked. For example, clear-on-
read bits in the registers shall be set to zero.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

231

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.5.11 poke

virtual void poke(uvm status_e& status,
uvm reg_data_t val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function poke shall deposit the specified value in the DUT register corresponding to this
abstraction class instance, as-is, using a back-door access. Uses the HDL path for the design abstraction
specified by kind.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

15.4.5.12 peek

virtual void peek(uvmstatus_e& status,
uvm reg_data_t & val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

The member function peek shall read the current value from this register. It samples the value in the DUT
register corresponding to thisabstraction classinstance using aback-door access. Theregister valueis sampled,
not modified. Uses the HDL path for the design abstraction specified by kind.

The mirrored value shall be updated using the member function uvm_reg::predict (see Section 15.4.5.15).

15.4.5.13 update

virtual void update(uvm status_e& status,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno =0);

The member function update shall update the content of the register in the design to match the desired value.
This member function performsthe reverse operation of uvm_reg::mirror (see Section 15.4.5.14). Writethis
register if the DUT register isout-of-date with the desired/mirrored value in the abstraction class, asdetermined
by the member function uvm_reg::needs update (see Section 15.4.5.4).

The update can be performed using the using the physical interfaces (frontdoor) or uvm_reg:: poke (see Section
15.4.5.11) (backdoor) access. If the register is mapped in multiple address maps and physical accessis used
(front-door), an address map shall be specified.

15.4.5.14 mirror

virtual void mrror(uvmstatus_e& status,
uvm check_e check = UVM NO_CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,

232

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm obj ect * extension = NULL,
const std::string& fnane = "",
int lineno =0);

The member function mirror shall read the register and optionally compared the readback value with the
current mirrored value if argument check is UVM_CHECK. The mirrored value shall be updated using the
member function uvm_reg::predict (see Section 15.4.5.15) based on the readback value.

The mirroring can be performed using the physical interfaces (frontdoor) or uvm_reg::peek (see Section
15.4.5.12) (backdoor).

If argument checkis specifiedasUVM_CHECK, an error message isissued if the current mirrored value does
not match the readback value. Any field whose check has been disabled with uvm_reg field::set_compare
(see Section 15.5.5.14) shall not be considered in the comparison.

If the register is mapped in multiple address maps and physical accessis used (frontdoor access), an address
map shall be specified. If the register contains write-only fields, their content is mirrored and optionally
checked only if aUVM_BACKDOOR access path is used to read the register.

15.4.5.15 predict

virtual bool predict(uvmreg_data_t val ue,
uvmreg_byte_en_t be = -1,
uvm predi ct_e kind = UVM PREDI CT_DI RECT,
uvm pat h_e path = UVM FRONTDOOR,
uvm reg_map* map = NULL,
const std::string& fname = "",
int lineno = 0);

The member function predict shall update the mirrored and desired value for this register.

It predicts the mirror (and desired) value of the fields in the register based on the specified observed value on
a specified address map, or based on a calculated value. See Section 15.4.5.15 for more details.

The member function returns true if the prediction was successful for each field in the register.

15.4.5.16 is_busy

bool is_busy() const;

The member function is_busy shall returnstrueif register is currently being read or written.
15.4.6 Frontdoor

15.4.6.1 set_frontdoor

voi d set_frontdoor(uvmreg_frontdoor* ftdr,
uvm reg_nap* map = NULL,
const std::string& fnane = "",
int lineno = 0);

The member function set_frontdoor shall specify a user-defined frontdoor for this register.

By default, registers are mapped linearly into the address space of the address maps that instantiate them. If
registers are accessed using a different mechanism, a user-defined access mechanism needs to be defined and

233

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

associated with the corresponding register abstraction class. If theregister is mapped in multiple address maps,
an address map needs to be specified.

15.4.6.2 get_frontdoor

uvm reg_frontdoor* get_frontdoor(uvmreg_nmap* map = NULL) const;

The member function get_frontdoor shall return the user-defined frontdoor for this register.

If the member function returns NULL, no user-defined frontdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_reg::set_frontdoor.

If the register is mapped in multiple address maps, an address map needs to be specified.
15.4.7 Backdoor
NOTE—Backdoor accessis not yet available in UVM-SystemC.

15.4.7.1 set_backdoor

voi d set_backdoor (uvmreg_backdoor* bkdr,
const std::string& fname = "",
int lineno =0);

The member function set_backdoor shall specify a user-defined backdoor for this register.

By default, registers are accessed viathe built-in string-based DPI routines if an HDL path has been specified
using the member function uvm_reg::configure or uvm_reg::add_hdl_path.

If this default mechanism is not suitable (e.g. because the register is not implemented in HDL), a user-defined
access mechanism needs to be defined and associated with the corresponding register abstraction class.

A user-defined backdoor is required if active update of the mirror of this register abstraction class, based on
observed changes of the corresponding DUT register, is used.

15.4.7.2 get_backdoor

uvm r eg_backdoor * get_backdoor(bool inherited = true) const;

The member function get_backdoor shall return the user-defined backdoor for this register.

If the member function returns NULL, no user-defined backdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_reg::set_backdoor.

If no argument is specified or the argument inherited is set to true, the member function returns the backdoor
of the parent block if none have been specified for this register.

15.4.7.3 clear_hdl_path

voi d clear_hdl _path(const std::string& kind = "RTL");

The member function clear _hdl_path shall remove any previously specified HDL path to the register instance
for the specified design abstraction.

234

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.7.4 add_hdl_path

voi d add_hdl _path(std::vector<uvm hdl _path_slice> slices,
const std::string& kind = "RTL");

The member function add_hdl_path shall add the specified HDL path to the register instance for the specified
design abstraction. This member function may be called more than once for the same design abstraction if the
register is physically duplicated in the design abstraction. If the register is implemented using a single HDL
variable, The array should specify a single slice with its offset and size specified as-1.

15.4.7.5 add_hdl_path_slice

voi d add_hdl _path_slice(const std::string& nane,
int offset,
int size,
bool first = false,
const std::string& kind = "RTL");

Themember functionadd_hdl_path_dlice shall append the specified HDL dicetothe HDL path of theregister
instance for the specified design abstraction. If the argument first is set to true, it starts the specification of a
duplicate HDL implementation of the register.

15.4.7.6 has_hdl|_path

bool has_hdl _path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the register instance has a HDL path defined for the
specified design abstraction. If no design abstraction is specified, it shall use the default design abstraction
specified for the parent block.

15.4.7.7 get_hdl_path

voi d get _hdl _path(std::vector<uvm hdl _pat h_concat >& pat hs,
const std::string& kind = "") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
in the register instance. It returns only the component of the HDL paths that corresponds to the register, not a
full hierarchical path. If no design abstraction is specified, the default design abstraction for the parent block
isused.

15.4.7.8 get_hdl_path_kinds

voi d get _hdl _path_kinds(std::vector<std::string>& kinds) const;

The member function get_hdl_path_kinds shall return the design abstractions for which HDL paths have
been defined.

15.4.7.9 get_full_hdl_path

void get_full _hdl _path(std::vector<uvm hdl _path_concat>& pat hs,
const std::string& kind ="",
const std::string& separator = ".") const;

235

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Themember functionget_full_hdl_path shall returnthefull hierarchical HDL path(s) defined for the specified
design abstraction in the register instance. There may be more than one path returned even if only one path
was defined for the register instance, if any of the parent components have more than one path defined for the
same design abstraction. If no design abstraction is specified, the default design abstraction for each ancestor
block is used to get each incremental path.

15.4.7.10 backdoor_read

virtual void backdoor _read(uvmreg_itenf rw);

The member function backdoor _read shall offer user-defined backdoor read access. The member function
overrides the default string-based DPI backdoor access read for this register type.

15.4.7.11 backdoor_write

virtual void backdoor_write(uvmreg_itent rw);

The member function backdoor _write shall offer user-defined backdoor write access. The member function
overrides the default string-based DPI backdoor access write for this register type.

15.4.7.12 backdoor_watch

virtual void backdoor_watch();

The member function backdoor _watch shall offer a user-defined DUT register change monitor. The member
function watchesthe DUT register corresponding to this abstraction classinstance for any changein value and
return when a value-change occurs. There is no default implementation provided for this member function.

15.4.8 Coverage
NOTE—Functional coverage is not yet available in UVM-SystemC.

15.4.8.1 include_coverage

static void include_coverage(const std::string& scope,
uvmreg_cvr_t nodels,
uvm obj ect* accessor = NULL);

The member function include coverage shall specify which coverage model that needs to be included in
various block, register or memory abstraction class instances.

Y he coverage models are specified by OR’ing or adding the uvm_coverage model_e coverage model
identifiers corresponding to the coverage model to be included.

Theargument scope specifiesahierarchical nameor pattern identifying ablock, memory or register abstraction
classinstances. Any block, memory or register whose full hierarchical name matches the specified scope shall
have the specified functional coverage models included in them. The argument scope can be specified as a
POSIX regular expression or simple pattern. See Section 10.5.6 for more details.

The specification of which coverage model to includein which abstraction classisstoredinauvm_reg_cvr _t
resource in the uvm_resource_db resource database, in the “uvm_reg::” scope namespace.

236

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.8.2 build_coverage

protected: uvmreg_cvr_t build_coverage(uvmreg_cvr_t nodels);

The member function build_coverage shall check which of the specified coverage model are built in this
instance of the register abstraction class, as specified by calls to uvm_reg::include coverage. models are
specified by adding the symbolic value of individual coverage model as defined in uvm_coverage model_e.
The member function returns the sum of all coverage models to be built in the register model.

15.4.8.3 add_coverage

protected: virtual void add_coverage(uvmreg_cvr_t nodels);

The member function add_coverage shall specify that additional coverage models are available. Add the
specified coverage modd to the coverage models available in this class. models are specified by adding the
symbolic value of individual coverage model as defined in uvm_coverage model_e. This member function
shall be called only in the constructor of subsequently derived classes.

15.4.8.4 has_coverage

virtual bool has_coverage(uvmreg_cvr_t nodels) const;

Themember function has_cover age shal return trueif the register abstraction class contains acoverage model
for al of the model s specified. models are specified by adding the symbolic value of individual coverage model
as defined in uvm_coverage model_e.

15.4.8.5 set_coverage

virtual uvmreg_cvr_t set_coverage(uvmreg_cvr_t is_on);

The member function set_coverage shall specify the collection of functional coverage measurements for
this register. The functional coverage measurement is turned on for every coverage model specified using
uvm_coverage model_e symbolic identifiers. Multiple functional coverage models can be specified by
adding the functional coverage model identifiers. All other functional coverage models are turned off. The
member function returns the sum of al functional coverage models whose measurements were previously on.

This member function can only control the measurement of functional coverage modelsthat are present in the
register abstraction classes, then enabled during construction. See Section 15.4.8.4 to identify the available
functional coverage models.

15.4.8.6 get_coverage

virtual bool get_coverage(uvmreg_cvr_t is_on) const;

The member function get_coverage shall returns true if measurement for al of the specified functional
coverage models are currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See Section 15.4.8.5 for more details.

237

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.8.7 sample

protected: virtual void sanple(uvmreg_data_t data,
uvmreg_data_t byte_en,
bool is_read,
uvm reg_nmap* nmap);

The member function sample shall specify the Functional coverage measurement method.

This member function is invoked by the register abstraction class whenever it is read or written with the
specified data via the specified address map. It isinvoked after the read or write operation has completed but
before the mirror has been updated. The member function may be extended by the abstraction class generator
to perform the required sampling in any provided functional coverage model.

15.4.8.8 sample_values

virtual void sanpl e_val ues();

The member function sample_values shall specify the functional coverage measurement method for field
values.

This member function is invoked by the application or by the member function
uvm_reg_block::sample values of the parent block to trigger the sampling of the current field valuesin the
register-level functional coverage model.

This member function may be extended by the abstraction class generator to perform the required sampling
in any provided field-value functional coverage model.

15.4.9 Callbacks
15.4.9.1 pre_write

virtual void pre_wite(uvmreg_itent rw);

The member function pre_write shall be called before register write.

If the specified data value, access path or address map are modified, the updated data value, access path or
address map shall be used to perform the register operation. If the status is modified to anything other than
UVM_IS OK, the operation is aborted.

Theregistered callback member functionsareinvoked after theinvocation of thismember function. All register
callbacks are executed before the corresponding field callbacks.

15.4.9.2 post_write

virtual void post_wite(uvmreg_itenft rw);

The member function post_write shall be called after register write.
If the specified status is modified, the updated status shall be returned by the register operation.

The registered callback member functions are invoked before the invocation of this member function. All
register callbacks are executed before the corresponding field callbacks.

238

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.4.9.3 pre_read

virtual void pre_read(uvmreg_itenft rw);

The member function pre_read shall be called before register read.

If the specified access path or address map are modified, the updated access path or address map shall be used
to perform the register operation. If the status is modified to anything other than UVM _IS OK, the operation
is aborted.

Theregistered callback member functionsareinvoked after theinvocation of thismember function. All register
callbacks are executed before the corresponding field callbacks.

15.4.9.4 post_read

virtual void post_read(uvmreg_itent rw);

The member function post_read shall be called after register read.

If the specified readback data or status is modified, the updated readback data or status shall be returned by
the register operation.

The registered callback member functions are invoked before the invocation of this member function. All
register callbacks are executed before the corresponding field callbacks.

15.5uvm_reg_field

The class uvm_reg_field defines the field abstraction class. A field represents a set of bits that behave
consistently as a single entity. A field is contained within a single register, but may have different access
policies depending on the address map use the access the register (thus the field).

15.5.1 Class definition

namespace uvm {

class uvmreg_field : public uvmobject

{
public:

/1 Constructor
uvmreg_field(const std::string& name = "uvmreg field");

/1 Goup: Initialization

voi d configure(uvmreg* parent,
unsi gned int size,
unsi gned int |sb_pos,
const std::string& access,
bool is_volatile, // changed icm UVM SV
uvmreg_data_t reset,
bool has_reset,
bool is_rand,
bool individually_accessible);

/1 Group: Introspection

virtual const std::string get_nane();

virtual const std::string get_full_nane() const;
virtual uvmreg* get_parent() const;

virtual unsigned int get_|sb_pos() const;

239

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

virtual

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

unsi gned int get_n_bits() const;

static unsigned int get_max_size();

virtual

std::string set_access(const std::string& node);

static bool define_access(std::string name);

virtual
virtual
virtual
virtual

std::string get_access(uvmreg_nmap* map = NULL) const;
bool is_known_access(uvmreg_map* map = NULL) const;
void set_volatility(bool is_volatile);

bool is_volatile() const;

/'l Group: Access

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

virtual

void set(uvmreg_data_t val ue,
const std::string& fnane =
int lineno = 0);

uvmreg_data_t get(const std::string& fname =

int lineno = 0) const;
uvmreg_data_t get_mirrored_val ue(const std::string& fname = ""
int lineno = 0) const;

voi d reset(const std::string& kind = "HARD");
uvmreg_data_t get_reset(const std::string& kind = "HARD') const;

bool has_reset(const std::string& kind = "HARD",
bool do_delete = 0);

voi d set_reset(uvmreg_data_t val ue,
const std::string& kind = "HARD");

bool needs_update() const;

void wite(uvmstatus_e& status,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnane = ""
int lineno = 0);

voi d read(uvm status_e& status,
uvmreg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

voi d poke(uvm status_e& status,
uvmreg_data_t val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = ""
int lineno =0);

voi d peek(uvm status_e& status,
uvm reg_data_t & val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,

const std::string& fname = .
int lineno =0);

void mirror(uvmstatus_e& status,
uvm check_e check = UVM NO_CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = ""
int lineno =0);

240

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

voi d set_conpare(uvm check_e check = UVYM CHECK);
uvm check_e get _conpare() const;

bool is_indv_accessible(uvmpath_e path,
uvm reg_nmap* | ocal _map) const;

bool predict(uvmreg_data_t val ue,
uvmreg_byte_en_t be = -1,
uvm predi ct _e kind = UVM_PREDI CT_DI RECT,
uvm path_e path = UVM_FRONTDOOR,
uvm reg_nap* map = NULL,
const std::string& fnane = "",
int lineno = 0);

/1 Group: Callbacks

virtual void pre_wite(uvmreg_itenft rw);
virtual void post_wite(uvmreg_itent rw);
virtual void pre_read(uvmreg_itent rw);
virtual void post_read(uvmreg_itent rw;

}; /1 class uvmreg_field

} /1 namespace uvm

15.5.2 Constructor

uvmreg_field(const std::string& name = "uvmreg_field");

The constructor shall create a new field instance with the specified name. This constructor shall not be used
directly. The factory member function uvm_reg_field::type id::create should be used instead.

15.5.3 Initialization

15.5.3.1 configure

voi d configure(uvmreg* parent,
unsi gned int size,
unsi gned int |sb_pos,
const std::string& access,
bool is_volatile, // changed icm UVM SV
uvmreg_data_t reset,
bool has_reset,
bool is_rand,
bool individually_accessible);

The member function configur e shall specify the parent register of this field, its size in bits, the position of
its least-significant bit within the register relative to the least-significant bit of the register, its access policy,
volatility, “HARD” reset value, whether the field value is actually reset (the reset value is ignored if false),
whether the field value may be randomized and whether the field is the only one to occupy a byte lane in
the register.

See Section 15.5.4.7 for a specification of the pre-defined field access policies.

If the field access policy is a pre-defined policy and not one of “RW”, “WRC”, “WRS’, “WQO", “W1", or
“WOL1", the value of argument is_rand isignored and therand_mode for thefield instanceis turned off since
it cannot be written.

241

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.5.4 Introspection

15.5.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the simple object name of thisfield.
15.5.4.2 get_full_name

virtual const std::string get_full _name() const;

The member function get_full _name shall return the hierarchal name of thisfield. The base of the hierarchical
name is the root block.

15.5.4.3 get_parent

virtual uvmreg* get_parent() const;

The member function get_parent shall return the parent register.
15.5.4.4 get_Isb_pos

virtual unsigned int get_|sb_pos() const;

The member function get_Isb_pos shall return the index of the least significant bit of the field in the register
that instantiatesit. An offset of O indicates afield that is aligned with the least-significant bit of the register.

15.5.4.5 get_n_bits
virtual unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in number of bits, of the field.

15.5.4.6 get_max_size

static unsigned int get_nmx_size():

The member function get_max_size shall return the width, in number of bits, of the largest field.
15.5.4.7 set_access

virtual std::string set_access(const std::string& node);

The member function set_access shall modify the access policy of the field to the specified one and return
the previous access policy.

The pre-defined access policies are asfollows. The effect of aread operation are applied after the current value
of the field is sampled. The read operation shall return the current value, not the value affected by the read
operation (if any).

242
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Table 15.1—Access policies

"RO" W: no effect, R: no effect

"RW” W: as-is, R: no effect

"RC” W: no effect, R: clearsdl bits

"RS’ W: no effect, R: setsall bits

"WRC” W: as-is, R: clears all bits

"WRS’ W: as-is, R: setsdl bits

"WC” W: clearsall hits, R: no effect

"WS’ W: setsall hits, R: no effect

"WSRC” W: setsall hits, R: clears all bits

"WCRS’ W: clearsall hits, R: sets all bits

"W1C" W: 1/0 clears/no effect on matching hit, R: no effect
"W1S’ W: 1/0 sets/no effect on matching bit, R: no effect
"WI1T” W: 1/0 toggles/no effect on matching bit, R: no effect
"WO0C" W: 1/0 no effect on/clears matching hit, R: no effect
"WO0S’ W: 1/0 no effect on/sets matching bit, R: no effect
"WOoT” W: 1/0 no effect on/toggles matching bit, R: no effect
"W1SRC" W: 1/0 sets/no effect on matching bit, R: clears all bits
"W1CRS’ W: 1/0 clears/no effect on matching bit, R: sets all bits
"WOSRC" W: 1/0 no effect on/sets matching bit, R: clears all bits
"WOCRS’ W: 1/0 no effect on/clears matching bit, R: sets all bits
"WQ" W: as-is, R: error

"WocC” W: clearsall hits, R: error

"WQOSs’ W: setsall hits, R: error

"W1" W: first one after HARD reset is as-is, other W have no effects, R: no effect

"WO1” W: first one after HARD reset is as-is, other W have no effects, R: error
"NOACCESS’ W: no effect, R: no effect

Modifying the access of a field shall make the register model diverge from the specification that was used
to createit.

15.5.4.8 define_access

static bool define_access(std::string name);

The member function define_access shall specify a new access policy value.

Because field access policies are specified using string values, there is no mechnaism to verify if a specific
accessvalueisvalid or not. To help catch typing errors, user-defined access values needs to be defined using
this member function to avoid begin reported as an invalid access policy.

The name of field access policies are always converted to all uppercase.

The member function shall return trueif the new access policy was not previously defined. It shall return false
otherwise, but does not issue an error message.

15.5.4.9 get_access

virtual std::string get_access(uvmreg_nmap* map = NULL) const;

The member function get_access shall return the access policy of the field. It returns the current access policy
of the field when written and read through the specified address map. If the register containing the field is

243
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

mapped in multiple address map, an address map shall be specified. The access policy of afield from aspecific
address map may be restricted by the register’s access policy in that address map. For example, a RW field
may only be writable through one of the address maps and read-only through al of the other maps. If thefield
access contradicts the map’ s access value (field access of WO, and map access value of RO, etc), the member
functions return value is NOACCESS.

15.5.4.10 is_known_access

virtual bool is_known_access(uvmreg_map* map = NULL) const;

The member functionis_known_access shall return true if the current access policy of thefield, when written
and read through the specified address map, is a built-in access policy. Otherwise it shall return false.

15.5.4.11 set_volatility

virtual void set_volatility(bool is_volatile);

The member function set_volatility shall specify the volatility of the field to the specified one. Modifying the
volatility of afield shall make the register model diverge from the specification that was used to create it.

15.5.4.12 is_volatile

virtual bool is_volatile() const;

The member function is_volatile shall return true if the value of the register is not predictable because it may
change between consecutive accesses. Thistypically indicates afield whose valueis updated by the DUT. The
nature or cause of the change is not specified. The member function returns false if the value of the register
is not modified between consecutive accesses.

NOTE—UVM usesthe IP-XACT definition of “volatility” asdefined in IEEE Std. 1685-2014°.
15.5.5 Access

15.5.5.1 set

virtual void set(uvmreg_data_t val ue,
const std::string& fname = "",
int lineno = 0);

The member function set shall specify the desired value of the field to the specified value modified by the
field access policy. It does not actually set the value of the field in the design, only the desired value in the
abstraction class. Use the member function uvm_reg::update (see Section 15.4.5.13) to update the actual
register with the desired value or the member function uvm_reg_field::write (see Section 15.5.5.9) to actually
write the field and update its mirrored value.

Thefinal desired valuein the mirror isafunction of the field access policy and the set value, just like anormal
physical write operation to the corresponding bits in the hardware. As such, this member function (when
eventually followed by a call to uvm_reg::update) is a zero-time functional replacement for the member
function uvm_reg_field::write. For example, the desired value of a read-only field is not modified by this

5 |EEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows, https./
standards.ieee.org/standard/1685-2014.html

244

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

https://standards.ieee.org/standard/1685-2014.html
https://standards.ieee.org/standard/1685-2014.html

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

member function and the desired value of awrite-once field can only be set if the field has not yet been written
to using a physical (for example, front-door) write operation.

Usetheuvm_reg field::predict (see Section 15.5.5.17) to modify the mirrored value of the field.

15.5.5.2 get

virtual uvmreg_data_t get(const std::string& fname = ""
int lineno = 0) const;

The member function get shall return the desired value of the field. It does not actually read the value of the
field in the design, only the desired value in the abstraction class. Unless set to a different value using the
uvm_reg field::set, the desired value and the mirrored value are identical.

Use the member function uvm_reg_field::read or uvm_reg_field::peek to get the actual field value.

If the field is write-only, the desired/mirrored value is the value last written and assumed to reside in the bits
implementing it. Although aphysical read operation would something different, the returned valueisthe actua
content.

15.5.5.3 get_mirrored_value

virtual uvmreg_data_t get_mirrored_val ue(const std::string& fnane = "",
int lineno = 0) const;

The member function get_mirrored_value shall return the mirrored value of the field. It does not actually
read the value of the field in the design, only the mirrored value in the abstraction class.

If the field iswrite-only, the desired/mirrored value is the value last written and assumed to reside in the bits
implementing it. Although aphysical read operation would something different, the returned valueisthe actual
content.

15.5.5.4 reset

virtual void reset(const std::string& kind = "HARD");

The member function reset shall set the desired and mirror value of the field to the reset event specified by
kind. If the field does not have areset value specified for the specified reset kind the field is unchanged.

It doesnot actually reset thevalue of thefield inthedesign, only thevalue mirroredin thefield abstraction class.
Write-once fields can be modified after a“HARD” reset operation.

15.5.5.5 get_reset

virtual uvmreg data_t get_reset(const std::string& kind = "HARD') const;

The member function get_reset shall return the reset value for this field for the specified reset kind. It returns
the current field value if no reset value has been specified for the specified reset event.

15.5.5.6 has_reset

virtual bool has_reset(const std::string& kind = "HARD",

245

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

bool do_delete = false);

The member function has _reset shal return true if thisfield has areset value specified for the specified reset
kind. If argument do_delete is set to true, it removes the reset value, if any.

15.5.5.7 set_reset

virtual void set_reset(uvmreg_data_t val ue,
const std::string& kind = "HARD");

The member function set_r eset shall specify or modify the reset value for thisfield corresponding to the cause
specified by argument kind.

15.5.5.8 needs_update

virtual bool needs_update() const;

The member function needs update shall check if the abstract model contains different desired and mirrored
values. If adesired field value has been modified in the abstraction class without actually updating thefield in
the DUT, the state of the DUT (more specifically what the abstraction class thinks the state of the DUT is) is
outdated. Thismember function shall return trueif the state of thefieldin the DUT needsto be updated to match
thedesired value. Themirror valuesor actual content of DUT field arenot modified. Usetheuvm_reg::update
(see Section 15.4.5.13) to actually update the DUT field.

15.5.5.9 write

virtual void wite(uvmstatus_e& status,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnanme = "",
int lineno =0);;

The member function write shall write the specified valuein the DUT field that correspondsto this abstraction
class instance using the specified access path. If the register containing this field is mapped in more than one
address map, an address map shall be specified if aphysical accessis used (front-door access). If a back-door
access path is used, the effect of writing the field through a physical access is mimicked. For example, read-
only bitsin the field shall not be written.

The mirrored value shall be updated using the member function uvm_reg field::predict (see Section
15.5.5.17).

If a front-door access is used, and if the field is the only field in a byte lane and if the physical interface
corresponding to the address map used to access the field support byte-enabling, then only the field iswritten.
Otherwise, the entire register containing the field is written, and the mirrored values of the other fieldsin the
same register are used in a best-effort not to modify their value.

If abackdoor access is used, a peek-modify-poke process is used, in a best-effort not to modify the value of
the other fields in the register.

246

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.5.5.10 read

virtual void read(uvm status_e& status,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function read shall read and return value from the DUT field that corresponds to this abstraction
classinstance using the specified access path. If the register containing this field is mapped in more than one
address map, an address map shall be specified if aphysical accessis used (front-door access). If a back-door
access path is used, the effect of reading the field through a physical accessis mimicked. For example, clear-
on-read bitsin the field shall be set to zero.

The mirrored value shall be updated using the member function uvm_reg field::predict (see Section
15.5.5.17).

If a front-door access is used, and if the field is the only field in a byte lane and if the physical interface
corresponding to the address map used to access the field support byte-enabling, then only the field is read.
Otherwise, the entire register containing the field is read, and the mirrored values of the other fields in the
same register are updated.

If abackdoor accessis used, the entire containing register is peeked and the mirrored value of the other fields
in the register is updated.

15.5.5.11 poke

virtual void poke(uvm status_e& status,
uvmreg_data_t val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

The member function poke shall deposit the specified value inthe DUT field corresponding to this abstraction
class instance, as-is, using a back-door access. A peek-modify-poke process is used in a best-effort not to
modify the value of the other fieldsin the register.

The mirrored value shall be updated using the member function uvm_reg field::predict (see Section
15.5.5.17).

15.5.5.12 peek

virtual void peek(uvm status_e& status,
uvm reg_data_t & val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function peek shall read the current value from this field. It samples the value in the DUT field
corresponding to this abstraction class instance using a back-door access. The field value is sampled, not
modified. It usesthe HDL path for the design abstraction specified by kind.

247

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The entire containing register is peeked and the mirrored value of the other fields in the register are updated
using theuvm_reg_field::predict (see Section 15.5.5.17).

15.5.5.13 mirror

virtual void mirror(uvmstatus_e& status,
uvm check_e check = UVM NO_CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function mirror shall read the field and optionally compared the readback value with the current
mirrored value if check is UVM_CHECK. The mirrored value shall be updated using the member function
predict based on the readback value.

The argument path specifies whether to mirror using the UVM_FRONTDOOR by using member function
read or UVM_BACKDOOR by using member function peek.

If argument check is specified as UVM_CHECK, an error message is issued if the current mirrored value
does not match the readback value, unless set_ compare was used disable the check.

If the containing register is mapped in multiple address maps and physical accessis used (front-door access),
an address map shall be specified. For write-only fields, their content is mirrored and optionally checked only
if aUVM_BACKDOOR access path is used to read the field.

15.5.5.14 set_compare

voi d set_conpare(uvm check_e check = UVYM CHECK);

Themember function set_compar e shall specify the comparison policy during amirror update. Thefield value
is checked against its mirror only when both the argument check in uvm_reg_block::mirror (see Section
15.1.6.5), uvm_reg::mirror (see Section 15.4.5.14), or uvm_reg_field::mirror (see Section 15.5.5.13) and
the comparison policy for thefieldisUVM_CHECK.

15.5.5.15 get_compare

uvm check_e get_conpare() const;

The member function get_compar e shall return the comparison policy for thisfield.

15.5.5.16 is_indv_accessible

bool is_indv_accessible(uvmpath_e path,
uvm reg_nap* |local _map) const;

The member function is_indv_accessible shall return trueif thisfield can be written individually, i.e. without
affecting other fieldsin the containing register. Otherwise it shall return false.

15.5.5.17 predict

bool predict(uvmreg_data_t val ue,

248
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvmreg_byte_en_t be = -1,

uvm predi ct _e kind = UVM_PREDI CT_DI RECT,
uvm path_e path = UVM FRONTDOOR,

uvm reg_nap* map = NULL,

const std::string& fnane = "",

int lineno = 0);

The member function predict shall update the mirrored and desired value for thisfield. It predicts the mirror
and desired value of the field based on the specified observed value on a bus using the specified address map.

If argument kind is specified as UVM_PREDICT_READ, the value was observed in a read transaction on
the specified address map or backdoor (if path is UVM_BACKDOOR). If argument kind is specified as
UVM_PREDICT_WRITE, the value was observed in a write transaction on the specified address map or
backdoor (if pathisUVM_BACKDOOR). If argument kind is specified asUVM_PREDICT_DIRECT, the
value was computed and is updated as-is, without regard to any access policy. For example, the mirrored value
of aread-only field is modified by this member function if kind is specified asUVM_PREDICT_DIRECT.
This member function does not allow an update of the mirror (or desired) when the register containing this
field is busy executing a transaction because the results are unpredictable and indicative of arace condition
in the testbench.

This member function returnstrue if the prediction was successful.

15.5.6 Callbacks

15.5.6.1 pre_write

virtual void pre_wite(uvmreg_itent rw);

The member function pre_write shall be called before field write.

If the specified data value, access path or address map are modified, the updated data value, access path or
address map shall be used to perform the register operation. If the status is modified to anything other than
UVM_IS OK, the operation is aborted.

The field callback methods are invoked after the callback methods on the containing register. The registered
callback member functions are invoked after the invocation of this member function.

15.5.6.2 post_write
virtual void post_wite(uvmreg_itenft rw);

The member function post_write shall be called after field write.
If the specified status is modified, the updated status shall be returned by the register operation.

The field callback member functions are invoked after the callback methods on the containing register. The
registered callback member functions are invoked before the invocation of this member function.

15.5.6.3 pre_read
virtual void pre_read(uvmreg_itent rw;

The member function pre_read shall be called before field read.

249

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If the access path or address map in the rw argument are modified, the updated access path or address map
shall be used to perform the register operation. If the status is modified to anything other than UVM _1S OK,
the operation is aborted.

The field callback member functions are invoked after the callback member functions on the containing
register. The registered callback member functions are invoked after the invocation of this member function.

15.5.6.4 post_read

virtual void post_read(uvmreg_itent rw;

The member function post_read shall be called after field read.

If the specified readback data or status in the argument rw is modified, the updated readback data or status
shall be returned by the register operation.

The field callback member functions are invoked after the callback member functions on the containing
register. The registered callback methods are invoked before the invocation of this member function.

15.6 uvm_mem

The class uvm_mem defines the memory abstraction base class. A memory is a collection of contiguous
locations. A memory may be accessible via more than one address map.

Unlike registers, memories are not mirrored because of the potentialy large data space: tests that walk the
entire memory space would negate any benefit from sparse memory modelling techniques. Rather than relying
onamirror, it is recommended that backdoor access be used instead.

15.6.1 Class definition

namespace uvm {

class uvm nmem : public uvm object

{
public:

typedef enum { UNKNOWNS, ZEROES, ONES, ADDRESS, VALUE, INCR DECR} init_e;

/'l Constructor
explicit uvmmem const std::string& nane,
unsi gned | ong si ze,
unsigned int n_bits,
const std::string& access = "RW,
int has_coverage = UM NO COVERAGE);

/1 Goup: Initialization

voi d configure(uvmreg_bl ock* parent,
const std::string& hdl _path ="");

voi d set_offset(uvmreg_map* map,
uvm reg_addr_t offset,
bool unmapped = 0);

/1 Group: Introspection

virtual const std::string get_nanme() const;

virtual const std::string get_full_name() const;

virtual uvmreg_bl ock* get_parent() const;

virtual int get_n_maps() const;

bool is_in_map(uvmreg_map* map) const;

virtual void get_maps(std::vector<uvmreg_map*>& maps) const;

250

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual std::string get_rights(const uvmreg_nmap* map
virtual std::string get_access(const uvmreg_nap* nmap
unsi gned | ong get_size() const;

unsi gned int get_n_bytes() const;

unsigned int get_n_bits() const;

static unsigned int get_max_size();

virtual void get_virtual _registers(std::vector<uvmvreg*
virtual void get_virtual _fields(std::vector<uvmuvreg_fie
virtual uvmvreg* get_vreg_by_name(const std::string& na
virtual uvmuvreg_field* get_vfield_by_name(const std::st

NULL) const;
NULL) const;

>& regs) const;

| d*>& fields) const;
me) const;

ring& name) const;

virtual uvmvreg* get_vreg_by_offset(uvmreg_addr_t offset,

const uvmreg_map*

map = NULL) const;

virtual uvmreg_addr_t get_offset(uvmreg_addr_t offset = 0,

const uvmreg_nmap* nap

virtual uvmreg_addr_t get_address(uvmreg_addr_t offset
const uvmreg_map* ne

= NULL) const;

= O‘
p = NULL) const;

virtual int get_addresses(std::vector<uvmreg_addr_t>& addr,

const uvmreg_nmap* map = NULL,

uvmreg_addr_t offset = 0) const;

!/ Group: HDL Access

virtual void wite(uvmstatus_e& status,
uvmreg_addr_t offset,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnane = "",
int lineno = 0);

virtual void read(uvmstatus_e& status,
uvm reg_addr_t offset,
uvmreg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void burst_wite(uvmstatus_e& status,
uvmreg_addr_t offset,

std::vector<uvmreg_data_t> val ue,
uvm path_e path = UVM DEFAULT_PATH,

uvm reg_map* map = NULL,

uvm sequence_base* parent = NULL,

int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

virtual void burst_read(uvmstatus_e& status,
uvm reg_addr_t offset,

std::vector<uvmreg_data_t>& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,

uvm reg_nmap* map = NULL,

uvm sequence_base* parent = NULL,
int prior = -1,

uvm obj ect * extension = NULL,

const std::string& fname = .
int lineno =0);

virtual void poke(uvm status_e& status,
uvm reg_addr_t offset,
uvmreg_data_t val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,

251

Copyright © 2023 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards D

raft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

const std::string& fnane = "",
int lineno =0);

virtual void peek(uvmstatus_e& status,
uvm reg_addr_t offset,
uvmreg_data_t & val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

/1 Group: Frontdoor

voi d set_frontdoor(uvmreg_frontdoor* ftdr,
uvm reg_nap* map = NULL,
const std::string& fnanme = "",
int lineno = 0);

uvm reg_frontdoor* get_frontdoor(const uvmreg_map* map = NULL) const;
/1 Group: Backdoor

voi d set_backdoor (uvmreg_backdoor* bkdr,
const std::string& fname = "",
int lineno = 0);

uvm r eg_backdoor * get _backdoor (bool inherited = true);
voi d clear_hdl _path(const std::string& kind = "RTL");

voi d add_hdl _path(std::vector<uvm hdl _path_slice> slices,
const std::string& kind = "RTL");

voi d add_hdl _path_slice(const std::string& nane,
int offset,
int size,
bool first = false,
const std::string& kind = "RTL");

bool has_hdl _path(const std::string& kind = "") const;

voi d get_hdl _path(std::vector<uvm hdl _path_concat>& pat hs,
const std::string& kind = "") const;

voi d get _full _hdl _path(std::vector<uvm hdl _path_concat>& pat hs,
const std::string& kind = "",
const std::string& separator = ".") const;

voi d get _hdl _path_kinds(std::vector<std::string>& kinds) const;

prot ect ed:
virtual void backdoor_read(uvmreg_itent rw);

public:
virtual void backdoor_wite(uvmreg_itent rw);

/'l Group: Callbacks

virtual void pre_wite(uvmreg_itenft rw);
virtual void post_wite(uvmreg_iten¥ rw);
virtual void pre_read(uvmreg_itent rw);
virtual void post_read(uvmreg_itent rw);

/'l Group: Coverage

prot ect ed:
uvmreg_cvr_t build_coverage(uvmreg_cvr_t nodels);
virtual void add_coverage(uvmreg_cvr_t nodels);

public:

virtual bool has_coverage(uvmreg_cvr_t nodels) const;
virtual uvmreg_cvr_t set_coverage(uvmreg_cvr_t is_on);
virtual bool get_coverage(uvmreg_cvr_t is_on);

prot ect ed:
virtual void sanple(uvmreg_addr_t offset,
bool is_read,

252
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm.reg_nmap* map);

|/ Data nmenbers
uvm mem mant manm

}; /1 class uvm nem

} /1 namespace uvm

15.6.2 Constructor

explicit uvmnmem const std::string& nane,
unsi gned | ong si ze,
unsigned int n_bits,
const std::string& access = "RW,
int has_coverage = UM NO COVERAGE);

The constructor shall create an instance of a memory abstraction class with the specified name.

The argument size specifies the total number of memory locations. The argument n_bits specifies the total
number of bits in each memory location. access specifies the access policy of this memory and may be one
of “RW for RAMs and “RO” for ROMs. The argument has_coverage specifies which functional coverage
models are present in the extension of the register abstraction class. Multiple functional coverage models may
be specified by adding their symbolic names, as defined by the uvm_coverage model_e type (see Section
15.16.2.9).

15.6.3 Initialization

15.6.3.1 configure

voi d configure(uvmreg_bl ock* parent,
const std::string& hdl _path ="");

The member function configur e shall specify the parent block of this memory. If this memory isimplemented
inasingle HDL variable, its name is specified asthe hdl_path. Otherwise, if the memory isimplemented as a
concatenation of variables (usually one per bank), then the HDL path needs to be specified using the member
function add_hdl_path or add_hdl_path_dlice.

15.6.3.2 set_offset

voi d set_of fset(uvmreg_map* nap,
uvm reg_addr_t offset,
bool unmapped = 0);

The member function set_offset shall specify the offset of a memory within an address map. It shall use the
member function uvm_reg_map::add_reg (see Section 15.2.3.3). This member function is used to modify
that offset dynamically.

Modifying the offset of a register makes the register model diverge from the specification that was used to
createit.

15.6.4 Introspection
15.6.4.1 get_name

virtual const std::string get_nanme() const;

253

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_name shall return the simple object name of this memory.

15.6.4.2 get_full_name
virtual const std::string get_full_nane() const;

The member function get_full_name shal return the hierarcha name of this memory. The base of the
hierarchical name isthe root block.

15.6.4.3 get_parent
virtual uvmreg_bl ock* get_parent() const;

The member function get_parent shall return the parent block.

15.6.4.4 get_n_maps

virtual int get_n_maps() const;

The member function get_n_maps shall return the number of address maps this memory is mapped in.
15.6.4.5is_in_map

bool is_in_map(uvmreg_mep* mep) const;

The member function is_in_map shall return true if this memory is in the specified address map, otherwise
return false.

15.6.4.6 get_maps
virtual void get_maps(std::vector<uvmreg_map*>& maps) const;

The member function get_maps shall return all of the address maps where this memory is mapped.

15.6.4.7 get_rights
virtual std::string get_rights(uvmreg_map* map = NULL) const;

The member function get_rights shall return the accessibility (“RW, “RO”, or “WQ") of this memory in the
given map.

The access rights of a memory is aways “RW”, unless it is a shared memory with access restriction in a
particular address map. If no address map is specified and the memory is mapped in only one address map,
that address map is used. If the memory is mapped in more than one address map, the default address map of
the parent block is used. If an address map is specified and the memory is not mapped in the specified address
map, an error message isissued and “RW” is returned.

15.6.4.8 get_access

virtual std::string get_access(const uvmreg_nmap* map = NULL) const;

254

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_access shall return the access policy of the memory when written and read via an
address map.

If thememory is mapped in more than one address map, an address map shall be specified. If accessrestrictions
are present when accessing a memory through the specified address map, the access mode returned takes the
access restrictions into account. For example, aread-write memory accessed through adomain with read-only
restrictions would return “RO”.

15.6.4.9 get_size

unsi gned |ong get_size() const;

The member function get_size shall return the number of unique memory locations in this memory.
15.6.4.10 get_n_bytes

unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the width, in number of bytes, of each memory location.
15.6.4.11 get_n_bits

unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in number of bits, of each memory location.
15.6.4.12 get_max_size

static unsigned int get_max_size();

The member function get_max_size shall return the maximum width, in number of bits, of all memories.
15.6.4.13 get_virtual_registers

virtual void get_virtual _registers(std::vector<uvmvreg*>& regs) const;

The member function get_virtual_registers shall return the virtual registers in this memory. The order in
which the virtual registers are located in the vector is not specified.

15.6.4.14 get_virtual_fields

virtual void get_virtual _fields(std::vector<uvmvreg_field*>& fields) const;

The member function get_virtual_fields shall return the virtual fields in the memory. The order in which the
virtual fields are located in the vector is not specified.

15.6.4.15 get_vreg_by_name

virtual uvmvreg* get_vreg_by_nane(const std::string& nane) const;

255

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_vreg by name shall search for the virtual register with the specified name
implemented in this memory and shall return its abstraction class instance. If no virtual register with the
specified name is found, the member function returns NULL.

15.6.4.16 get_vfield_by name

virtual uvmyvreg_field* get_vfield_by nane(const std::string& nane) const;

The member function get_vfield_by name shall search for the virtua field with the specified name
implemented in this memory and shall return its abstraction classinstance. If no virtual field with the specified
name is found, the member function returns NULL.

15.6.4.17 get_vreg_by_offset

virtual uvmvreg* get_vreg_by_offset(uvmreg_addr_t offset,
const uvmreg_map* nap = NULL) const;

The member function get_vreg by offset shall search for the virtual register implemented in this memory at
the specified offset in the specified address map and returns its abstraction class instance. If no virtual register
at the offset isfound, it returns NULL.

15.6.4.18 get_offset

virtual uvmreg_addr_t get_offset(uvmreg_addr_t offset = 0,
const uvmreg_map* map = NULL) const;

The member function get_offset shall return the base offset of the specified location in this memory in an
address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.
If an address map is specified and the memory is not mapped in the specified address map, an error message
isissued.

15.6.4.19 get_address

virtual uvmreg_addr_t get_address(uvmreg_addr_t offset = 0,
const uvmreg_map* map = NULL) const;

The member function get_addr ess shall return the base external physical address of the specified location in
this memory if accessed through the specified address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.
If an address map is specified and the memory is not mapped in the specified address map, an error message
isissued.

15.6.4.20 get_addresses

virtual int get_addresses(std::vector<uvmreg_addr_t>& addr,
const uvmreg_map* map = NULL,
uvmreg_addr_t offset = 0) const;

256

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_addr esses shall return the base external physical address of the specified location
in this memory if accessed through the specified address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.
If an address map is specified and the memory is not mapped in the specified address map, an error message
isissued.

15.6.5 HDL access

15.6.5.1 write

virtual void wite(uvmstatus_e& status,
uvm reg_addr_t offset,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function write shall write the specified value in the memory location that corresponds to this
abstraction class instance at the specified offset using the specified access path. If the memory is mapped in
more than one address map, an address map needs to be specified if a physical access is used (front-door
access). If a back-door access path is used, the effect of writing the memory through a physical access is
mimicked. For example, aread-only memory will remain unchanged.

15.6.5.2 read

virtual void read(uvmstatus_e& status,
uvm reg_addr_t offset,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

The member function read shall read and return value from the memory location that corresponds to this
abstraction class instance at the specified offset using the specified access path. If the memory is mapped in
more than one address map, an address map needs to be specified if a physical access is used (front-door
access).

15.6.5.3 burst_write

virtual void burst_wite(uvmstatus_e& status,
uvm reg_addr_t offset,
std::vector<uvmreg_data_t> val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

257
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function burst_write shall burst-write the specified values in the memory locations beginning
at the specified offset. If the memory is mapped in more than one address map, an address map needs to be
specified if not using the backdoor. If aback-door access path is used, the effect of writing the register through
aphysical accessis mimicked. For example, a read-only memory will remain unchanged.

15.6.5.4 burst_read

virtual void burst_read(uvm status_e& status,
uvm reg_addr_t offset,
std::vector<uvmreg_data_t >& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* nmap = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function bur st_read shall burst-read into values the data the memory locations beginning at the
specified offset. If the memory is mapped in more than one address map, an address map needs to be specified
if not using the backdoor. If aback-door access path is used, the effect of writing the register through aphysical
access is mimicked. For example, aread-only memory will remain unchanged.

15.6.5.5 poke

virtual void poke(uvm status_e& status,
uvm reg_addr_t offset,
uvmreg_data_t val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

The member function poke shall deposit the specified value in the DUT memory location corresponding to
this abstraction class instance at the specified offset, as-is, using a back-door access. It uses the HDL path for
the design abstraction specified by kind.

15.6.5.6 peek

virtual void peek(uvm status_e& status,
uvm reg_addr_t offset,
uvm reg_data_t & val ue,
const std::string& kind = "",
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function peek shall read and return the current value in the DUT memory location corresponding
to this abstraction class instance at the specified offset using a back-door access. The memory location value
is sampled, not modified. It usesthe HDL path for the design abstraction specified by kind.

15.6.6 Frontdoor

15.6.6.1 set_frontdoor

voi d set_frontdoor(uvmreg_frontdoor* ftdr,
uvm.reg_nap* map = NULL,
const std::string& fname = ""

258

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

int lineno = 0);

The member function set_frontdoor shall specify a user-defined frontdoor for this memory.

By default, memories are mapped linearly into the address space of the address maps that instantiate them.
If memories are accessed using a different mechanism, a user-defined access mechanism needs to be defined
and associated with the corresponding memory abstraction class. If the memory is mapped in multiple address
maps, an address map needs to be specified.

15.6.6.2 get_frontdoor

uvm reg_frontdoor* get_frontdoor(const uvmreg_map* map = NULL) const;

The member function get_frontdoor shall return the user-defined frontdoor for this memory.

If the member function returns NULL, no user-defined frontdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_mem::set_frontdoor.

If the memory is mapped in multiple address maps, an address map needs to be specified.
15.6.7 Backdoor
NOTE—Backdoor accessis not yet available in UVM-SystemC.

15.6.7.1 set_backdoor

voi d set_backdoor (uvmreg_backdoor* bkdr,
const std::string& fname = ""
int lineno = 0);

The member function set_backdoor shall specify a user-defined backdoor for this memory.

By default, memories are accessed viathe built-in string-based DPI routinesif an HDL path has been specified
using the member function uvm_mem::configure or uvm_mem::add_hdI_path.

If this default mechanism is not suitable (e.g. because the memory is not implemented in HDL), auser-defined
access mechanism needs to be defined and associated with the corresponding memory abstraction class.

15.6.7.2 get_backdoor

uvm r eg_backdoor * get _backdoor (bool inherited = true) const;

The member function get_backdoor shall return the user-defined backdoor for this memory.

If the member function returns NULL, no user-defined backdoor has been defined. A user-defined frontdoor
is defined by using the member function uvm_mem::set_backdoor.

If no argument is specified or the argument inherited is set to true, the member function returns the backdoor
of the parent block if none have been specified for this memory.

15.6.7.3 clear_hdl_path

voi d cl ear_hdl _path(const std::string& kind = "RTL");

259

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Themember functionclear _hdl_path shall removeany previously specified HDL path to the memory instance
for the specified design abstraction.

15.6.7.4 add_hdl_path

voi d add_hdl _path(std::vector<uvm hdl _path_slice> slices,
const std::string& kind = "RTL");

Themember functionadd_hdl_path shall add the specified HDL path to the memory instance for the specified
design abstraction. This member function may be called more than once for the same design abstraction if the
memory is physically duplicated in the design abstraction.

15.6.7.5 add_hdl_path_slice

voi d add_hdl _path_slice(const std::string& nane,
int offset,
int size,
bool first = false,
const std::string& kind = "RTL");

The member function add_hdl_path_slice shall append the specified HDL dlice to the HDL path of the
memory instancefor the specified design abstraction. If theargument first isset totrue, it startsthe specification
of aduplicate HDL implementation of the memory.

15.6.7.6 has_hdl_path

bool has_hdl _path(const std::string& kind = "") const;

The member function has_hdl_path shall return true if the memory instance has a HDL path defined for the
specified design abstraction. If no design abstraction is specified, it shall use the default design abstraction
specified for the parent block.

15.6.7.7 get_hdl_path

voi d get _hdl _path(std::vector<uvm hdl _pat h_concat >& pat hs,
const std::string& kind = "") const;

The member function get_hdl_path shall return the HDL path(s) defined for the specified design abstraction
in the memory instance. It returns only the component of the HDL paths that corresponds to the memory,
not afull hierarchical path. If no design abstraction is specified, the default design abstraction for the parent
block is used.

15.6.7.8 get_full_hdl_path

voi d get _full _hdl _path(std::vector<uvm hdl _path_concat>& pat hs,
const std::string& kind = "",
const std::string& separator = ".") const;

Themember functionget_full_hdl_path shall returnthefull hierarchical HDL path(s) defined for the specified
design abstraction in the memory instance. There may be more than one path returned even if only one path
was defined for the memory instance, if any of the parent components have more than one path defined for the
same design abstraction. If no design abstraction is specified, the default design abstraction for each ancestor
block is used to get each incremental path.

260

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.6.7.9 get_hdl_path_kinds
voi d get _hdl _path_kinds(std::vector<std::string>& kinds) const;

The member function get_hdl_path_kinds shall return the design abstractions for which HDL paths have
been defined.

15.6.7.10 backdoor_read

protected: virtual void backdoor_read(uvmreg_iten¥ rw);

The member function backdoor _read shall offer user-defined backdoor read access. The member function
overrides the default string-based DPI backdoor access read for this memory type.

15.6.7.11 backdoor_write

virtual void backdoor_wite(uvmreg_itent rw);

The member function backdoor _write shall offer user-defined backdoor write access. The member function
overrides the default string-based DPI backdoor access write for this memory type.

15.6.8 Callbacks

15.6.8.1 pre_write

virtual void pre_wite(uvmreg_itent rw);

The member function pre_write shall be called before memory write.

If the offset, value, access path or address map are modified, the updated offset, data value, access path or
address map shall be used to perform the memory operation. If the status is modified to anything other than
UVM _IS OK, the operation is aborted.

The registered callback member functions are invoked after the invocation of this member function.
15.6.8.2 post_write

virtual void post_wite(uvmreg_iten¥ rw);

The member function post_write shall be called after register write.
If the statusis modified, the updated status shall be returned by the memory operation.
The registered callback member functions are invoked before the invocation of this member function.

15.6.8.3 pre_read

virtual void pre_read(uvmreg_itent rw);

The member function pre_read shall be called before register read.

261

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If the offset, access path or address map are modified, the updated offset, access path or address map shall
be used to perform the memory operation. If the status is modified to anything other than UVM_IS OK, the
operation is aborted.

The registered callback member functions are invoked after the invocation of this member function.

15.6.8.4 post_read

virtual void post_read(uvmreg_itenf rw);

The member function post_read shall be called after memory read.

If the specified readback data or status is modified, the updated readback data or status shall be returned by
the memory operation.

The registered callback member functions are invoked before the invocation of this member function.
15.6.9 Coverage

NOTE—Functional coverageis not yet available in UVM-SystemC.

15.6.9.1 build_coverage

protected: uvmreg_cvr_t buil d_coverage(uvmreg_cvr_t nodels);

The member function build_coverage shall check which of the specified coverage model need to be built in
thisinstance of the memory abstraction class, as specified by callstouvm_reg::include_coverage. modelsare
specified by adding the symbolic value of individual coverage model as defined in uvm_coverage model_e.
The member function returns the sum of all coverage models to be built in the memory model.

15.6.9.2 add_coverage

protected: virtual void add_coverage(uvmreg_cvr_t nodels);

The member function add_coverage shall specify that additional coverage models are available. Add the
specified coverage model to the coverage models available in this class. models are specified by adding the
symbolic value of individual coverage model as defined in uvm_coverage model_e. This member function
shall be called only in the constructor of subsequently derived classes.

15.6.9.3 has_coverage
virtual bool has_coverage(uvmreg_cvr_t nodels) const;

The member function has_coverage shall return true if the memory abstraction class contains a coverage
model for all of the models specified. models are specified by adding the symbolic value of individual coverage
model as defined in uvm_coverage model_e.

15.6.9.4 set_coverage

virtual uvmreg_cvr_t set_coverage(uvmreg_cvr_t is_on);

262

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function set_coverage shall specify the collection of functional coverage measurements for
this memory. The functional coverage measurement is turned on for every coverage model specified using
uvm_coverage model_e symbolic identifiers. Multiple functional coverage models can be specified by
adding the functional coverage model identifiers. All other functional coverage models are turned off. The
member function returns the sum of all functional coverage models whose measurements were previously on.

This member function can only control the measurement of functional coverage modelsthat are present in the
memory abstraction classes, then enabled during construction. See Section 15.6.9.3 to identify the available
functional coverage models.

15.6.9.5 get_coverage
virtual bool get_coverage(uvmreg cvr_t is_on) const;

The member function get_coverage shall returns true if measurement for al of the specified functiona
coverage models are currently on. Multiple functional coverage models can be specified by adding the
functional coverage model identifiers.

See Section 15.6.9.4 for more details.

15.6.9.6 sample

protected: virtual void sanple(uvmreg_addr_t offset,
bool is_read,
uvmreg_map* nmap);

The member function sample shall specify the functional coverage measurement method.

This member function is invoked by the memory abstraction class whenever an address within one of its
addressmap issuccessfully read or written. The specified offset isthe offset within the memory, not an absolute
address. The member function may be extended by the abstraction class generator to perform the required
sampling in any provided functional coverage model.

15.7 uvm_reg_indirect_data
The classuvm_reg_indirect_data defines the abstraction class for indirect data access.

The class shall model the behavior of aregister used to indirectly access aregister array, indexed by a second
address register. This class shall not be instantiated directly. A type-specific class extension shall be used to
provide afactory-enabled constructor and specify the n_bits and coverage models.

15.7.1 Class definition

namespace uvm {

class uvmreg_indirect_data : public uvmreg

{
public:

uvmreg_indirect_data(const std::string& nane,
unsigned int n_bits,
int has_cover);

voi d configure(uvmreg* idx,
std::vector<uvmreg*> reg_a,
uvm reg_bl ock* bl k_parent,
uvmreg_file* regfile_parent = NULL);

263
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

}; /1 class uvmreg_indirect_data

} /1 namespace uvm

15.7.2 Constructor

uvmreg_indirect_data(const std::string& nane,
unsigned int n_bits,
int has_cover);

The constructor shall create an instance of this class. The argument n_bits shall match the number of bitsin
the indirect register array.

15.7.3 Member functions

15.7.3.1 configure

voi d configure(uvmreg* idx,
std::vector<uvmreg*> reg_a,
uvm reg_bl ock* bl k_parent,
uvmreg_file* regfile_parent = NULL);

The member function configure shall configure the indirect data register. The argument idx register specifies
theindex, inthereg_aregister array, of the register to access. Theidx needsto be written first. A read or write
operation to thisregister shall subsequently read or write the indexed register in the register array. The number
of bitsin each register in the register array shall be equal to the number of bits of this register.

15.8 uvm_reg_fifo

Theclassuvm_reg_fifo definesaspecial register to model aDUT FIFO accessed viawrite/read, where writes
push to the FIFO and reads pop from it. Backdoor access is not enabled, as it is not yet possible to force
complete FIFO state, i.e. the write and read indexes used to access the FIFO data.

15.8.1 Class definition

namespace uvm {

class uvmreg_fifo : public uvmreg

{
public:

/1 Constructor

uvmreg_fifo(const std::string& nane,
unsigned int size,
unsigned int n_bits,
int has_cover);

/1 Goup: Initialization
voi d set_conpare(uvmcheck_e check = UYM CHECK);
/1 Group: Introspection

unsigned int size();
unsigned int capacity();

/'l Group: Access

virtual void wite(uvmstatus_e& status,
uvmreg_data_t val ue,
uvm pat h_e path = UVM DEFAULT_PATH,

264

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm reg_nap* map = NULL,

uvm sequence_base* parent = NULL,
int prior = -1,

uvm obj ect* extension = NULL,
const std::string& fnane = "",
int lineno = 0);

virtual void read(uvmstatus_e& status,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void set(uvmreg_data_t value,
const std::string& fnane = "",
int lineno = 0);

virtual void update(uvm status_e& status,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void mirror(uvmstatus_e& status,
uvm check_e check = UVM NO_CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual uvmreg_data_t get(const std::string& fname = "",
int lineno = 0) const;

virtual void do_predict(uvmreg_itent rw,
uvm predi ct _e kind = UVM PREDI CT_DI RECT,
uvmreg_byte_en_t be = -1);

/'l Group: Special overrides

virtual void pre_wite(uvmreg_itenft rw);
virtual void pre_read(uvmreg_itent rw);

/1 Data nenbers
std::vector<uvmreg_data_t> fifo;
}; Il class uvmreg_fifo

} /1 namespace uvm

15.8.2 Constructor

uvmreg_fifo(const std::string& nane,
unsigned int size,
unsigned int n_bits,
int has_cover);

The constructor shall create an instance of a FIFO register with the specified name, having size elements of
n_bits each.

265
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.8.3 Initialization

15.8.3.1 set_compare
voi d set_conpare(uvm check_e check = UYM CHECK);

The member function set_compar e shall specify the comparison policy during a mirror (read) of the DUT
FIFO. The DUT read value is checked against its mirror only when both the check argument in the mirror
call and the comparison policy for thefieldisUVM_CHECK.

15.8.4 Introspection

15.8.4.1 size

unsi gned int size();

The member function size shall return the number of entries currently in the FIFO.
15.8.4.2 capacity

unsigned int capacity();

The member function capacity shall return the maximum number of entries, or depth, of the FIFO.
15.8.5 Access

15.8.5.1 write

virtual void wite(uvm status_e& status,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnane = ""
int lineno = 0);

The member function write shall write the given value to the DUT FIFO. If auto-prediction is enabled, the
written value is also pushed to the abstract FIFO before the call returns. If auto-prediction is not enabled (via
uvm_reg_map::set_auto_predict), the value is pushed to abstract FIFO only when the write operation is
observed on thetarget bus. This mode requiresusing theuvm_reg_predictor class. If thewriteisviaan update
operation, the abstract FIFO aready contains the written value and is thus not affected by either prediction
mode.

15.8.5.2 read

virtual void read(uvmstatus_e& status,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

266

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function read shall reads and return the next value out of the DUT FIFO. If auto-prediction is
enabled, the frontmost value in abstract FIFO is popped.

15.8.5.3 set

virtual void set(uvmreg data_t val ue,
const std::string& fname = ""
int lineno = 0);

The member function set shall write the given valueto the abstract FIFO. An application may call this member
function several times before an update as a means of preloading the DUT FIFO. Callsto set to afull FIFO
areignored. An application should call update to update the DUT FIFO with the set values.

15.8.5.4 update

virtual void update(uvm status_e& status,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

The member function update shall write all values preloaded using the member function set to the DUT. An
application should call update after set before any blocking statements, else other reads/writes to the DUT
FIFO may cause the mirror to become out of sync with the DUT.

15.8.5.5 mirror

virtual void mrror(uvmstatus_e& status,
uvm check_e check = UVM NO_CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function mirror shall read the next value out of the DUT FIFO. If auto-prediction is enabled,
the frontmost value in abstract FIFO is popped. If the check argument is set and comparison is enabled with
set_compare.

15.8.5.6 get

virtual uvmreg_data_t get(const std::string& fname = ""
int lineno = 0) const;

The member function get shall return the next value from the abstract FIFO, but does not pop it. It is used to
get the expected valuein amirror operation.

15.8.5.7 do_predict

virtual void do_predict(uvmreg_itent rw,
uvm predi ct _e kind = UVM PREDI CT_DI RECT,
uvmreg_byte_en_t be = -1);

267
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function do_predict shall update the abstract (mirror) FIFO based on write and read operations.
When autoprediction is on, this member function is called before each read, write, peek, or poke operation
returns. When auto-prediction is off, this member function is called by a uvm_reg_predictor upon receipt
and conversion of an observed bus operation to this register.

If awrite prediction, the observed write value is pushed to the abstract FIFO as long as it is not full and the
operation did not originate from an update. If aread prediction, the observed read value is compared with the
frontmost value in the abstract FIFO if set_compar e enabled comparison and the FIFO is not empty.

15.8.6 Special overrides

15.8.6.1 pre_write
virtual void pre_wite(uvmreg_itent rw);

The member function pre_write shall be called before a FIFO write or update.

Itisan error to attempt awrite to afull FIFO or awrite while an update is still pending. An update is pending
after one or more callsto set. If an application allows the DUT to write to afull FIFO, the application should
override pre_write as appropriate.

15.8.6.2 pre_read
virtual void pre_read(uvmreg_itent rw);

The member function pre_read shall be called before register read or update.

It aborts the operation if the internal FIFO is empty. If in an application the DUT does not behave this way,
the application should override pre_read as appropriate.

15.8.7 Data members

15.8.7.1 fifo

std::vector<uvmreg_data_t> fifo;

The data memberfifo shall define the abstract representation of the FIFO, with the constrained to be no larger
than the size parameter. This data member is public to enable subtypesto add constraints on it and randomize.

15.9 uvm_vreg

The classuvm_vreg shall definethe virtual register abstraction base class. A virtual register represents a set of
fieldsthat are logically implemented in consecutive memory locations. All virtual register accesses eventually
turn into memory accesses. A virtua register array may be implemented on top of any memory abstraction
class and possibly dynamically resized and/or relocated.

15.9.1 Class definition

namespace uvm {

class uvmyvreg : public uvm object

{
public:

268

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

/1 Constructor
explicit uvmvreg(const std::string& name, unsigned int n_bits);

/1 Group: Initialization

voi d configure(uvmreg_bl ock* parent,
uvm nent mem = NULL,

unsigned long size =0,
uvmreg_addr_t offset = 0,
unsi gned int incr =0);

virtual bool inplenment(unsigned |long n,
uvm nent mem = NULL,
uvmreg_addr_t offset = 0,
unsigned int incr = 0);

virtual uvm nmemregion* allocate(unsigned |ong n,
uvm mem mant mam) ;

virtual uvm nmemregi on* get_region() const;
virtual void release_region();

/1 Group: Introspection

virtual const std::string get_name() const;

virtual const std::string get_full_name() const;

virtual uvmreg_bl ock* get_parent() const;

virtual uvmnent get_nenory() const;

virtual int get_n_maps() const;

bool is_in_map(uvmreg_nmap* map) const;

virtual void get_maps(std::vector<uvmreg_map*>& maps) const;

virtual std::string get_rights(uvmreg_nmap* map NULL) const;
virtual std::string get_access(uvmreg_nap* map NULL) const;
virtual unsigned int get_size() const;

virtual unsigned int get_n_bytes() const;

virtual unsigned int get_n_menl ocs() const;

virtual unsigned int get_incr() const;

virtual void get_fields(std::vector<uvmuvreg_field*>& fields) const;
virtual uvmuvreg_field* get_field_by_name(const std::string& nane) const;
virtual uvmreg_addr_t get_offset_in_nmenory(unsigned long idx) const;

virtual uvmreg_addr_t get_address(unsigned |ong idx,
const uvmreg_map* nap = NULL) const;

I/ Group: HDL Access

virtual void wite(unsigned |ong idx,
uvm st at us_e& stat us,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fnanme = ""
int lineno = 0);

virtual void read(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* nmap = NULL,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void poke(unsigned |ong idx,
uvm st at us_e& stat us,
uvmreg_data_t val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = ""
int lineno =0);

virtual void peek(unsigned |ong idx,
uvm st at us_e& st at us,

269
Copyright © 2023 Accellera Systems Initiative. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvmreg_data_t & val ue,

uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

voi d reset(const std::string& kind = "HARD");
/'l Group: Callbacks

virtual void pre_wite(unsigned |ong idx,
uvmreg_data_t & wdat,
uvm pat h_e& path,
uvmreg_map*& mep);

virtual void post_wite(unsigned |ong idx,
uvmreg_data_t wdat,
uvm pat h_e path,
uvm reg_nep* nap,
uvm st at us_e& status);

virtual void pre_read(unsigned |ong idx,
uvm pat h_e& path,
uvmreg_nap*& nmap);

virtual void post_read(unsigned |ong idx,
uvmreg_data_t & rdat,
uvm path_e path,
uvm reg_nap* map,
uvm st at us_e& status);

}; Il class uvmyvreg

} /1 namespace uvm

15.9.2 Constructor
explicit uvmyvreg(const std::string& name, unsigned int n_bits);

The constructor shall reate an instance of a virtual register abstraction class with the specified name. The
argument n_hits specifies the total number of bitsin a virtual register. Not all bits need to be mapped to a
virtua field. Thisvalue isusually amultiple of 8.

15.9.3 Initialization

15.9.3.1 configure

voi d configure(uvmreg_bl ock* parent,
uvm nment mem = NULL,
unsi gned | ong si ze =0,
uvmreg_addr_t offset = 0,
unsigned int incr = 0);

The member function configur e shall specify the parent block of this virtual register array. If one of the other
parameters are specified, the virtual register is assumed to be dynamic and can belater (re-)implemented using
the member function uvm_vreg::implement. If argument mem is specified, then the virtual register array is
assumed to be statically implemented in the memory corresponding to the specified memory abstraction class
and size, offset and incr also needs to be specified. Static virtual register arrays cannot be reimplemented.

15.9.3.2 implement

virtual bool inplenent(unsigned |long n,
uvm nent mem = NULL,
uvmreg_addr_t offset = 0,
unsigned int incr = 0);

270

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function implement shall implement an array of virtual registers of the specified size, in the
specified memory and offset. If an offset increment is specified, each virtual register is implemented at the
specified offset increment from the previous one. If an offset increment of 0 is specified, virtual registers are
packed as closely as possible in the memory.

If no memory is specified, the virtual register array is in the same memory, at the same base offset using the
same offset increment as originaly implemented. Only the number of virtual registers in the virtual register
array is modified.

Theinitial value of the newly-implemented or relocated set of virtual registersiswhatever values are currently
stored in the memory now implementing them.

The member function shall return true if the memory can implement the number of virtual registers at the
specified base offset and offset increment. Returns FAL SE otherwise.

The memory region used to implement a virtual register array is reserved in the memory allocation manager
associated with the memory to prevent it from being allocated for another purpose.

15.9.3.3 allocate

virtual uvm.nemregion* allocate(unsigned |ong n,
uvm mem mant mam) ;

The member function allocate shall implement a virtual register array of the specified size in a
randomly allocated region of the appropriate size in the address space managed by the specified memory
allocation manager. If a memory alocation policy is specified, it is passed to the member function
uvm_mem_mam::request_region.

Theinitial value of the newly-implemented or relocated set of virtual registersiswhatever valuesare currently
stored in the memory region now implementing them.

The meber function shall return areference to auvm_mem_region memory region descriptor if the memory
allocation manager was able to allocate aregion that can implement the virtual register array with the specified
allocation policy. Otherwiseit shall returns NULL.

A region implementing a virtual register array shall not be released using the member
function uvm_mem_mam::release region. It shal be released using the member function
uvm_vreg::release region.

15.9.3.4 get_region
virtual uvm nmemregi on* get_region() const;

The member function get_region shall return areference to the uvm_mem_region memory region descriptor
that implements the virtual register array. The member function shall return NULL if the virtual registers
array is not currently implemented. A region implementing avirtual register array shall not be released using
the member function uvm_mem_mam::release region, but shall be released using the member function
uvm_vreg::release region.

15.9.3.5 release_region

virtual void rel ease_region();

271

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Themember functionr elease region shall releasethe memory region used toimplement avirtual register array
andreturn it to the pool of available memory that can be alocated by the memory’ s default all ocation manager.
The virtua register array is subsequently considered as unimplemented and can no longer be accessed.
Statically-implemented virtual registers cannot be released.

15.9.4 Introspection

15.9.4.1 get_name

virtual const std::string get_nane() const;

The member function get_name shall return the simple object name of this register.

15.9.4.2 get_full_name
virtual const std::string get_full_name() const;

The member function get_full name shall return the hierarchal name of this register. The base of the
hierarchical name isthe root block.

15.9.4.3 get_parent

virtual uvmreg_bl ock* get_parent() const;

The member function get_parent shall return the parent block.

15.9.4.4 get_memory

virtual uvmment get_menory() const;

The member function get_memory shall return the memory where the virtual register array isimplemented.
15.9.4.5 get_n_maps

virtual int get_n_maps() const;

Themember functionget_n_maps shall return the number of address mapsthisvirtual register array ismapped
in.

15.9.4.6 is_in_map
bool is_in_map(uvmreg_map* map) const;

The member function is_in_map shall return trueif this virtual register array isin the specified address map,
otherwise return false.

15.9.4.7 get_maps

virtual void get_maps(std::vector<uvmreg_nmap*>& nmaps) const;

272

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_mapsshall return all of the address mapswherethisvirtual register array is mapped.

15.9.4.8 get_rights
virtual std::string get_rights(uvmreg_map* map = NULL) const;

The member function get_rights shall return the accessibility (“RW, “RQ", or “WQ") of this virtual register
array.

The accessrights of avirtual register array isalways“RW”, unlessit isimplemented in a shared memory with
access restriction in a particular address map. If no address map is specified and the memory is mapped in
only one address map, that address map is used. If the memory is mapped in more than one address map, the
default address map of the parent block is used. If an address map is specified and the memory is not mapped
in the specified address map, an error message isissued and “RW” is returned.

15.9.4.9 get_access

virtual std::string get_access(const uvmreg_nmap* map = NULL) const;

The member function get_access shall return the access policy of the virtual register array when written and
read via an address map.

If the memory implementing the virtual register array is mapped in more than one address map, an address
map needs to be specified. If access restrictions are present when accessing a memory through the specified
address map, the access mode returned takes the access restrictions into account. For example, a read-write
memory accessed through a domain with read-only restrictions would return “RO”.

15.9.4.10 get_size

unsigned int get_size() const;

The member function get_size shall return the size of the virtual register array.

15.9.4.11 get_n_bytes

unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the width, in bytes, of avirtual register.

Thewidth of avirtua register is always a multiple of the width of the memory locations used to implement it.
For example, a virtual register containing two 1-byte fields implemented in a memory with 4-bytes memory
locations is 4-byte wide.

15.9.4.12 get_n_memlocs

virtual unsigned int get_n_nmenl ocs() const;

The member function get_n_memlocs shall return the number of memory locations used by a single virtua
register.

273
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.9.4.13 get_incr

virtual unsigned int get_incr() const;

The member function get_incr shall return the number of memory locations between two individual virtual
registersin the same array.

15.9.4.14 get_fields

virtual void get_fields(std::vector<uvmuvreg_field*>& fields) const;

The member function get_fields shall return the virtual fields in this virtual register. Fields are ordered from
least-significant position to most-significant position within the register.

15.9.4.15 get_field_by name

virtual uvmyvreg_field* get_field_by_name(const std::string& name) const;

The member function get_field_by name shall return the named virtual field in this virtual register. The
member function shall find a virtual field with the specified name in this register and returns its abstraction
class. If no fields are found, it returns NULL.

15.9.4.16 get_offset_in_memory

virtual uvmreg_addr_t get_offset_in_nenory(unsigned long idx) const;

The member function get_offset_in_memory shall return the base offset of the specified virtua register, in
the overall address space of the memory that implements the virtual register array.

15.9.4.17 get_address

virtual uvmreg_addr_t get_address(unsigned |ong idx,
const uvmreg_map* nmap = NULL) const;

The member function get_address shall return the base external physical address of the specified virtual
register if accessed through the specified address map.

If no address map is specified and the memory implementing the virtual register array is mapped in only one
address map, that address map is used. If the memory is mapped in more than one address map, the default
address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address map, an error message
isissued.

15.9.5 HDL access

15.9.5.1 write

virtual void wite(unsigned |ong idx,
uvm status_e& status,
uvmreg_data_t val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvmreg_map* map = NULL,
uvm sequence_base* parent = NULL,

274

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm obj ect* extension = NULL,
const std::string& fnane = "",
int lineno = 0);

The member function write shall write the specified value in the DUT memory location(s) that implements
the virtual register array that corresponds to this abstraction class instance using the specified access path.

If the memory implementing the virtual register array is mapped in more than one address map, an address
map shall be specified if aphysical accessis used (front-door access).

The operation is eventually mapped into set of memory-write operations at the location where the virtua
register specified by idx in the virtual register array isimplemented.

15.9.5.2 read

virtual void read(unsigned |ong idx,
uvm st at us_e& st at us,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function read shall read from the DUT memory location(s) that implements the virtual register
array that corresponds to this abstraction classinstance using the specified access path and return the readback
value.

If the memory implementing the virtual register array is mapped in more than one address map, an address
map shall be specified if aphysical accessisused (front-door access).

Theoperationiseventually mapped into set of memory-read operationsat thelocation wherethevirtual register
specified by idx in the virtual register array isimplemented.

15.9.5.3 poke

virtual void poke(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t val ue,
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function poke shall deposit the specified value in the DUT memory location(s) that implements
thevirtual register array that correspondsto this abstraction class instance using the memory backdoor access.

The operation is eventually mapped into set of memory-poke operations at the location where the virtual
register specified by idx in the virtual register array isimplemented.

15.9.5.4 peek

virtual void peek(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t & val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",

275

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

int lineno =0);

The member function peek shall sample the current value in avirtual register.

It samples the DUT memory location(s) that implements the virtual register array that corresponds to this
abstraction class instance using the memory backdoor access, and return the sampled value. The operation is
eventually mapped into set of memory-peek operations at the location where the virtual register specified by
idx in the virtual register array isimplemented.

15.9.5.5 reset
void reset(const std::string& kind = "HARD");

The member function reset shall reset the semaphore that prevents concurrent access to the virtual register.
This semaphore shall be explicitly reset if athread accessing this virtual register array was killed in before
the access was completed

15.9.6 Callbacks

15.9.6.1 pre_write

virtual void pre_wite(unsigned |ong idx,
uvmreg_data_t & wdat,
uvm pat h_e& pat h,
uvmreg_nmap*& map);

The member function pre_write shall be called before virtual register write.

If the specified data value, access path or address map are modified, the updated data value, access path or
addressmap shall be used to perform thevirtual register operation. Theregistered callback methodsareinvoked
after the invocation of this member function. All register callbacks are executed after the corresponding field
callbacks The pre-write virtual register and field callbacks are executed before the corresponding pre-write
memory callbacks.

15.9.6.2 post_write

virtual void post_wite(unsigned |ong idx,
uvmreg_data_t wdat,
uvm pat h_e path,
uvm reg_nep* nap,
uvm st at us_e& status);

The member function post_write shall be called after virtual register write.

If the specified status is modified, the updated status shall be returned by the virtual register operation. The
registered callback methods are invoked before the invocation of this member function. All register callbacks
are executed before the corresponding field callbacks The post-write virtual register and field callbacks are
executed after the corresponding post-write memory callbacks.

15.9.6.3 pre_read

virtual void pre_read(unsigned |long idx,
uvm pat h_e& path,
uvmreg_nmap*& map);

276

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function pre_read shall be called before virtual register read.

If the specified access path or address map are modified, the updated access path or address map shall be
used to perform the register operation. The registered callback methods are invoked after the invocation of
this member function. All register callbacks are executed after the corresponding field callbacks The pre-read
virtual register and field callbacks are executed before the corresponding pre-read memory callbacks.

15.9.6.4 post_read

virtual void post_read(unsigned |ong idx,
uvmreg_data_t & rdat,
uvm pat h_e path,
uvm reg_nap* map,
uvm st at us_e& status);

The member function post_read shall be called after virtual register read.

If the specified readback data or statusis modified, the updated readback data or status shall be returned by the
register operation. The registered callback methods areinvoked before the invocation of this member function.
All register callbacks are executed before the corresponding field callbacks The post-read virtual register and
field callbacks are executed after the corresponding post-read memory callbacks.

15.10 uvm_vreg_chbs
The classuvm_vreg_cbs shall define virtual register facade class.
15.10.1 Member functions

15.10.1.1 pre_write

virtual void pre_wite(uvmyvreg* rg,
unsi gned | ong i dx,
uvm reg_data_t & wdat,
uvm pat h_e& path,
uvmreg_map*& map);

The member function pre_write shall be called before virtual register write.

The registered callback methods are invoked after the invocation of the member function
uvm_vreg::pre write. All virtual register callbacks are executed after the corresponding virtual field
callbacks The pre-write virtual register and field callbacks are executed before the corresponding pre-write
memory callbacks.

The written value wdat, access path and address map, if modified, modifies the actual value, access path or
address map used in the virtual register operation.

15.10.1.2 post_write

virtual void post_wite(uvmvreg* rg,
unsi gned | ong i dx,
uvm reg_data_t wdat,
uvm pat h_e path,
uvm reg_nmap* nap,
uvm st atus_e& status);

The member function post_write shall be called after virtual register write.

277

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The registered callback methods are invoked before the invocation of the member function
uvm_reg::post_write. All register callbacks are executed before the corresponding virtual field callbacks
The post-write virtual register and field callbacks are executed after the corresponding post-write memory
callbacks.

The status of the operation, if modified, modifies the actual returned status.

15.10.1.3 pre_read

virtual void pre_read(uvmvreg* rg,
unsi gned | ong i dx,
uvm pat h_e& pat h,
uvmreg_nmap*& map);

The member function pre_read shall be called before virtual register read.

Theregistered callback methods are invoked after theinvocation of the member functionuvm_reg::pre read.
All register callbacks are executed after the corresponding virtual field callbacks The pre-read virtual register
and field callbacks are executed before the corresponding pre-read memory callbacks.

The access path and address map, if modified, modifies the actua access path or address map used in the
register operation.

15.10.1.4 post_read

virtual void post_read(uvmvreg* rg,
unsi gned i dx,
uvmreg_data_t & rdat,
uvm pat h_e path,
uvm reg_nap* map,
uvm st at us_e& status);

The member function post_read shall be called after virtual register read.

The registered callback methods are invoked before the invocation of the member function
uvm_reg::post_read. All register callbacks are executed before the corresponding virtual field callbacks The
post-read virtual register and field callbacks are executed after the corresponding post-read memory callbacks.
The readback value rdat and the status of the operation, if modified, modifies the actual returned readback
value and status.

15.11 uvm_vreg_field

The class uvm_vreg_field shall define the virtual field abstraction class. A virtual field represents a set of
adjacent bits that are logically implemented in consecutive memory locations.

15.11.1 Class definition

nanmespace uvm {

class uvmyvreg_field : public uvm object

{

public:
/1 Constructor
explicit uvmvreg_field(const std::string& nane = "uvmuvreg_field");
278

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

/1 Group: Initialization

voi d configure(uvmyvreg* parent,
unsi gned int size,
unsigned int |sb_pos);

/'l Group: Introspection

virtual cnst std::string get_name() const;

virtual const std::string get_full_name() const;

virtual uvmvreg* get_parent() const;

virtual unsigned int get_|sb_pos_in_register() const;

virtual unsigned int get_n_bits() const;

virtual std::string get_access(uvmreg_map* map = NULL) const;

!/ Group: HDL access

virtual void wite(unsigned |ong idx,
uvm status_e& status,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
uvm obj ect * extensi on = NULL,
const std::string& fnanme = ""
int lineno = 0);

virtual void read(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* nmap = NULL,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

virtual void poke(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = ""
int lineno =0);

virtual void peek(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t & val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,

const std::string& fname = .
int lineno =0);

/1 Group: Callbacks

virtual void pre_wite(unsigned |ong idx,
uvmreg_data_t & wdat,
uvm pat h_e& path,
uvmreg_map*& nmap);

virtual void post_wite(unsigned |ong idx,
uvmreg_data_t wdat,
uvm pat h_e path,
uvm reg_nep* naep,
uvm status_e& status);

virtual void pre_read(unsigned |ong idx,
uvm pat h_e& path,
uvm reg_nap*& nap);

virtual void post_read(unsigned |ong idx,
uvmreg_data_t & rdat,
uvm path_e path,
uvm reg_nap* map,
uvm st at us_e& status);

}; Il class uvmyvreg_field

279

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

} /1 namespace uvm

15.11.2 Constructor
explicit uvmvreg_field(const std::string& name = "uvmvreg_field");

The constructor shall reate an instance of avirtual field instance with the specified name. The constructor shall
not be called directly. An application shall usetheuvm_vreg_field::type id::create member function instead.

15.11.3 Initialization

15.11.3.1 configure

voi d configure(uvmyvreg* parent,
unsi gned int size,
unsigned int |sb_pos);

The member function configure shall specify the parent virtual register of this virtual field, its size in bits,
and the position of its least-significant bit Isb_pos within the virtual register relative to the least-significant
bit of the virtual register.

15.11.4 Introspection

15.11.4.1 get_name

virtual const std::string get_name() const;
The member function get_name shall return the simple object name of this this virtual field.
15.11.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the hierarchal name of this virtual field. The base of the
hierarchical nameis the root block.

15.11.4.3 get_parent

virtual uvmreg_bl ock* get_parent() const;

The member function get_parent shall return the parent virtual register.
15.11.4.4 get_Isb_pos_in_register

virtual unsigned int get_lsh_pos_in_register() const;

The member function get_Isb_pos in_register shall return the index of the least significant bit of the virtual
field in the virtual register that instantiates it. An offset of 0 indicates a field that is aligned with the least-
significant bit of the register.

280

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.11.4.5 get_n_bits

virtual unsigned int get_n_bits() const;

The member function get_n_bits shall return the width, in bits, of the virtual field.
15.11.4.6 get_access

virtual std::string get_access(const uvmreg_nmap* map = NULL) const;

The member function get_access shall return the access policy of the virtual field register when written and
read via an address map.

If the memory implementing the virtual field is mapped in more than one address map, an address map shall be
specified. If access restrictions are present when accessing a memory through the specified address map, the
access mode returned takes the access restrictions into account. For example, a read-write memory accessed
through an address map with read-only restrictions would return “RO”.

15.11.5 HDL access

15.11.5.1 write

virtual void wite(unsigned |ong idx,
uvm status_e& status,
uvmreg_data_t val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvmreg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function write shall write the specified value in the DUT memory location(s) that implements
the virtual field that corresponds to this abstraction class instance using the specified access path.

If the memory implementing the virtual register array containing thisvirtual field is mapped in more than one
address map, an address map shall be specified if a physical accessis used (front-door access).

Theoperationiseventually mapped into memory read-modify-write operations at the location wherethevirtual
register specified by idx in the virtual register array isimplemented. If a backdoor is available for the memory
implementing the virtual field, it shall be used for the memory-read operation.

15.11.5.2 read

virtual void read(unsigned |ong idx,
uvm st at us_e& st at us,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function read shall read from the DUT memory location(s) that implementsthe virtual field that
corresponds to this abstraction class instance using the specified access path, and return the readback value.

281
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

If the memory implementing the virtual register array containing thisvirtual field is mapped in more than one
address map, an address map shall be specified if a physical accessis used (front-door access).

The operation is eventually mapped into memory read operations at the location(s) where the virtual register
specified by idx in the virtual register array isimplemented.

15.11.5.3 poke

virtual void poke(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t val ue,
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = ""
int lineno = 0);

The member function poke shall deposit the specified value in the DUT memory location(s) that implements
the virtual field that corresponds to this abstraction class instance using the specified access path.

Theoperationiseventually mapped into memory peek-modify-poke operationsat thelocation wherethevirtual
register specified by idx in the virtual register array isimplemented.

15.11.5.4 peek

virtual void peek(unsigned |ong idx,
uvm st at us_e& st at us,
uvmreg_data_t & val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

The member function peek shall sample from the DUT memory location(s) that implements the virtual field
that correspondsto thisabstraction classinstance using the specified access path, and return the readback value.

If the memory implementing the virtual register array containing thisvirtual field is mapped in more than one
address map, an address map shall be specified if aphysical accessis used (front-door access).

The operation is eventually mapped into memory peek operations at the location(s) where the virtual register
specified by idx in the virtual register array isimplemented.

15.11.6 Callbacks

15.11.6.1 pre_write

virtual void pre_wite(unsigned |ong idx,
uvm reg_data_t & wdat,
uvm pat h_e& path,
uvm reg_map*& map);

The member function pre_write shall be called before virtual field write.

If the specified data value, access path or address map are modified, the updated data value, access path or
address map shall be used to perform the virtual register operation.

The virtual field callback member functions are invoked before the callback member functions on the
containing virtual register. The registered callback member functions are invoked after the invocation of this

282
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

member function. The pre-write virtual register and field callbacks are executed before the corresponding pre-
write memory callbacks.

15.11.6.2 post_write

virtual void post_wite(unsigned |ong idx,
uvm reg_data_t wdat,
uvm pat h_e path,
uvm reg_nmap* nap,
uvm status_e& status);

The member function post_write shall be called after virtual field write.
If the specified statusis modified, the updated status shall be returned by the virtual register operation.

Thevirtual field callback member functions are invoked after the callback member functions on the containing
virtual register. The registered callback member functions are invoked before the invocation of this member
function. The post-write virtual register and field callbacks are executed after the corresponding post-write
memory callbacks.

15.11.6.3 pre_read

virtual void pre_read(unsigned |ong idx,
uvm pat h_e& path,
uvm reg_nap*& nap);

The member function pre_read shall be called before virtual field read.

If the specified access path or address map are modified, the updated access path or address map shall be used
to perform the virtual register operation.

Thevirtual field callback member functions areinvoked after the callback member functions on the containing
virtual register. The registered callback member functions are invoked after the invocation of this member
function. The pre-read virtua register and field callbacks are executed before the corresponding pre-read
memory callbacks

15.11.6.4 post_read

virtual void post_read(unsigned |ong idx,
uvmreg_data_t & rdat,
uvm pat h_e path,
uvm reg_map* map,
uvm stat us_e& status);

The member function post_read shall be called after virtual register read.

If the specified readback datardat or status is modified, the updated readback data or status shall be returned
by the virtual register operation.

Thevirtual field callback member functions are invoked after the callback member functions on the containing
virtual register. The registered callback member functions are invoked before the invocation of this member
function. The post-read virtual register and field callbacks are executed after the corresponding post-read
memory callbacks.

283

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.12 uvm_vreg_field_cbs
The classuvm_vreg_field_cbs shall define virtual fields facade class.

15.12.1 Class definition

nanmespace uvm {

class uvmyvreg_field_cbs : public uvmcallback
{
public:
virtual void pre_wite(uvmvreg_field* field,
unsi gned | ong i dx,
uvmreg_data_t & wdat,
uvm pat h_e& pat h,
uvmreg_nmap*& map);

virtual void post_wite(uvmvreg_field* field,
unsi gned | ong i dx,
uvm reg_data_t wdat,
uvm pat h_e path,
uvm reg_nmap* nap,
uvm st atus_e& status);

virtual void pre_read(uvmuvreg_field* field,
unsi gned | ong i dx,
uvm pat h_e& path,
uvmreg_nmap*& map);

virtual void post_read(uvmyvreg_field* field,
unsi gned | ong i dx,
uvmreg_data_t & rdat,
uvm pat h_e path,
uvm reg_nap* map,
uvm status_e& status);

}; /1 class uvmuvreg_field_cbs

} // namespace uvm

15.12.2 Member functions

15.12.2.1 pre_write

virtual void pre_wite(uvmvreg_field* field,
unsi gned | ong i dx,
uvmreg_data_t & wdat,
uvm pat h_e& path,
uvmreg_map*& mep);

The member function pre_write shall be called before virtual field write.

The registered callback member functions are invoked before the invocation of the virtual register pre-write
callbacks and after the invocation of the member function uvm_vreg field::pre write.

The written value wdat, access path and address map, if modified, modifies the actual value, access path or
address map used in the register operation.

15.12.2.2 post_write

virtual void post_wite(uvmvreg_field* field,
unsi gned | ong i dx,
uvm reg_data_t wdat,
uvm pat h_e path,
uvm reg_map* nmap,

284

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm status_e& status);

The member function post_write shall be called after virtual field write.

The registered callback member functions are invoked after the invocation of the virtual register post-write
callbacks and before the invocation of the member function uvm_vreg_field::post_write.

The status of the operation, if modified, modifies the actual returned status.

15.12.2.3 pre_read

virtual void pre_read(uvmvreg_field* field,
unsi gned | ong i dx,
uvm pat h_e& path,
uvmreg_nmap*& map);

The member function pre_read shall be called before virtual field read.

The registered callback member functions are invoked after the invocation of the virtua register pre-read
callbacks and after the invocation of the member function uvm_vreg field::pre_read.

The access path and address map, if modified, modifies the actual access path or address map used in the
register operation.

15.12.2.4 post_read

virtual void post_read(uvmvreg_field* field,
unsi gned | ong i dx,
uvmreg_data_t & rdat,
uvm pat h_e path,
uvm reg_nap* map,
uvm status_e& status);

The member function post_read shall be called after virtual field read.

The registered callback member functions are invoked after the invocation of the virtual register post-read
callbacks and before the invocation of the member function uvm_vreg_field::post_read.

The readback value rdat and the status of the operation, if modified, modifies the actual returned readback
value and status.

15.13 uvm_reg_cbs

The classuvm_reg_cbsshall define the facade classfor field, register, memory and backdoor access callback
member functions.

15.13.1 Class definition

namespace uvm {

class uvmreg_cbs : public uvmcall back

{
public:

virtual void pre_wite(uvmreg_itent rw);
virtual void post_wite(uvmreg_itent rw);
virtual void pre_read(uvmreg_itent rw);

285

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void post_read(uvmreg_itent rw);

virtual void post_predict(uvmreg_field* fld,
uvmreg_data_t previous,
uvmreg_data_t val ue,
uvm predict_e Kkind,
uvm pat h_e pat h,
uvm r eg_nap* mp);

virtual void encode(std::vector<uvmreg_data_t>& data);
virtual void decode(std::vector<uvmreg_data_t>& data);

}; Il class uvmreg_cbs

} /1 namespace uvm

15.13.2 Member functions

15.13.2.1 pre_write
virtual void pre_wite(uvmreg_itent rw);

The member function pre_write shall be called before awrite operation.

All registered pre_write callback member functions are invoked after the invocation of the member function
pre write of associated object (uvm_reg, uvm_reg field, uvm_mem, or uvm_reg_backdoor). If the
element being writtenisauvm_reg, all pre_write callback member functionsareinvoked before the contained
uvm_reg fields.

— Backdoor: uvm_reg_backdoor::pre write, uvm_reg_chs::pre write callbacks for backdoor.

— Register: uvm_reg::pre_write, uvm_reg_cbs::pre write calbacks for reg, then for each field:
uvm_reg field::pre write, uvm_reg_cbs::pre write callbacksfor field.

— RegField: uvm_reg_field::pre_write, uvm_reg_cbs::pre write callbacksfor field
— Memory: uvm_mem::pre _write, uvm_reg_cbs::pre write calbacks for mem.

The argument rw holds information about the operation.
— Modifying the value modifies the actual value written.
— For memories, modifying the offset modifies the offset used in the operation.

— For non-backdoor operations, modifying the access path or address map modifies the actual path or
map used in the operation.

If the rw.status is modified to anything other than UVM _IS OK, the operation is aborted. See Section 16.1
for details on rw information.

15.13.2.2 post_write
virtual void post_wite(uvmreg_itent rw);

The member function post_write shall be called after awrite operation.

All registered post_write callback member functionsareinvoked before theinvocation of the member function
post_write of the associated object (uvm_reg, uvm_reg_field, uvm_mem, or uvm_reg_backdoor). If the
element being written is a uvm_reg, al post_write callback member functions are invoked before the
contained uvm_reg_fields.

— Backdoor: uvm_reg_cbs::post_write callbacks for backdoor, uvm_reg_backdoor::post_write.

286
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— Register uvm_reg_cbs::post_write callbacks for reg, uvm_reg::post_write, then for each field:
uvm_reg_cbs::post_write callbacksfor field, uvm_reg field::post_read.

— RegFielduvm_reg cbs::post_write callbacks for field, uvm_reg_field::post_write.
— Memory uvm_reg_cbs::post_write callbacks for mem, uvm_mem::post_write.

The argument rw holds information about the operation.
— Modifying the status member modifies the returned status.
— Modifying the value or offset members has no effect, as the operation has already completed.

See Section 16.1 for details on rw information.

15.13.2.3 pre_read

virtual void pre_read(uvmreg_itent rw);

The member function pre_read shall be called before aread operation.

All registered pre read callback member functions are invoked after the invocation of the pre read
member function of associated object (uvm_reg, uvm_reg_field, uvm_mem, or uvm_reg_backdoor). If the
element being read isauvm_reg, al pre_read callback member functions are invoked before the contained
uvm_reg fields.

— Backdoor: uvm_reg_backdoor::pre read, uvm_reg _chs::pre read callbacks for backdoor.

— Register: uvm_reg::pre read, uvm_reg _cbs::pre read callbacks for reg, then for each field:
uvm_reg field::pre read, uvm_reg cbs::pre read callbacksfor field.

— RegField: uvm_reg field::pre read, uvm_reg_cbs::pre read calbacksfor field.
— Memory: uvm_mem::pre read, uvm_reg_cbs::pre read calbacksfor mem.

The argument rw holds information about the operation.
— Thevalue member of rw is not used has no effect if modified.
— For memories, modifying the offset modifies the offset used in the operation.

— For non-backdoor operations, modifying the access path or address map modifies the actual path or
map used in the operation.

If the rw.status is modified to anything other than UVM _|S OK, the operation is aborted.
See Section 16.1 for details on rw information.

15.13.2.4 post_read

virtual void post_read(uvmreg_itent rw);

The member function post_read shall be called after aread operation.

All registered post_read callback member functions are invoked before theinvocation of the member function
post_read of the associated object (uvm_reg, uvm_reg field, uvm_mem, or uvm_reg backdoor). If the
element being read isauvm_reg, al post_read callback member functions are invoked before the contained
uvm_reg fields.

— Backdoor uvm_reg_cbs::post_read callbacks for backdoor, uvm_reg_backdoor::post_read.

287

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— Register: uvm_reg _cbs::post_read callbacks for reg, uvm_reg::post_read, then for each field:
uvm_reg_chs::post_read callbacksfor field, uvm_reg field::post_read.

— RegField: uvm_reg cbs::post_read callbacks for field, uvm_reg_field::post_read.
— Memory: uvm_reg_chs::post_read callbacks for mem, uvm_mem::post_read.

The argument rw holds information about the operation.
— Modifying the readback value or status modifies the actual returned value and status.
— Modifying the value or offset members has no effect, as the operation has aready completed.

See Section 16.1 for details on rw information.

15.13.2.5 post_predict

virtual void post_predict(uvmreg_field* fld,
uvmreg_data_t previous,
uvmreg_data_t val ue,
uvm predict_e Kkind,
uvm pat h_e pat h,
uvm r eg_nap* mp);

The member function post_predict shall be called by the member function uvm_reg field::predict after a
successful UVM_PREDICT_READ or UVM_PREDICT_WRITE prediction. The argument previousisthe
previous value in the mirror and the argument value is the latest predicted value. Any change to value shall
modify the predicted mirror value.

15.13.2.6 encode
virtual void encode(std::vector<uvmreg_data_t>& data);

The member function encode shall encode the data.

The registered callback member functions are invoked in order of registration after all the member functions
pre_write have been called. The encoded datais passed through each invocation in sequence. This allowsthe
member functions pre_writeto deal with clear-text data.

By default, the datais not modified.

15.13.2.7 decode

virtual void decode(std::vector<uvmreg_data_t>& data);

The member function decode shall decode the data.

The registered callback member functions are invoked in reverse order of registration before al the member
functions post_read are called. The decoded data is passed through each invocation in sequence. This alows
the member functions post_read to deal with clear-text data.

Thereversal of theinvocation order isto alow the decoding of the data to be performed in the opposite order
of the encoding with both operations specified in the same callback extension.

By default, the datais not modified.

288

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.14 uvm_mem_mam

The classuvm_mem_mam managesthe exclusive allocation of consecutive memory locations called regions.
Theregions can subsequently be accessed likelittle memories of their own, without knowing in which memory
or offset they are actually located.

The memory allocation manager should be used by any application-level process that requires reserved space
in the memory, such as DMA buffers.

A region shall remain reserved until it is explicitly released.

15.14.1 Class definition

nanmespace uvm {
class uvm nem mam
{
public:
/1 Constructor
explicit uvmmemman(const std::string& nane,
uvm nmem mam cf g* cfg,
uvm nment mem = NULL);
/1 Goup: Initialization
uvm nmrem mam cf g* reconfigure(uvmmemmamcfg* cfg = NULL);
/1 Group: Menory Managenent
uvm nem regi on* reserve_region(unsigned long start_offset,
unsi gned int n_bytes,

const std::string& fname =
int lineno = 0);

uvm nmem regi on* request_regi on(unsigned int n_bytes,
uvm nmem mam pol i cy* alloc = NULL,

const std::string& fname = ,
int lineno = 0);

voi d rel ease_regi on(uvm. nmemregi on* region);
void rel ease_al | _regions();

/1 Group: Introspection

std::string convert2string();

uvm nmem r egi on* for_each(bool reset = false);
uvm nment get_nenory() const;

/| Data menbers

uvm nmem mam pol i cy* default_all oc;

/'l Type definitions

typedef enum { GREEDY, THRIFTY } alloc_node_g;
typedef enum { BROAD, NEARBY } locality_e;

}; /1 class uvm nem mam

} // namespace uvm

15.14.2 Constructor

explicit uvmmem man(const std::string& nane,
uvm mem mam cf g* cfg,
uvm nment mem = NULL);

289

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The constructor shall create an instance of a memory allocation manager with the specified name and
configuration cfg. This instance manages all memory region allocation within the address range specified in
the configuration descriptor.

If a reference to a memory abstraction class is provided, the memory locations within the regions can
be accessed through the region descriptor, using the member functions uvm_mem_region::read and
uvm_mem_region::write.

15.14.3 Initialization

15.14.3.1 reconfigure
uvm nmem mam cf g* reconfigure(uvmmemmamcfg* cfg = NULL);

The member function reconfigur e shall modify the maximum and minimum addresses of the address space
managed by the allocation manager, alocation mode, or locality. The number of bytes per memory location
cannot be modified once an allocation manager has been constructed. All currently allocated regions shall fall
within the new address space.

The member function shall return the previous configuration.
If no new configuration is specified, it shall return the current configuration.
15.14.4 Memory management

15.14.4.1 reserve_region

uvm nmem regi on* reserve_region(unsigned |long start_offset,
unsi gned int n_bytes,
const std::string& fname = "",
int lineno = 0);

The member function reserve region shall reserve amemory region of the specified number of bytes starting
at the specified offset. A descriptor of the reserved regionisreturned. If the specified region cannot bereserved,
the member function shall return NULL.

It shall not be possibleto reserve aregion because it overlaps with an already-allocated region or it lies outside
the address range managed by the memory manager.

Regions can be reserved to create “holes’ in the managed address space.

15.14.4.2 request_region

uvm nmem regi on* request_region(unsigned int n_bytes,
uvm nmem mam pol i cy* alloc = NULL,
const std::string& fname = "",
int lineno = 0);

The member function request_region shall request and reserve a memory region of the specified number of
bytes starting at a random location. If an policy is specified, it is randomized to determine the start offset of
the region. If no policy is specified, the policy found in the uvm_mem_mam::default_alloc class property is
randomized.

A descriptor of the allocated region isreturned. If no region can be allocated, the member function shall return
NULL.

290

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

It shall not be possible to allocate a region because there is no area in the memory with enough consecutive
locations to meet the size requirements or because there is another contradiction when randomizing the policy.

If the memory alocation is configured to THRIFTY or NEARBY, a suitable region is first sought
procedurally.

15.14.4.3 release_region
voi d rel ease_regi on(uvm. nemregi on* region);

The member function release region shall release a previously alocated memory region. An error is issued
if the specified region has not been previously allocated or is no longer allocated.

15.14.4.4 release_all_regions

voi d rel ease_al | _regi ons();

The member function release_all_regions shall forcibly release all alocated memory regions.
15.14.5 Introspection

15.14.5.1 convert2string

std::string convert2string();

The member function convert2string shall return a human-readable description of the state of the memory
manager and the currently allocated regions.

15.14.5.2 for_each

uvm nmem r egi on* for_each(bool reset = false);

The member function for_each shall iterate over all currently allocated regions, If argument reset is set to true,
it shall reset the iterator and return thefirst allocated region. It shall return NULL when there are no additional
allocated regions to iterate on.

15.14.5.3 get_memory

uvm nment get_nenory() const;

The member function get_memory shall return the reference to the memory abstraction class for the memory
implementing the locations managed by this instance of the allocation manager. It shall return NULL if no
memory abstraction class was specified at construction time.

15.14.6 Data members

15.14.6.1 default_alloc

uvm nmem mam pol i cy* default_all oc;

The data member default_alloc shall define the region allocation policy. Thisobject is repeatedly randomized
when allocating new regions.

291
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.14.7 Type definitions

15.14.7.1 alloc_mode_e

typedef enum { GREEDY, THRIFTY } alloc_node_g;

Thetypedefinitionalloc_mode_eshall definean enumeration typeto specify how to allocate amemory region:
— GREEDY': Consume new, previously unallocated memory
— THRIFTY: Reused previously released memory as much as possible.

15.14.7.2 locality_e

typedef enum { BROAD, NEARBY } locality_e;

Thetypedefinitionlocality e shall definean enumeration typeto specify whereto locate new memory regions:
— BROAD: Locate new regions randomly throughout the address space.
— NEARBY: Locate new regions adjacent to existing regions.

15.15 uvm_mem_region
The classuvm_mem_region shall specify the allocated memory region.

Instances of this class are created only by the memory manager, and returned by the member functions
uvm_mem_mam::reserve region and uvm_mem_mam::request_region.

15.15.1 Class definition

namespace uvm {

class uvm nmem regi on

{
public:

unsigned | ong get_start_offset() const;
unsi gned | ong get_end_offset() const;
unsigned int get_len() const;

unsigned int get_n_bytes() const;

voi d rel ease_region();

uvm nment get_nenory() const;

uvm vreg* get_virtual _registers() const;

void wite(uvmstatus_e& status,
uvm reg_addr_t offset,
uvmreg_data_t val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

voi d read(uvm status_e& status,
uvm reg_addr_t offset,
uvm reg_data_t & val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname = "",

292
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

int lineno =0);

void burst_wite(uvmstatus_e& status,
uvmreg_addr_t offset,
std::vector<uvmreg_data_t> val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnanme ="",
int lineno = 0);

voi d burst_read(uvm status_e& status,
uvm reg_addr_t offset,
std::vector<uvmreg_data_t>& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname ="",
int lineno =0);

voi d poke(uvm status_e& status,
uvm reg_addr_t offset,
uvmreg_data_t val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

voi d peek(uvm status_e& status,
uvm reg_addr_t offset,
uvm reg_data_t & val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno =0);

}; /1 class uvm nmemregion

} /1 namespace uvm
15.15.2 Member functions
15.15.2.1 get_start_offset

unsigned |ong get_start_offset() const;

The member function get_start_offset shall return the address offset, within the memory, where this memory
region starts.

15.15.2.2 get_end_offset

unsi gned | ong get_end_offset() const;

The member function get_end_offset shall return the address offset, within the memory, where this memory
region ends.

15.15.2.3 get_len

unsi gned int get_len() const;

293

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

The member function get_len shall return the number of consecutive memory locations (not necessarily bytes)
in the allocated region.

15.15.2.4 get_n_bytes
unsigned int get_n_bytes() const;

The member function get_n_bytes shall return the number of consecutive bytesin the allocated region. If the
managed memory contains more than one byte per address, the number of bytes in an allocated region may
be greater than the number of requested or reserved bytes.

15.15.2.5 release_region

voi d rel ease_region();

The member function release region shall release thisregion.

15.15.2.6 get_memory

uvm nment get_nenory() const;

The member function get_memory shall return a reference to the memory abstraction class for the memory
implementing this allocated memory region. It shall return NULL if no memory abstraction classwas specified
for the allocation manager that allocated this region.

15.15.2.7 get_virtual_registers

uvm.vreg* get_virtual _registers() const;

The member function get_virtual_registers shall return a reference to the virtual register array abstraction
classimplemented in thisregion. It shall return NULL if the memory region isnot known to implement virtual
registers.

15.15.2.8 write

void wite(uvmstatus_e& status,
uvmreg_addr_t offset,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm reg_nap* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fnane = "",
int lineno = 0);

The member function write shall write to the memory location that corresponds to the specified offset within
thisregion. Requiresthat the memory abstraction class be associated with the memory allocation manager that
allocated thisregion.

See Section 15.6.5.1 for more details.

15.15.2.9 read
voi d read(uvm status_e& status,

294

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm reg_addr_t offset,
uvmreg_data_t & val ue,

uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_nmap* map = NULL,

uvm sequence_base* parent = NULL,
int prior = -1,

uvm obj ect * extension = NULL,

const std::string& fname = "",

int lineno =0);

The member function read shall read from the memory location that corresponds to the specified offset within
thisregion. Requiresthat the memory abstraction class be associated with the memory allocation manager that
allocated thisregion.

See Section 15.6.5.2 for more details.

15.15.2.10 burst_write

void burst_wite(uvmstatus_e& status,
uvm reg_addr_t offset,
std::vector<uvmreg_data_t> val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname ="",
int lineno = 0);

The member function burst_write shall write to the memory locations that corresponds to the specified burst
within this region. Requires that the memory abstraction class be associated with the memory allocation
manager that allocated this region.

See Section 15.6.5.3 for more details.

15.15.2.11 burst_read

voi d burst_read(uvm status_e& status,
uvm reg_addr_t offset,
std::vector<uvmreg_data_t >& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
uvm sequence_base* parent = NULL,
int prior = -1,
uvm obj ect* extension = NULL,
const std::string& fname ="",
int lineno = 0);

The member function burst_read shall read from the memory locations that corresponds to the specified
burst within this region. Requires that the memory abstraction class be associated with the memory allocation
manager that allocated this region.

See Section 15.6.5.4 for more details.

15.15.2.12 poke

voi d poke(uvm status_e& status,
uvm reg_addr_t offset,
uvmreg_data_t val ue,
uvm sequence_base* parent = NULL,
uvm obj ect * extension = NULL,
const std::string& fname = "",

295

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

int lineno =0);

The member function poke shall deposit the specified value in the memory location that corresponds to the
specified offset within this region. Requires that the memory abstraction class be associated with the memory
allocation manager that allocated this region.

See Section 15.6.5.5 for more details.

15.15.2.13 peek

voi d peek(uvm status_e& status,
uvm reg_addr_t offset,
uvm reg_data_t & val ue,
uvm sequence_base* parent = NULL,
uvm obj ect* extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function peek shall sample the memory location that corresponds to the specified offset within
thisregion. Requiresthat the memory abstraction class be associated with the memory allocation manager that
allocated this region.

See Section 15.6.5.6 for more details.

15.16 Global declarations

This subclause definesthe globally availabletypes, enums, and utility classesaspart of the UVM register layer.
15.16.1 Types

15.16.1.1 uvm_reg_data_t

The type uvm_reg data t shall define a 2-state data value with UVM_REG_DATA_WIDTH hits.
Depending on the sizeof UVYM_REG_DATA_WIDTH, the appropriate SystemC data typeis selected.

15.16.1.2 uvm_reg_data_logic_t

The type uvm_reg_data_logic_t shall define a 4-state data value with UVYM_REG_DATA_WIDTH hits.
Depending on the sizeof UVYM_REG_DATA_WIDTH, the appropriate SystemC data typeis selected.

15.16.1.3 uvm_reg_addr_t

The type uvm_reg addr_t shall define a 2-state address value with UVM_REG_ADDR_WIDTH bits.
Depending on the sizeof UVYM_REG_ADDR_WIDTH, the appropriate SystemC data type is selected.

15.16.1.4 uvm_reg_addr_logic_t

Thetypeuvm_reg_addr_logic_t shall definea4-state addressvaluewith UVM_REG_ADDR_WIDTH hits.
Depending on the sizeof UVYM_REG_ADDR_WIDTH, the appropriate SystemC data type is selected.

296
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.16.1.5 uvm_reg_byte en_t

The type uvm_reg byte en t shall define a 2-state byte enable value
with UVM_REG BYTENABLE WIDTH bits. Depending on the size of
UVM_REG_BYTENABLE_WIDTH, the appropriate SystemC data type is selected.

15.16.1.6 uvm_reg_cvr_t

The type uvm_reg_cvr_t shall define a coverage model value set with UVM_REG_CVR_WIDTH bits.
Symbolic values for individual coverage models are defined by the uvm_coverage model_e type. The
following bitsin the set are assigned as follows

Table 15.2—Bits

0-7 UVM pre-defined coverage models

8-15 Coverage models defined by EDA vendors, implemented in aregister model generator.
8-15 Coverage models defined

16-23 User-defined coverage models

24.. Reserved

NOTE—Coverage is not yet supported in UVM-SystemC.

15.16.1.7 uvm_hdl_path_slice

namespace uvm {
typedef struct

{
std::string path;
int offset;
int size;

} uvm hdl _path_slice;

The type uvm_hdl_path_slice shall define a slice of an HDL path. It shall specify the HDL variable that
corresponds to all or a portion of aregister:

— path: Path to the HDL variable.
— offset: Offset of the LSB in the register that this variable implements.
— size: Number of bits (toward the MSB) that this variable implements.

If the HDL variable implements all of the register, offset and size are specified as-1.
15.16.2 Enumerations
15.16.2.1 uvm_status_e

The enumeration uvm_status_e shall return the status for register operations:
— UVM _IS OK: Operation completed successfully.
— UVM_NOT_OK: Operation completed with error.
— UVM_HAS X: Operation completed successfully bit had unknown bits.

15.16.2.2 uvm_path_e

The enumeration uvm_path_e shall define the path used for register operation:

297

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

— UVM_FRONTDOOR: Usethe front door.
— UVM_BACKDOOR: Use the back door.

— UVM_PREDICT: Operation derived from observations by a bus monitor via the class
uvm_reg_predictor.

— UVM_DEFAULT_PATH: Operation specified by the context.
15.16.2.3 uvm_check_e

The enumeration uvm_check_e shall define the values for read-only or read-and-check:
— UVM_NO_CHECK: Read only.
— UVM_CHECK: Read and check.

15.16.2.4 uvm_endianness_e

The enumeration uvm_endianness_e shall specify the byte ordering:
— UVM_NO_ENDIAN: Byte ordering not applicable.
— UVM_LITTLE_ENDIAN: Least-significant bytesfirst in consecutive addresses.
— UVM_BIG_ENDIAN: Most-significant bytesfirst in consecutive addresses.
— UVM_LITTLE_FIFO: Least-significant bytesfirst at the same address.
— UVM_BIG_FIFO: Most-significant bytesfirst at the same address.

15.16.2.5 uvm_elem_kind_e

The enumeration uvm_elem_kind_e shall define the type of element being read or written:
— UVM_REG: Register.
— UVM_FIELD: Field.
— UVM_MEM: Memory location.

15.16.2.6 uvm_access_e

The enumeration uvm_access e shall define the type of operation being performed:
— UVM_READ: Read operation.
— UVM_WRITE: Write operation.

15.16.2.7 uvm_hier_e

The enumeration uvm_hier_e shall define whether to provide the requested information from a hierarchical
context:

— UVM_NO_HIER: Provide info from the local context.
— UVM_HIER: Provide info based on the hierarchical context.

15.16.2.8 uvm_predict_e

The enumeration uvm_predict_e shall define how the mirror is to be updated:
— UVM_PREDICT_DIRECT: Predicted valueis as-is.
— UVM_PREDICT_READ: Predict based on the specified value having been read.
— UVM_PREDICT_WRITE: Predict based on the specified value having been written.

298

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

15.16.2.9 uvm_coverage_model_e

Theenumerationuvm_coverage_ model e shall define coverage modelsavailable or desired. Multiple models
may be specified by bitwise OR’ing individual model identifiers:

— UVM_NO_COVERAGE: None.

— UVM_CVR_REG BITS: Individual register bits.

— UVM_CVR_ADDR_MAP: Individual register and memory addresses.
— UVM_CVR_FIELD_VALS: Field values.

— UVM_CVR_ALL: All coverage models.

NOTE—Coverage is not yet supported in UVM-SystemC.
15.16.2.10 uvm_reg_mem_tests_e

The enumeration uvm_reg_mem_tests e shall select which pre-defined test sequence to execute. Multiple
test sequences may be selected by bitwise OR’ing their respective symbolic values:

— UVM_DO REG_HW_RESET: Runuvm_reg hw reset seq.

— UVM_DO_REG_BIT_BASH: Runuvm_reg_bit_bash_seq.

— UVM_DO_REG_ACCESS: Runuvm_reg_access seq.

— UVM_DO_MEM_ACCESS: Run uvm_mem_access _sed.

— UVM_DO_SHARED_ACCESS: Runuvm_reg mem_shared_access seq.
— UVM_DO_MEM_WALK: Runuvm_mem_walk_seq.

— UVM DO _ALL REG_MEM _TESTS: Runal of the above.

Test sequences, when selected, are executed in the order in which they are specified above.

NOTE—UVM-SystemC only contains the pre-defined test sequence uvm_reg_bit_bash_seq.

299
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16. Register interaction with DUT

This clause defines classes to enable generic register read-write operations and classes to convert transactions
between these generic register read-write operations and physical bus accesses.

The following classes are defined:
— uvm_reg_item
— uvm_reg bus op
— uvm_reg_adapter
— uvm_reg_tim_adapter
— uvm_reg_predictor
— uvm_reg_sequence
— uvm_reg_frontdoor

The class uvm_reg_item defines the abstract register transaction item. The class uvm_reg_bus op defines
a descriptor for a physical bus operation that is used by uvm_reg adapter subtypes to convert from a
protocol -specific address, data, and read-writre operation to abus-independent, canonical read-write operation.
The class uvm_reg_adapter defines an interface for converting between uvm_reg_bus op and a specific
bus transaction. The class uvm_reg_tIm_adapter enables conversion between uvm_reg bus op and TLM
transactionsof typeuvm_tim_gp. Theclassuvm_reg_predictor definesapredictor component, whichisused
to update the register model’s mirror values based on transactions explicitly observed on a physical bus. The
classuvm_reg_sequence provides the base functionality for both user-defined register model test sequences
and register translation sequences. The class uvm_reg_frontdoor is a facade class for register and memory
frontdoor access.

16.1 uvm_reg_item

The class uvm_reg_item shall define an abstract register transaction item. No bus-specific information is
present, although ahandleto auvm_reg_map isprovided in case auser wishesto implement a custom address
tranglation algorithm.

16.1.1 Class definition

nanmespace uvm {

class uvmreg_item: public uvmsequence_item

{
public:

/1 Constructor
explicit uvmreg_item const std::string& name = "");

/1 Menber functions

virtual std::string convert2string() const;
virtual void do_copy(const uvmobject& rhs);

/| Data menbers

uvm el em ki nd_e el enent _ki nd;

uvm obj ect* el enent;

uvm access_e access_ki nd;
std::vector<uvmreg_data_t> val ue;
uvmreg_addr_t offset;

uvm status_e status;

uvm reg_nmap* | ocal _nap;

uvm reg_nap* map;

uvm pat h_e path;

300

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm sequence_base* parent;
int prior;

uvm obj ect* ext ensi on;
std::string bd_kind;
std::string fnang;

int |ineno;

}; /1 class uvmreg_item

} /1 namespace uvm

16.1.2 Constructor
explicit uvmreg_itenm const std::string& name = "");

The constructor shall create a new instance of thistype, giving it the optional name.
16.1.3 Member functions

16.1.3.1 convert2string

virtual std::string convert2string() const;

The member function convert2string shall return a string showing the contents of this transaction.

16.1.3.2 do_copy

virtual void do_copy(const uvmobject& rhs);

The member function do_copy shall copy the rhs object into this object. The rhs object shall be derived from
uvm_reg_item.

16.1.4 Data members

16.1.4.1 element_kind

uvm el em ki nd_e el enent _ki nd;

The data member element_kind defines the kind of element being accessed: REG, MEM, or FIELD. See
Section 15.16.2.5.

16.1.4.2 element

uvm obj ect* el enent ;

The data member element defines the handle to the register model associated with this transaction. Use
element_kind to determine the type to cast to: uvm_reg, uvm_mem, or uvm_reg_field.

16.1.4.3 access_kind

uvm access_e access_kind;

The data member access _kind defines the kind of access: READ or WRITE.

301

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.1.4.4 value

std::vector<uvmreg_data_t> val ue;

The data member value defines the value to write to, or after completion, the value read from the DUT. Burst
operations use the values property.

16.1.4.5 offset

uvmreg_addr_t offset;

The data member offset defines the offset. For memory accesses, the offset address. For bursts, the starting
offset address.

16.1.4.6 status

uvm st at us_e status,;

The datamember status definestheresult of thetransaction: IS OK, HAS X, or ERROR. Seeuvm_status e
(Section 15.16.2.1).

16.1.4.7 local_map

uvm reg_map* | ocal _map;

The data member local_map defines the local map used to obtain addresses. An application may
customize address-trandation using this map. Access to the sequencer and bus adapter can be obtained
by getting this map’s root map, then calling member functions uvm_reg map::get_sequencer and
uvm_reg map::get_adapter.

16.1.4.8 map

uvm reg_map* nmap;

The data member map defines the original map specified for the operation. The actual map used may differ
when atest or sequence written at the block level isreused at the system level.

16.1.4.9 path
uvm pat h_e path;
The data member path defines the path being used: UVM_FRONTDOOR or UVM_BACKDOOR.

16.1.4.10 parent

uvm sequence_base* parent;

The data member parent defines the sequence from which the operation originated.

302

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.1.4.11 prior
int prior;

The data member prior defines the priority requested of this transfer, as defined by
uvm_sequence base::start_item.

16.1.4.12 extension

uvm obj ect* ext ensi on;

The data member extension defines the handle to optional user data, as conveyed in the call to write, read,
mirror, or update used to trigger the operation.

16.1.4.13 bd_kind
std::string bd_kind;

The data member bd_kind specifies the abstraction kind for the backdoor access, if the data member path
isset to UVM_BACKDOOR.

16.1.4.14 fname

std::string fnang;

The data member fname specifies the file name from where this transaction originated, if provided at the call
sSite.

16.1.4.15 lineno

int |ineno;

The data member lineno specifies the line number from where this transaction originated, if provided at the
cal site.

16.2 uvm_reg_bus_op

The class uvm_reg_bus op shall define a generic bus transaction for register and memory accesses, having
kind (read or write), address, data, and byte enable information. If the bus is narrower than the register or
memory location being accessed, there are multiple of these bus operations for every abstract uvm_reg_item
transaction. In this case, data representsthe portion of uvm_reg_item::value being transferred during this bus
cycle. If the bus is wide enough to perform the register or memory operation in a single cycle, datais equal
touvm_reg_item::value.

16.2.1 Class definition

nanmespace uvm {

class uvmreg_bus_op

{
public:

/| Data menbers

303
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm access_e ki nd;

uvm reg_addr_t addr;
uvmreg_data_t data;
unsigned int n_bits;
uvmreg_byte_en_t byte_en;
uvm st atus_e st at us;

}; /1 class uvmreg_bus_op

} /1 namespace uvm

16.2.2 Data members

16.2.2.1 kind

uvm access_e ki nd;

The data member kind defines the kind of access: READ or WRITE.
16.2.2.2 addr

uvm reg_addr _t addr;

The data member addr defines the bus address.

16.2.2.3 data

uvmreg_data_t data;

The datamember data definesthe datato write. If the bus width is smaller than the register or memory width,
data represents only the portion of value that is being transferred this bus cycle.

16.2.2.4 n_bits
unsigned int n_bits;

The data member n_bits defines the number of bits of uvm_reg_item::value being transferred by this
transaction.

16.2.2.5 byte_en
uvmreg_byte_en_t byte_en;

The data member byte en enables for the byte lanes on the bus. Meaningful only when the bus supports byte
enables and the operation originates from a field write/read.

16.2.2.6 status

uvm stat us_e status;

The data member status defines the result of the transaction: UVM_IS OK, UVM_HAS X,
UVM_NOT_OK. Seeuvm_status e (Section 15.16.2.1).

304

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.3 uvm_reg_adapter

Theclassuvm_reg_adapter shall definetheinterfacefor converting betweenuvm_reg _bus _op and aspecific
bus transaction.

16.3.1 Class definition

nanmespace uvm {
class uvmreg_adapter : public uvm object
{
public:
/1 Constructor
explicit uvmreg_adapter(const std::string& name = "");
/1 Menber functions

virtual uvm sequence_iten¥ reg2bus(const uvmreg_bus_op& rw) = 0;

virtual void bus2reg(const uvm sequence_itent bus_item
uvmreg_bus_op& rw) = 0;

virtual uvmreg_itenr get_iten() const;
/| Data menbers

bool supports_byte_enabl e;
bool provi des_responses;
uvm sequence_base* parent _sequence;

}; I/ class uvmreg_adapter

} // namespace uvm

16.3.2 Constructor

explicit uvmreg_adapter(const std::string& name = "");

The constructor shall create a new instance of thistype, giving it the optional name.
16.3.3 Member functions

16.3.3.1 reg2bus

virtual uvm sequence_itent reg2bus(const uvmreg_bus_op& rw) = 0;

Themember function reg2bus shall allocate anew bus-specific uvm_sequence_item, assignitsdatamembers
from the corresponding data members from the given generic rw bus operation, then return it.

Extensions of this class shall implement this member function to convert the specified uvm_reg_bus op toa
corresponding uvm_sequence_item subtype that defines the bus transaction.

16.3.3.2 busZ2reg

virtual void bus2reg(const uvm sequence_itent bus_item
uvmreg_bus_op& rw) = 0;

The member function bus2reg shall copy the data members of the given bus-specific bus item to the
corresponding data members of the provided instance rw.

305
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Extensions of this class shall implement this member function. Unlike reg2bus, the resulting transaction is
not allocated from scratch. This is to accommodate applications where the bus response needs to be returned
in the original request.

16.3.3.3 get_item

virtual uvmreg_itenr get_iten() const;

The member function get_item shall returns the bus-independent read/write information that corresponds to
the generic bus transaction currently translated to a bus-specific transaction. This member function returns a
value reference only when called in the member function uvm_reg_adapter::reg2bus. The member function
returns NULL at all other times. The content of the return uvm_reg_item instance shall not be modified and
used strictly to obtain additional information about the operation.

16.3.4 Data members
16.3.4.1 supports_byte_enable

bool supports_byte_enabl e;

The data member supports byte enable is used in extensions of this class to specify if the bus protocol
supports byte enables.

16.3.4.2 provides_responses

bool provides_responses;

The data member provides responsesis used in extensions of this class to specify if the bus driver provides
separate response items.

16.3.4.3 parent_sequence

uvm sequence_base* parent_sequence;

The data member parent_sequence is used in extensions of this class if the bus driver requires bus items be
executed via a particular sequence base type. The sequence assigned to this data member shall implement the
member function do_clone.

16.4 uvm_reg_tlm_adapter

The class uvm_reg tim_adapter shall define the interface for converting For converting between
uvm_reg_bus op and uvm_tim_gp items.

16.4.1 Class definition

namespace uvm {
class uvmreg_tl madapter : public uvmreg_adapter
{
public:
/'l Constructor

uvmreg_tl madapter(const std::string& name = "uvmreg_t|l madapter");

306

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

/1 Menber functions
virtual uvm sequence_itent¥ reg2bus(const uvmreg_bus_op& rw);

virtual void bus2reg(const uvm sequence_itent bus_item
uvm reg_bus_op& rw);

}; /1 class uvmreg_t| m adapter

} /1 namespace uvm

16.4.2 Constructor
uvmreg_tl madapter(const std::string& name = "uvmreg_t|l madapter");

The constructor shall create a new instance of this type with the specified name.
16.4.3 Member functions

16.4.3.1 reg2bus

virtual uvm sequence_iten¥ reg2bus(const uvmreg_bus_op& rw);

The member function reg2bus shall convert the provided bus transaction rw of type uvm_reg bus op to a
sequence item of type uvm_tim_gp.

16.4.3.2 busZ2reg

virtual void bus2reg(const uvm sequence_itent bus_item
uvm reg_bus_op& rw);

The member function bus2reg shall convertsa TLM transaction item bus_item of typeuvm_tIm_gp to aread-
write bus transaction rw of type uvm_reg_bus op.

16.5 uvm_reg_predictor

The class uvm_reg_predictor shall convert the observed bus transactions of type BUSTY PE to generic
registers transactions, determines the register being accessed based on the bus address, then updates the
register’s mirror value with the observed bus data, subject to the register’ s access mode.

See Section 15.4.5.15 for details.
NOTE—Memories can be large, so their accesses are not predicted.

16.5.1 Class definition

nanmespace uvm {
tenpl ate <typenanme BUSTYPE = int>
class uvmreg_predictor : public uvm conponent,
public tIm:tlmanalysis_if<BUSTYPE>
{
public:
/1 Constructor

explicit uvmreg_predictor(uvmconponent_nane nanme);

307
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Il Ports

uvm anal ysi s_i np< BUSTYPE, uvmreg_predictor <BUSTYPE> > bus_in;
uvm anal ysi s_port<uvmreg_itenr reg_ap;

/1 Menber functions

virtual void pre_predict(uvmreg_itent rw);
virtual void check_phase(uvm phase& phase);

/1 data menbers

uvm reg_nap* map;
uvm reg_adapter* adapter;

}; /1 class uvmreg_predictor

} /1 namespace uvm

16.5.2 Constructor

explicit uvmreg_predictor(uvm.conponent_nanme nane);

The constructor shall create a new instance of this type with the specified name.
16.5.3 Ports

16.5.3.1 bus_in

uvm anal ysi s_i np< BUSTYPE, uvmreg_predictor <BUSTYPE> > bus_in;

The port bus in shall implement an analysis input port which shall observe bus transactions of type
BUSTYPE. For each incoming transaction, the predictor shall attempt to get the register or memory handle
corresponding to the observed bus address. If there is a match, the predictor calls the register or memory’s
member function predict, passing in the observed bus data. The register or memory mirror shall be updated
with this data, subject to its configured access behavior--RW, RO, WO, etc. The predictor shall also convert
the bus transaction to ageneric uvm_reg_item and send it out the reg_ap analysis port.

If theregister iswider than the bus, the predictor shall collect the multiple bustransactions needed to determine
the value being read or written.

16.5.3.2reg_ap
uvm anal ysi s_port<uvmreg_itenr reg_ap;

The port reg_ap shall implement an analysis output port that publishes transactions of type uvm_reg_item,
which are converted from bus transactions received by port bus in.

16.5.4 Member functions

16.5.4.1 pre_predict

virtual void pre_predict(uvmreg_itent rw);

The member function pre_predict shall override this member function to change the value or re-direct the
target register.

308

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.5.4.2 check_phase

virtual void check_phase(uvm phase& phase);

The member function check_phase shall check that no pending register transactions are still queued.
16.5.5 Data members

16.5.5.1 map
uvm reg_map* map;

The data member map is used to convert a bus address to the corresponding register or memory handle. It
shall be configured before the run phase.

16.5.5.2 adapter
uvm reg_adapt er* adapter;

The data member adapter is used to convey the parameters of a bus operation in terms of a canonical
uvm_reg bus op datum. The uvm_reg_adapter shall be configured before the run phase.

16.6 uvm_reg_sequence

The class uvm_reg_sequence shall provide the base functionality for both user-defined register model test
seguences and register translation sequences.

— When used as a base for user-defined register model test sequences, this class provides convenience
member functions for reading and writing registers and memories. An application implements the
member function body to interact directly with the register model (held in the model property) or
indirectly viathe delegation member functionsin this class.

— When used as a registertrandation sequence, objects of this class are executed directly on a bus
sequencer which are used in support of a layered sequencer use model, a pre-defined convert-and-
execute algorithm is provided.

Register operations do not require extending this class if none of the above services are needed. Register test
sequences can be extend from the base class uvm_sequence(REQ,RSP) or even from outside a sequence.

NOTE—The convenience API is not yet implemented.

16.6.1 Class definition

namespace uvm {
tenpl ate <typenane BASE = uvm sequence<uvmreg_itenr >
class uvmreg_sequence : public BASE
{
public:
/'l Constructor
explicit uvmreg_sequence(const std::string& name = "uvmreg_sequence_inst");

/1 Goup: Sequence API

virtual void body();

309
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void do_reg_iten(uvmreg_itent rw);

/1 Group: Convenience Wite/ Read API

virtual void wite_reg(uvmreg* rg,
uvm st at us_e& st at us,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm r eg_map* map = NULL,
int prior = -1,
uvm obj ect * extensi on = NULL,
const std::string& fname = "",
int lineno = 0);
virtual void read_reg(uvmreg* rg,
uvm st at us_e& stat us,
uvmreg_data_t& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname =""
int lineno = 0);
virtual void poke_reg(uvmreg* rg,
uvm st at us_e& st at us,
uvm reg_data_t val ue,
const std::string& kind = "",
uvm obj ect * extensi on = NULL,
const std::string& fname = "",
int lineno = 0);
virtual void peek_reg(uvmreg* rg,
uvm st at us_e& status,
uvmreg_data_t& val ue,
const std::string& kind ="",
uvm obj ect * extension = NULL,
const std::string& fname ="",
int lineno = 0);
virtual void update_reg(uvmreg* rg,
uvm st at us_e& st at us,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm r eg_map* map = NULL,
int prior = -1,
uvm obj ect * extensi on = NULL,
const std::string& fname = "",
int lineno = 0);
virtual void mrror_reg(uvmreg* rg,
uvm st at us_e& st at us,
uvm check_e check = UVM NO CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm r eg_map* map = NULL,
int prior = -1,
uvm obj ect * extensi on = NULL,
const std::string& fname = "",
int lineno = 0);
virtual void wite_nmen(uvm nen¥ nmem
uvm st at us_e& stat us,
uvm reg_addr _t of f set,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm r eg_map* map = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fnane = "",
int lineno = 0);
virtual void read_nmem uvm nmen¥ nmem
uvm st at us_e& status,
uvm r eg_addr _t of f set,
uvmreg_data_t& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm r eg_map* map = NULL,
int prior = -1,
310

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void poke_nmem

virtual

voi d peek_nen(

|/ Data menbers

uvm reg_bl ock* nodel ;

uvm obj ect *
const std::string&
int

uvm nent

uvm st at us_e&

uvm r eg_addr _t

uvm reg_data_t
const std::string&
uvm obj ect *

const std::string&
int

uvm nent

uvm st at us_e&

uvm r eg_addr _t
uvmreg_data_t&
const std::string&
uvm obj ect *

const std::string&
int

uvm reg_adapter* adapter;
uvm sequencer <uvm reg_i ten>* reg_seqr;

}; /1 class uvmreg_sequence

} /1 namespace uvm

16.6.2 Constructor

explicit uvmreg_sequence(const std::string& nanme =

extension = NULL,
fnane = "",
lineno = 0);

mem

st at us,

of f set,

val ue,

kind = "",
extension = NULL,
fnane = "",
lineno = 0);

mem

st at us,

of f set,

val ue,

kind = "",
extension = NULL,
fnane = "",
lineno = 0);

"uvm reg_sequence_inst");

The constructor shall create a new instance of this type with the specified name.

16.6.3 Sequence API
16.6.3.1 body

virtual void body();

Themember functionbody shall continually get aregister transaction from the configured upstream segquencer,

reg_seqr, and executes the corresponding bus transaction viado_reg_item.

NOTE—User-defined register model test sequences should override the member function body and not call
the member function body of the base class, else awarning shall be issued and the calling process not return.

16.6.3.2 do_reg_item

virtual

The member function do_reg_item shall execute the given register transaction, rw, via the sequencer on
which this sequence was started (i.e. m_sequencer). It shall use the configured adapter to convert the register

void do_reg_iten(uvmreg_itenf rw);

transaction into the type expected by this sequencer.

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

311

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.6.4 Convenience Write/Read API

16.6.4.1 write_reg

virtual void wite_reg(uvmreg* rg,
uvm status_e& status,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm r eg_nap* map = NULL,
int prior = -1,
uvm obj ect * ext ensi on = NULL,
const std::string& fname =""
int lineno = 0);

The member function write reg shall write the given register rg using member function uvm_reg::write,
supplying t hi s as the parent argument.

16.6.4.2 read_reg

virtual void read_reg(uvmreg* rg,
uvm st at us_e& stat us,
uvmreg_data_t& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname ="",
int lineno = 0);

The member function read_reg shall read the given register rg using member function uvm_reg::read,
supplying t hi s as the parent argument.

16.6.4.3 poke_reg

virtual void poke_reg(uvmreg* rg,
uvm st at us_e& status,
uvm reg_data_t val ue,
const std::string& kind = "",
uvm obj ect * ext ensi on = NULL,
const std::string& fname = "",
int lineno = 0);

The member function poke reg shall poke the given register rg using member function uvm_reg::poke,
supplying t hi s as the parent argument.

16.6.4.4 peek_reg

virtual void peek_reg(uvmreg* rg,
uvm st at us_e& stat us,
uvmreg_data_t& val ue,
const std::string& kind ="",
uvm obj ect * extension = NULL,
const std::string& fname = "",
int lineno = 0);

The member function peek _reg shall peek the given register rg using member function uvm_reg::peek,
supplying t hi s as the parent argument.

16.6.4.5 update_reg
virtual void update_reg(uvmreg* rg,

312
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm st at us_e& st at us,

uvm pat h_e path = UVM DEFAULT_PATH,
uvm r eg_map* map = NULL,

int prior = -1,

uvm obj ect * extensi on = NULL,

const std::string& fname = "",

int lineno = 0);

Themember functionupdate reg shall update the given register rg using member function uvm_reg::update,
supplying thi s as the parent argument.

16.6.4.6 mirror_reg

virtual void mrror_reg(uvmreg* rg,
uvm st at us_e& st at us,
uvm check_e check = UVM _NO_CHECK,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm r eg_nmap* map = NULL,
int prior = -1,
uvm obj ect * ext ensi on = NULL,
const std::string& fname = "",
int lineno = 0);

Themember function mirror_regshall mirror the given register rg using member function uvm_reg::mirror,
supplying t hi s as the parent argument.

16.6.4.7 write_mem

virtual void wite_nmen(uvm nen¥ nmem
uvm status_e& stat us,
uvm reg_addr _t of f set,
uvmreg_data_t val ue,
uvm path_e path = UVM DEFAULT_PATH,
uvm r eg_map* map = NULL,
int prior = -1,
uvm obj ect * extensi on = NULL,
const std::string& fname = ""
int lineno = 0);

The member function write_ mem shall write the given memory mem using member function
uvm_mem::write, supplying t hi s as the parent argument.

16.6.4.8 read_mem

virtual void read_nmem uvm nmen¥ nmem
uvm st at us_e& stat us,
uvm r eg_addr _t of f set,
uvmreg_data_t& val ue,
uvm pat h_e path = UVM DEFAULT_PATH,
uvm reg_map* map = NULL,
int prior = -1,
uvm obj ect * extension = NULL,
const std::string& fname ="",
int lineno = 0);

Themember functionread_mem shall read the given memory mem using member function uvm_mem::read,
supplying t hi s as the parent argument.

16.6.4.9 poke_mem

virtual void poke_nen(uvm nent mem
uvm st at us_e& stat us,
uvm reg_addr _t of fset,

313

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm reg_data_t val ue,

const std::string& kind = "",

uvm obj ect * extensi on = NULL,
const std::string& fname = "",

int lineno = 0);

The member function poke mem shall poke the given memory mem using member function
uvm_mem::poke, supplyingt hi s asthe parent argument.

16.6.4.10 peek_mem

virtual void peek_nmen(uvm nent mem
uvm st at us_e& status,
uvm reg_addr _t of fset,
uvmreg_data_t & val ue,
const std::string& kind = "",
uvm obj ect * ext ensi on = NULL,
const std::string& fname = "",
int lineno = 0);

Themember function peek_mem shall peek the given memory memusing member functionuvm_mem::peek,
supplying t hi s as the parent argument.

16.6.5 Data members

16.6.5.1 model

uvm r eg_bl ock* nodel ;

The data member model shall define the register block abstraction the sequence executes on, defined only
when this sequence is a user-defined test sequence.

16.6.5.2 adapter
uvm reg_adapter* adapter;

The datamember adapter shall define the adapter to use for trand ating between abstract register transactions
and physical bus transactions, defined only when this sequence is a translation sequence.

16.6.5.3 reg_seqr

uvm sequencer <uvm reg_i tenr* reg_seqr;

The data member reg_seqr shall specify the upstream sequencer between abstract register transactions and
physical bus transactions. This data member is only defined when the sequence is a translation sequence,
enabling a“pull” from an upstream sequencer.

16.7 uvm_reg_frontdoor

The classuvm_reg_frontdoor shall provide abase classfor user-defined accessto register and memory reads
and writes through a physical interface.

By default, different registers and memories are mapped to different addresses in the address space and are
accessed viathose exclusively through physical addresses. The frontdoor allows access using anon-linear and/
or non-mapped mechanism. Users can extend this class to provide the physical access to these registers.

314

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

16.7.1 Class definition

namespace uvm {

class uvmreg_frontdoor : public uvmreg_sequence<uvm sequence<uvm sequence_itenm> >

{
public:

/1 Constructor
explicit uvmreg_frontdoor(const std::string& name = "");
/| Data menbers

uvmreg_itent rw_info;
uvm sequencer _base* sequencer;

}; // class uvmreg_frontdoor

} // namespace uvm

16.7.2 Constructor
explicit uvmreg_frontdoor(const std::string& name = "");
The constructor shall create a new instance of this type with the specified name.

16.7.3 Data members

16.7.3.1 rw_info

uvmreg_itent rwinfo;

The data member rw_info shall specify the information about the register being read or written.
16.7.3.2 sequencer

uvm sequencer _base* sequencer;

The data member sequencer shall specify the sequencer executing the operation.

315

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17. Global functionality

UVM provides other global functionality including functions, enums, defines, and classes. Some of these are
targeted towards specific aspects of the functionality described in the UVM standard, and others are useful
across multiple aspects.

All global functionsreside in the UV M namespace. Functions marked with the symbol Sare specificto UVM-
SystemC and not available in the UV M-SystemV erilog standard.

17.1 Global functions

17.11 uvm_se'[_config_int§

namespace uvm {
voi d uvm set_config_int$ const std::string& inst_name,
const std::string& field_nang,
int value);

} /1 namespace uvm

The global function uvm_set_config_int shall create and place an integer in a configuration database. The
argument inst_name shall define the full hierarchical pathname of the object being configured. The argument
field_name is the specific field that is being searched for. Both arguments inst_name and field_name may
contain wildcards.

NOTE—This global function is made available since there is no command line interface option to pass
configuration data.

17.1.2 uvm_set_config_string§

namepace uvm {
voi d uvm set _config_stri ng§(const std::string& inst_nane,
const std::string& field_nane,
const std::string& value);

} // namespace uvm

The global function uvm_set_config_string shall create and place a string in a configuration database. The
argument inst_name shall define the full hierarchical pathname of the object being configured. The argument
field_name is the specific field that is being searched for. Both arguments inst_name and field_name may
contain wildcards.

NOTE—This global function is made available since there is no command line interface option to pass
configuration data.

17.1.3 run_test

nanmespace uvm {
void run_test(const std::string& test_name = "");

} // namespace uvm

The function run_test is a convenience function to start member function uvm_root::run_test. (See Section
4.3).

316

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.2 Global defines
17.2.1 UVM_MAX_STREAMBITS

The definition UVM_MAX_STREAMBITS shall be used to set the maximum size for integer types. If not
defined, a default size of 4096 is used.

17.2.2 UVM_PACKER_MAX_BYTES

The definition UVM_PACKER_MAX_BYTES shall be used to set the maximum bytes to allocate for
packing an object using the uvm_packer. Default isUVM_MAX_STREAMBITS, in bytes.

17.2.3 UVM_DEFAULT_TIMEOUT
The definition UVM_DEFAULT_TIMEOUT shall be used as default timeout for the run phases. If not

defined, a default timeout of 9200 seconds shall be used. The timeout can be overridden by using the member
function uvm_root::set_timeout (see Section 4.3.2.3).

17.3 Global type definitions (typedefs)

17.3.1 uvm_bitstream_t

The typedef uvm_bitstream_t shall define an integer type with a size defined by
UVM_MAX_STREAMBITS. An application can use this type in member functions such as
uvm_printer::print_field (see Section 5.2.3.1), uvm_packer::pack_field (see Section 5.1.3.1) and
uvm_packer::unpack_field (see Section 5.1.4.3).

17.3.2 uvm_integral_t

The typedef uvm_integral t shal define an integer type with a size of 64 bits. An application
can use this type in member functions such as uvm_printer::print_field_int (see Section 5.2.3.2),
uvm_packer::pack_field_int (see Section 5.1.3.2) and uvm_packer::unpack field_int (see Section
5.1.4.2).

17.3.3 UVM_FILE

The typedef UVM _FILE shall define the file descriptor which supports output streams.

17.3.4 uvm_report_cb

The typedef uvm_report_cb isthealiasfor uvm_callbacks<uvm_report_object, uvm_report_catcher >.
17.3.5 uvm_config_int

The typedef uvm_config_int isthe alias for uvm_config_db<uvm_bitstream_t >.

17.3.6 uvm_config_string

The typedef uvm_config_string isthe alias for uvm_config_db<std::string>.

17.3.7 uvm_config_object

The typedef uvm_config_object isthe alias for uvm_config_db<uvm_object*>.

317

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.3.8 uvm_config_wrapper

The typedef uvm_config_wrapper isthe aiasfor uvm_config_db<uvm_object_wrapper*>.

17.4 Global enumeration
17.4.1 uvm_action

The enumeration type uvm_action shall define all possible valuesfor report actions. Each report is configured
to execute one or more actions, determined by the bitwise OR of any or al of the following enumeration
constants.

— UVM_NO_ACTION: No action istaken.
— UVM _DISPLAY: Sendsthe report to the standard output.
— UVM_LOG: Sendsthe report to the file(s) for this (severity, id) pair.

— UVM_COUNT: Counts the number of reports with the COUNT attribute. When this value reaches
max_quit_count, the simulation terminates.

— UVM_EXIT: Terminates the simulation immediately.
— UVM_CALL_HOOK: Callback the report hook methods.
— UVM_STOP: Causes the simulator to stop, enabling continuation as interactive session.

17.4.2 uvm_severity

The enumeration type uvm_severity shall define al possible values for report severity:
— UVM _INFO: Informative message.
— UVM_WARNING: Indicates a potential problem.

— UVM_ERROR: Indicates a rea problem. Simulation continues subject to the configured message
action.

— UVM_FATAL: Indicates a problem from which simulation cannot recover. The simulation shall be
terminated immediately.

17.4.3 uvm_verbosity

The enumeration type uvm_verbosity shall define standard verbosity levels for reports.
— UVM_NONE: Report is aways printed. Verbosity level setting cannot disable it.
— UVM_LOW: Report isissued if configured verbosity is set to UVM_LOW or above.
— UVM_MEDIUM: Report isissued if configured verbosity is set to UVYM_MEDIUM or above.
— UVM_HIGH: Report isissued if configured verbosity is set to UVM_HIGH or above.
— UVM_FULL: Reportisissued if configured verbosity isset to UVM_FULL or above.

17.4.4 uvm_active_passive_enum

The enumeration type uvm_active passive_enum shall define whether a component, usually an agent, isin
“active” mode or “passive’” mode.

— UVM_ACTIVE: uvm_agent isin“active” mode, which meansthat the sequencer, driver and monitor
are enabled.

— UVM_PASSIVE: uvm_agent isin “passive” mode, which means that only the monitor is enabled.

318
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.4.5 uvm_sequence_state_enum

The enumeration type uvm_sequence_state enum shall define the current sequence state.

UVM_CREATED: The sequence has been allocated.

UVM_PRE_START: The sequence is started and the callback uvm_sequence base::pre start is
being executed.

UVM_PRE_BODY: The sequence is started and the callback uvm_sequence base::pre body is
being executed.

UVM_BODY': The sequenceisstarted and the callback uvm_sequence base::body isbeing executed.

UVM_ENDED: The sequence has completed the execution of the calback
uvm_sequence base::body.

UVM_POST_BODY: The sequence is started and the callback uvm_sequence base::post_body is
being executed.

UVM_POST_START: The sequenceis started and the callback uvm_sequence base::post_start is
being executed.

UVM _STOPPED: The sequence has been forcibly ended by issuing auvm_sequence base::kill on
the sequence.

UVM_FINISHED: The sequence is completely finished executing.

17.4.6 uvm_phase_type

The typedef uvm_phase_type shall define an enumeration list which defines the phase type.

UVM_PHASE_IMP: The phase object is used to traverse the component hierarchy and call the
component phase method as well as the callbacks phase _started and phase_ended.

UVM_PHASE_NODE: The object represents a simple node instance in the graph. These nodes shall
contain areference to their corresponding IMP object.

UVM_PHASE SCHEDULE: The object represents a portion of the phasing graph, typically
consisting of several NODE types, in series, parallel, or both.

UVM_PHASE_TERMINAL: Thisinternal object servesasthetermination NODE for aSCHEDULE
phase object.

UVM_PHASE_DOMAIN: This object represents an entire graph segment that executes in parallel
with the run phase. Domains may define any network of NODEs and SCHEDULESs. The built-in

domain called uvm consists of asingle schedule of all the run-time phases, starting with pre_reset and
ending with post_shutdown.

17.5 uvm_coreservices_t

The class uvm_coreservice t shall provide a common point for al centra UVM services such as
uvm_factory, uvm_report_server, etc. Each service class shall provide a static member function get which
returns an instance adhering to the corresponding service provided by uvm_cor eservice t.

17.5.1 Class definition

nanmespace uvm {

class uvm coreservice_t

{

public:

virtual uvmfactory* get_factory() const = O;

319
Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

virtual void set_factory(uvmfactory* factory) = 0;

virtual uvmreport_server* get_report_server() const = O;
virtual void set_report_server(uvmreport_server* server) = 0;

virtual uvmroot* get_root() const = O;
static uvmdefaul t _coreservice_t* get();
}; /1 class uvmcoreservice_t

} /1 namespace uvm
17.5.2 Member functions

17.5.2.1 get_factory

virtual uvmfactory* get_factory() const = 0;

The member function get_factory shall return the currently enabled UVM factory. (See Section 6.4).
17.5.2.2 set_factory

virtual void set_factory(uvmfactory* facory) = 0;

The member function set_factory shall specify the currently used UVM factory given as argument.
17.5.2.3 get_report_server

virtual uvmreport_server* get_report_server() const = 0O;

The member function get_report_server shall return the current global report server. (See Section 12.4).
17.5.2.4 set_report_server

virtual void set_report_server(uvmreport_server* server) = 0;

The member function set_report_server shall specify the central report server to server.

17.5.2.5 get_root

virtual uvmroot* get root() const = 0;

The member function get_root shall return the uvm_r oot instance. (See Section 4.3).

17.5.2.6 get

static uvm.defaul t _coreservice_t* get();

The member function get shall return an instance providing the uvm_coreservice t interface.

320

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.6 uvm_default_coreservices_t

The class uvm_default_coreservice t shall provide a default implementation of the uvm_coreservice t
API. It shall instantiate the objectsuvm_default_factory (see Section 6.5), uvm_default_report_server (see
Section 12.5), and uvm_r oot (see Section 4.3).

17.6.1 Class definition

nanmespace uvm {

class uvmdefault _coreservice_t : public uvmcoreservice_t

{
public:

virtual uvmfactory* get_factory() const;
virtual void set_factory(uvmfactory* factory);

virtual uvmreport_server* get_report_server() const;
virtual void set_report_server(uvmreport_server* server);

virtual uvmroot* get_root() const;
}; // class uvm defaul t_coreservice_t

} // namespace uvm
17.6.2 Member functions
17.6.2.1 get_factory

virtual uvmfactory* get_factory() const;

The member function get_factory shall returnsthe currently enabled UVM factory. When no factory has been
set before, it shall instantiate auvm_default_factory. (See Section 6.5).

17.6.2.2 set_factory
virtual void set_factory(uvmfactory* factory);

The member function set_factory shall specify the current UVM factory.

NOTE—The application needs to preserve the contents of the original factory or delegate calls to the original
factory.

17.6.2.3 get_report_server

virtual uvmreport_server* get_report_server() const;

The member function get_report_server shal return the current global report server. If no report server has
been set before, it shall return an instance of uvm_default_report_server. (See Section 12.5).

17.6.2.4 set_report_server

virtual void set_report_server(uvmreport_server* server);

The member function set_report_server shall specify the central report server to server.

321

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

17.6.2.5 get_root

virtual uvmroot* get root() const = O;

The member function get_root shall return the uvm_root instance. (See Section 4.3).
17.6.2.6 get

static uvm defaul t_coreservice_t* get();

The member function get shall return an instance providing the uvm_coreservice t interface.

322

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

Annex A
(informative)

Glossary

This glossary contains brief, informal descriptions for a number of terms and phrases used in this standard.
Where appropriate, the complete, formal definition of each term or phrase is given in the main body of the
standard.

agent: An abstract container used to emulate and verify DUT devices; agentsencapsulateadriver, sequencer,
and monitor.

application: A C++ program, written by an end user.

blocking: An interface where tasks block execution until they complete. See also: non blocking.

callback: A member function overridden within a class in the component hierarchy that is called back by the
kernel at certain fixed points during elaboration and simulation. UVM defines pre-defined callback functions
as part of the phasing mechanism, such as end_of elaboration_phase, build_phase, connect_phase,

run_phase, etc. In addition, UVM supports the creation of user-defined callback classes and functions.

child: An instance that is within a given component. Component A is a child of component B if component
A iswithin component B. See also: parent.

component: A piece of VIP that provides functionality and interfaces. Also referred to as atransactor.
configuration: Ability to change the properties of components or objects independent from the component
hierarchy and composition. Configuration parameters can be stored in and retrieved from a central database,
which can be accessed at any place in the verification environment, and at any time during the simulation.

consumer : A verification component that receives tr ansactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usually interacting with
the device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides the implementation of methods used for
communication. Used in UVM to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time,
the exact specification of the object to be created.

fifo: Aninstance of a primitive channel that models afirst-in-first-out buffer.

foreign methodology: A verification methodology that is different from the methodology being used for the
majority of the verification environment.

generator: A verification component that provides transactions to another component. Also referred to as a
producer.

323

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

implementation: A specific concrete implementation of the UVM-SystemC class library as defined in this
standard. It only implements the public shell which need be exposed to the application (for example, parts may
be precompiled and distributed as object code by atool vendor). See also: kernel.

kernel: The core of any UVM-SystemC implementation including the underlying elaboration and simulation
engines. The kernel honors the semantics defined by this standard but may also contain implementation-
specific functionality outside the scope of this standard. See also: implementation.

member function: A function declared within a class definition, excluding friend functions. Outside of a
constructor or member function of the class or of any derived class, a non-static member function can only be
accessed using the dot . and arrow - > operators. See also: method.

method: A function that implements the behavior of a class. This term is synonymous with the C++ term
member function. In UVM-SystemC, the term method is used in the context of an interface method call.
Throughout this standard, the term member function is used when defining C++ classes (for conformance
to the C++ standard), and the term method is used in more informal contexts and when discussing interface
method calls.

monitor: A passive entity that samples DUT signals, but does not drive them.

non blocking: A call that returns immediately. See also: blocking.

primary (host) methodology: The methodology that manages the top-level operation of the verification
environment and with which the user/integrator is presumably more familiar.

process: A processinstance belongsto an implementation-defined class derived from classuvm_object. Each
process instance has an associated function that represents the behavior of the process. A process may be a
static or adynamic (e.g., spawned) process. See also: spawned process.

request: A transaction that provides information to initiate the processing of a particular operation.

recipient: The component that implements a callback or function that receives and processes a transaction.
See also: sender.

response: A transaction that provides information about the completion or status of a particular operation.
root sequence: A sequence which has no parent sequence.

scor eboar d: The mechanism used to dynamically predict the response of the design and check the observed
response against the predicted response. Usually refers to the entire dynamic response-checking structure.

sender: The component that implements a callback or function that initiates the transmission of atransaction.
See also: recipient.

sequence: A UVM object that procedurally defines a set of transactions to be executed and/or controls the
execution of other sequences.

sequencer : An advanced stimulus generator which executes sequences that define the transactions provided
to the driver for execution.

spawned process. A process instance that is dynamically created by calling the SystemC function
SC_core::sc_spawn. See also: process.

test: Specific customization of an environment to exercise required functionality of the DUT.

324

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

testbench: The structural definition of a set of verification components used to verify a DUT. Also referred
to as a verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more
components.

transactor: See component.

virtual sequence: A conceptua term for a sequence that controls the execution of sequences on other
sequencers.

325

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)

Index

A

abstract, data member

class uvm::uvm_packer 30
access_kind, data member

class uvm::uvm_reg_item 301
adapter, data member

class uvm::uvm_reg_predictor 309

class uvm::uvm_reg_sequence 314
add_by name, member function

class uvm::uvm_callbacks 142
add_coverage, member function

class uvm::uvm_mem 262

class uvm::uvm_reg 237

class uvm::uvm_reg_block 205
add_hdl_path_dlice, member function

class uvm::uvm_mem 260

class uvm::uvm_reg 235
add_hdl_path, member function

class uvm::uvm_mem 260

class uvm::uvm_reg 235

class uvm::uvm_reg_block 209

classuvm::uvm_reg_file 222
add_int, member function

class uvm::uvm_report_message 150
add_mem, member function

class uvm::uvm_reg_map 214
add_object, member function

class uvm::uvm_report_message 150
add_reg, member function

class uvm::uvm_reg_map 213
add_string, member function

class uvm::uvm_report_message 150
add_submap, member function

class uvm::uvm_reg_map 214
add_uvm_phases, member function

class uvm::uvm_domain 131
add, member function

class uvm::uvm_callbacks 142

class uvm::uvm_phase 128
addr, data member

classuvm::uvm_reg_bus op 304
adjust_name, member function

class uvm::uvm_printer 35
agent, glossary 323
all_dropped, member function

class uvm::uvm_component 71

class uvm::uvm_objection 137
allocate, member function

classuvm::uvm_vreg 271
analysis_export, export

class uvm::uvm_subscriber 81

Language Reference Manual

application, glossary 323

B

backdoor_read, member function

class uvm::uvm_mem 261

class uvm::uvm_reg 236
backdoor_watch, member function

class uvm::uvm_reg 236
backdoor_write, member function

class uvm::uvm_mem 261

class uvm::uvm_reg 236
backdoor, member function

class uvm::uvm_reg_map 220
bd_kind, data member

class uvm::uvm_reg_item 303
big_endian, data member

class uvm::uvm_packer 31
blocking, glossary 323
body, member function

class uvm::uvm_reg_sequence 311

class uvm::uvm_sequence_base 98
BROAD

enum uvm::uvm_mem_mam::locality_e 292
build_coverage, member function

class uvm::uvm_mem 262

class uvm::uvm_reg 237

class uvm::uvm_reg_block 205
build_phase, member function

class uvm::uvm_component 65
burst_read, member function

class uvm::uvm_mem 258

class uvm::uvm_mem_region 295
burst_write, member function

class uvm::uvm_mem 257

class uvm::uvm_mem_region 295
bus_in, port

class uvm::uvm_reg_predictor 308
bus2reg, member function

class uvm::uvm_reg_adapter 305

class uvm::uvm_reg_tlm_adapter 307
byte_en, data member

class uvm::uvm_reg_bus_op 304

C

callback_mode, member function
class uvm::uvm_callback 139
callback, glossary 323
can_get, member function
class uvm::uvm_nonblocking_get_peek_port 186
class uvm::uvm_nonblocking_get_port 183
can_peek, member function
class uvm::uvm_nonblocking_get_peek_port 186
class uvm::uvm_nonblocking_peek_port 185
can_put, member function
class uvm::uvm_nonblocking_put_port 182

326

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

capacity, member function
class uvm::uvm_reg_fifo 266
check_data_width, member function
class uvm::uvm_reg_block 201
check_phase, member function
class uvm::uvm_component 68
class uvm::uvm_reg_predictor 309
child, glossary 323

classes

uvm:
uvm:
uvm:
uvm:
uvm::
uvm:
uvm:
uvm:
uvm:
uvm::
uvm:
uvm::
uvm:
uvm:
uvm::
uvm:
uvm::
uvm:
uvm::
uvm:
uvm::
uvm::
uvm:
uvm::
uvm::
uvm::
uvm:
uvm:
uvm::
uvm:
uvm::
uvm:
uvm:
uvm:
uvm:
uvm::
uvm:

uvm

uvm

uvm:

:uvm_agent 78
:uvm_analysis_export 188
:uvm_analysis imp 189
:uvm_analysis port 186

uvm_blocking_get peek_port 180

:uvm_blocking_get_port 178
:uvm_blocking_peek port 179
:uvm_blocking_put_port 177
:uvm_bottomup_phase 132

uvm_callback 138

:uvm_callback_iter 140

uvm_callbacks 141

:uvm_comparer 37
:uvm_component 59

uvm_component_name 24

:uvm_component_registry 47

uvm_config_db 107

:uvm_coreservices t 319

uvm_default_coreservices t 321

:uvm_default_factory 55

uvm_default_report_server 162
uvm_domain 130

:uvm_driver 76

uvm_env 79
uvm_export_base 22
uvm_factory 49

:uvm_line_printer 37
:uvm_mem 250

uvm_mem_mam 289

:uvm_mem_region 292

uvm_monitor 77

:uvm_nonblocking_get_peek_port 185
:uvm_nonblocking_get_port 183
:uvm_nonblocking_peek_port 184
:uvm_nonblocking_put_port 181

uvm_object 10

:uvm_object_registry 45
::uvm_object_wrapper 44
uvm::
uvm::
uvm::
uvm:
uvm:
uvm:
uvm::
uvm:
uvm::
uvm:
uvm:

uvm_objection 134
uvm_packer 26
uvm_phase 125

:uvm_port_base 21
:uvm_printer 31
:uvm_process_phase 133

uvm_reg 223

:uvm_reg_adapter 305

uvm_reg_block 198

:uvm_reg_bus _op 303
:uvm_reg_chs 285
::uvm_reg_field 239
:uvm_reg_fifo 264

uvm::uvm_reg_file 220
uvm::uvm_reg_frontdoor 314
uvm::uvm_reg_indirect_data 263
uvm::uvm_reg_item 300
uvm::uvm_reg_map 211
uvm::uvm_reg_predictor 307
uvm::uvm_reg_sequence 309
uvm::uvm_reg_tlm_adapter 306
uvm::uvm_report_catcher 166
uvm::uvm_report_handler 157
uvm::uvm_report_message 145
uvm::uvm_report_object 151
uvm::uvm_report_server 159
uvm::uvm_resource 121
uvm::uvm_resource_base 113
uvm::uvm_resource_db 109
uvm::uvm_resource_db_options 112
uvm::uvm_resource_options 113
uvm::uvm_resource_pool 117
uvm::uvm_resource_types 124
uvm::uvm_root 18
uvm;:uvm_scoreboard 80
uvm::uvm_seq_item_pull_export 196
uvm::uvm_seq_item_pull_imp 197
uvm::uvm_seq_item_pull_port 195
uvm::uvm_seguence 105
uvm::uvm_sequence_base 96
uvm::uvm_sequence_item 93
uvm::uvm_sequencer 89
uvm::uvm_sequencer_base 83
uvm::uvm_sequencer_param_base 87
uvm::uvm_sgr_if_base 193
uvm::uvm_subscriber 81
uvm::uvm_table_printer 36
uvm::uvm_test 80
uvm::uvm_tim_req_rsp_channel 190
uvm::uvm_topdown_phase 132
uvm;:uvm_transaction 92
uvm::uvm_tree printer 36
uvm::uvm_void 10
uvm::uvm_vreg 268
uvm::uvm_vreg_chs 277
uvm::uvm_vreg_field 278
uvm::uvm_vreg_field _chs 284
clear_hdl_path, member function
class uvm::uvm_mem 259
class uvm::uvm_reg 234
class uvm::uvm_reg_block 209
class uvm::uvm_reg_file 222
clear_response_queue, member function
class uvm::uvm_sequence_base 104
clear, member function
class uvm::uvm_objection 135
clone, member function
class uvm::uvm_object 13
compare_field_int, member function
class uvm::uvm_comparer 39
compare_field_real, member function
class uvm::uvm_comparer 39

327

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

compare_field, member function

classuvm:

:uvm_comparer 39

compare_object, member function

classuvm:

:uvm_comparer 39

compare_string, member function

classuvm:

:uvm_comparer 40

compare_type, member function

classuvm:

:uvm_comparer 42

compare, member function

classuvm:

:uvm_object 15

component, glossary 323
compose_report_message, member function

classuvm:
classuvm:

:uvm_default_report_server 165
:uvm_report_server 161

configuration_phase, member function

classuvm:

:uvm_component 66

configuration, glossary 323
configure, member function

classuvm::
classuvm::
:uvm_reg_block 201
classuvm::
classuvm::
:uvm_reg_indirect_data 264
:uvm_reg_map 213

classuvm::
:uvm_vreg_field 280

classuvm:

classuvm:
classuvm:

classuvm:
connect_phase,
classuvm:

uvm_mem 253
uvm_reg 226

uvm_reg_field 241
uvm_reg_file 221
uvm_vreg 270

member function

:uvm_component 65

connect, member function

classuvm:
classuvm:
classuvm:
classuvm:
classuvm:
constructors

classuvm::
:uvm_analysis_export 188
:uvm_analysis imp 189
:uvm_analysis port 187
:uvm_blocking_get peek port 181
:uvm_blocking_get_port 179
:uvm_blocking_peek port 180
:uvm_blocking_put_port 178
:uvm_bottomup_phase 132
classuvm::
classuvm::
classuvm::
:uvm_component 61
classuvm::
:uvm_default_report_server 163
classuvm::
classuvm::
classuvm::
:uvm_export_base 23
:uvm_line_printer 37
classuvm::
classuvm::
classuvm::
:uvm_nonblocking_get_peek_port 185

classuvm:
classuvm:
classuvm:
classuvm:
classuvm:
classuvm:
classuvm:
classuvm:

classuvm:

classuvm:

classuvm:
classuvm:

classuvm:

:uvm_analysis_export 188
:uvm_analysis imp 190
:uvm_analysis port 187
:uvm_export_base 23
:uvm_port_base 22

uvm_agent 78

uvm_callback 139
uvm_callback_iter 140
uvm_callbacks 142

uvm_component_name 24

uvm_domain 131
uvm_driver 77
uvm_env 79

uvm_mem 253
uvm_mem_mam 289
uvm_monitor 78

class uvm::uvm_nonblocking_get_port 183
class uvm::uvm_nonblocking_peek_port 184
class uvm::uvm_nonblocking_put_port 182
class uvm::uvm_object 11
class uvm::uvm_objection 135
class uvm::uvm_phase 126
class uvm::uvm_port_base 21
class uvm::uvm_reg 226
class uvm::uvm_reg_adapter 305
class uvm::uvm_reg_block 200
classuvm::uvm_reg_field 241
class uvm::uvm_reg_fifo 265
classuvm::uvm_reg_file 221
class uvm::uvm_reg_frontdoor 315
class uvm::uvm_reg_indirect_data 264
class uvm::uvm_reg_item 301
class uvm::uvm_reg_map 213
class uvm::uvm_reg_predictor 308
class uvm::uvm_reg_sequence 311
class uvm::uvm_reg_tim_adapter 307
class uvm::uvm_report_catcher 167
class uvm::uvm_report_handler 158
class uvm::uvm_report_message 146
class uvm::uvm_report_object 152
class uvm::uvm_resource_base 114
class uvm::uvm_scoreboard 81
class uvm::uvm_seq_item_pull_export 197
class uvm::uvm_seq_item_pull_port 196
class uvm::uvm_sequence 105
class uvm::uvm_sequence_base 97
class uvm::uvm_sequence_item 94
class uvm::uvm_sequencer 89
class uvm::uvm_sequencer_base 84
class uvm::uvm_sequencer_param_base 88
class uvm::uvm_subscriber 82
class uvm::uvm_table printer 36
class uvm::uvm_test 80
class uvm::uvm_tlm req rsp_channel 193
class uvm::uvm_topdown_phase 133
class uvm::uvm_transaction 92
class uvm::uvm_tree printer 37
class uvm::uvm_vreg 270
class uvm::uvm_vreg_field 280
consumer, glossary 323
convert2string, member function
class uvm::uvm_mem_mam 291
class uvm::uvm_object 13
class uvm::uvm_reg_item 301
copy, member function
class uvm::uvm_object 14
create_component_by name, member function
class uvm::uvm_default_factory 57
class uvm::uvm_factory 53
create_component_by_type, member function
class uvm::uvm_default_factory 57
class uvm::uvm_factory 53
create_component, member function
class uvm::uvm_component 72
class uvm::uvm_component_registry 48
class uvm::uvm_object_registry 45

328

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)

create_item, member function

class uvm::uvm_sequence_base 102
create_map, member function

class uvm::uvm_reg_block 201
create_object_by _name, member function

class uvm::uvm_default_factory 57

class uvm::uvm_factory 52
create_object_by_type, member function

class uvm::uvm_default_factory 57

class uvm::uvm_factory 52
create_object, member function

class uvm::uvm_component 72

class uvm::uvm_object_registry 44, 46
create, member function

class uvm::uvm_component_registry 48

class uvm::uvm_object 12

class uvm::uvm_object_registry 46
current_grabber, member function

class uvm::uvm_sequencer_base 86

D

data, data member

class uvm::uvm_reg_bus _op 304
debug_create by _name, member function

class uvm::uvm_factory 54
debug_create by_type, member function

class uvm::uvm_factory 54
debug_object_by name, member function

class uvm::uvm_default_factory 57
debug_object_by type, member function

class uvm::uvm_default_factory 57
decode, member function

class uvm::uvm_reg_cbs 288
default_alloc, data member

class uvm::uvm_mem_mam 291
default_map, data member

class uvm::uvm_reg_block 211
default_path, data member

class uvm::uvm_reg_block 211
default_precedence, data member

class uvm::uvm_resource _base 116
define_access, member function

classuvm::uvm_reg_field 243
define_domain, member function

class uvm::uvm_component 69
defines

UVM_DEFAULT_TIMEOUT 317

UVM_MAX_STREAMBITS 317

UVM_PACKER_MAX_BYTES 317
delete_by name, member function

class uvm::uvm_callbacks 143
destroy, member function

class uvm::uvm_component_registry 48

class uvm::uvm_object_registry 46
destructors

class uvm::uvm_component_name 25
die, member function

class uvm::uvm_root 19

Language Reference Manual

display_objections, member function

class uvm::uvm_objection 138
display, member function

class uvm::uvm_callbacks 144
do_bus _read, member function

class uvm::uvm_reg_map 220
do_bus_write, member function

class uvm::uvm_reg_map 219
do_catch, member function

class uvm::uvm_report_catcher 169
do_compare, member function

class uvm::uvm_object 15
do_copy, member function

class uvm::uvm_object 14

class uvm::uvm_reg_item 301

class uvm::uvm_report_server 161
do_delete, member function

class uvm::uvm_callbacks 143
do_kill, member function

class uvm::uvm_sequence_base 102
do_pack, member function

class uvm::uvm_object 16
do_predict, member function

class uvm::uvm_reg_fifo 267
do_print, member function

class uvm::uvm_default_report_server 165

class uvm::uvm_object 13

class uvm::uvm_report_message 146

class uvm::uvm_resource_base 116
do_read, member function

class uvm::uvm_reg_map 220
do_record, member function

class uvm::uvm_object 14
do_reg_item, member function

class uvm::uvm_reg_sequence 311
do_register, member function

class uvm::uvm_default_factory 56

class uvm::uvm_factory 50
do_unpack, member function

class uvm::uvm_object 17
do_write, member function

class uvm::uvm_reg_map 220
driver, glossary 323
drop_objection, member function

class uvm::uvm_objection 136

class uvm::uvm_phase 129
dropped, member function

class uvm::uvm_component 71

class uvm::uvm_objection 137
dump, member function

class uvm::uvm_resource_db 112

class uvm::uvm_resource_pool 121

E

element_kind, data member

class uvm::uvm_reg_item 301
element, data member

class uvm::uvm_reg_item 301

329

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

emit, member function
class uvm::uvm_line_printer 37
class uvm::uvm_printer 34
class uvm::uvm_table printer 36
class uvm::uvm_tre printer 37
enable_print_topology, member function
class uvm::uvm_root 20
encode, member function
class uvm::uvm_reg_chs 288
end_of_elaboration_phase, member function
class uvm::uvm_component 65
enumerations
uvm::uvm_access_e 298
uvm::uvm_action 318
uvm::uvm_active passive_enum 318
uvm::uvm_check_e 298
uvm::uvm_coverage_model_e 299
uvm::uvm_elem_kind_e 298
uvm::uvm_endianness_e 298
uvm::uvm_hier_e 298
uvm::uvm_mem_mam::alloc_mode_e 292
uvm::uvm_mem_mam::locality_e 292
uvm::uvm_path_e 297
uvm::uvm_phase_type 319
uvm::uvm_predict_e 298
uvm::uvm_reg_mem_tests e 299
uvm::uvm_resource_types::priority_e 124
uvm::uvm_seguence_state_enum 319
uvm::uvm_severity 318
uvm::uvm_status e 297
uvm::uvm_verbosity 318
environment, glossary 323
exec_func, member function
class uvm::uvm_phase 127
exec_process, member function
class uvm::uvm_phase 128
execute_item, member function
class uvm::uvm_sequencer_base 84
execute_report_message, member function
class uvm::uvm_default_report_server 165
class uvm::uvm_report_server 161
execute, member function
class uvm::uvm_bottomup_phase 132
class uvm::uvm_process phase 134
class uvm::uvm_topdown_phase 133
exists, member function
class uvm::uvm_config_db 108
export, glossary 323
extension, data member
class uvm::uvm_reg_item 303
extract_phase, member function
class uvm::uvm_component 68

F

factory method, glossary 323
fifo, data member

class uvm::uvm_reg_fifo 268
fifo, glossary 323

final_phase, member function

class uvm::uvm_component 68
find_all, member function

class uvm::uvm_root 20
find_block, member function

class uvm::uvm_reg_block 203
find_blocks, member function

class uvm::uvm_reg_block 202
find_by name, member function

class uvm::uvm_phase 127
find_override_by name, member function

class uvm::uvm_default_factory 58

class uvm::uvm_factory 54
find_override_by type, member function

class uvm::uvm_default_factory 58

class uvm::uvm_factory 54
find_unused_resources, member function

class uvm::uvm_resource_pool 121
find, member function

class uvm::uvm_phase 127

class uvm::uvm_root 19
finish_item, member function

class uvm::uvm_sequence_base 102
first, member function

class uvm::uvm_callback_iter 140
fname, data member

class uvm::uvm_reg_item 303
for_each, member function

class uvm::uvm_mem_mam 291
format_action, member function

class uvm::uvm_report_handler 159
format_footer, member function

class uvm::uvm_printer 35
format_header, member function

class uvm::uvm_printer 35
format_row, member function

class uvm::uvm_printer 35

G

generator, glossary 323
get_access, member function

class uvm::uvm_mem 254

classuvm::uvm_reg_ field 243

class uvm::uvm_vreg 273

classuvm::uvm_vreg_field 281
get_action, member function

class uvm::uvm_report_catcher 168

class uvm::uvm_report_handler 158

class uvm::uvm_report_message 149
get_adapter, member function

class uvm::uvm_reg_map 216
get_addr_unit_bytes, member function

class uvm::uvm_reg_map 216
get_address, member function

class uvm::uvm_mem 256

class uvm::uvm_reg 229

class uvm::uvm_vreg 274
get_addresses, member function

class uvm::uvm_mem 256

330

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvm::uvm_reg 229
get_arbitration, member function

class uvm::uvm_sequencer_base 87
get_auto_predict, member function

class uvm::uvm_reg_map 219
get_automatic_phase_objection, member function

class uvm::uvm_sequence_base 99
get_backdoor, member function

class uvm::uvm_mem 259

class uvm::uvm_reg 234

class uvm::uvm_reg_block 209
get_base_addr, member function

class uvm::uvm_reg_map 216
get_block_by name, member function

class uvm::uvm_reg_block 204
get_blocks, member function

class uvm::uvm_reg_block 203
get_by _name, member function

class uvm::uvm_resource 122

class uvm::uvm_resource_db 110

class uvm::uvm_resource _pool 119
get_by_type, member function

class uvm::uvm_resource 123

class uvm::uvm_resource_db 110

class uvm::uvm_resource_pool 119
get_ch, member function

class uvm::uvm_callback_iter 141
get_check_on_read, member function

class uvm::uvm_reg_map 219
get_child, member function

class uvm::uvm_component 62
get_children, member function

class uvm::uvm_component 62
get_client, member function

class uvm::uvm_report_catcher 167
get_common_domain, member function

class uvm::uvm_domain 131
get_compare, member function

classuvm::uvm_reg_field 248
get_context, member function

class uvm::uvm_report_message 149
get_coverage, member function

class uvm::uvm_mem 263

class uvm::uvm_reg 237

class uvm::uvm_reg_block 206
get_current_item, member function

class uvm::uvm_sequence 105

class uvm::uvm_sequencer_param_base 88
get_default_hdl_path, member function

class uvm::uvm_reg_block 210

class uvm::uvm_reg_file 223
get_default_map, member function

class uvm::uvm_reg_block 202
get_default_path, member function

class uvm::uvm_reg_block 207
get_depth, member function

class uvm::uvm_component 63

class uvm::uvm_sequence_item 95
get_domain_name, member function

class uvm::uvm_phase 129

get_domain, member function

class uvm::uvm_component 69

class uvm::uvm_phase 129
get_domains, member function

class uvm::uvm_domain 131
get_drain_time, member function

class uvm::uvm_objection 138
get_element_container, member function

class uvm::uvm_report_message 150
get_end_offset, member function

class uvm::uvm_mem_region 293
get_endian, member function

class uvm::uvm_reg_map 216
get_factory, member function

class uvm::uvm_coreservices t 320

class uvm::uvm_default_coreservices t 321
get_field_attribute, member function

class uvm::uvm_comparer 42
get_field_by name, member function

class uvm::uvm_reg 228

class uvm::uvm_reg_block 205

class uvm::uvm_vreg 274
get_fields, member function

class uvm::uvm_reg 228

class uvm::uvm_reg_block 203

class uvm::uvm_reg_map 217

class uvm::uvm_vreg 274
get_file_handle, member function

class uvm::uvm_report_handler 158
get_file, member function

class uvm::uvm_report_message 149
get_filename, member function

class uvm::uvm_report_message 148
get_finish_on_completion, member function

class uvm::uvm_root 19
get_first_child, member function

class uvm::uvm_component 62
get_first, member function

class uvm::uvm_callbacks 143
get_fname, member function

class uvm::uvm_report_catcher 168
get_frontdoor, member function

class uvm::uvm_mem 259

class uvm::uvm_reg 234
get_full_hdl_path, member function

class uvm::uvm_mem 260

class uvm::uvm_reg 235

class uvm::uvm_reg_block 210

classuvm::uvm_reg_file 223
get_full_name, member function

class uvm::uvm_component 62

class uvm::uvm_export_base 23

class uvm::uvm_mem 254

class uvm::uvm_object 11

class uvm::uvm_phase 128

class uvm::uvm_port_base 22

class uvm::uvm_reg 227

class uvm::uvm_reg_block 202

classuvm::uvm_reg_field 242

classuvm::uvm_reg_file 221

331

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)

class uvm::uvm_reg_map 215

class uvm::uvm_vreg 272

class uvm::uvm_vreg_field 280
get_hdl_path_kinds, member function

class uvm::uvm_mem 261

class uvm::uvm_reg 235
get_hdl_path, member function

class uvm::uvm_mem 260

class uvm::uvm_reg 235

class uvm::uvm_reg_block 210

class uvm::uvm_reg_file 222
get_highest_precedence, member function

class uvm::uvm_resource 123

class uvm::uvm_resource_pool 119
get_id_count, member function

class uvm::uvm_default_report_server 165

class uvm::uvm_report_server 161
get_id_set, member function

class uvm::uvm_default_report_server 165

class uvm::uvm_report_server 161
get_id, member function

class uvm::uvm_report_catcher 168

class uvm::uvm_report_message 148
get_imp, member function

class uvm::uvm_phase 129
get_incr, member function

class uvm::uvm_vreg 274
get_inst_count, member function

class uvm::uvm_object 12
get_inst_id, member function

class uvm::uvm_object 12
get_is active, member function

class uvm::uvm_agent 79
get_item, member function

class uvm::uvm_reg_adapter 306
get_jump_target, member function

class uvm::uvm_phase 130
get_last, member function

class uvm::uvm_callbacks 143
get_len, member function

class uvm::uvm_mem_region 293
get_line, member function

class uvm::uvm_report_catcher 168

class uvm::uvm_report_message 149
get_Isb_pos in_register, member function

class uvm::uvm_vreg_field 280
get_Isb_pos, member function

classuvm::uvm_reg_field 242
get_map_by _name, member function

class uvm::uvm_reg_block 204
get_maps, member function

class uvm::uvm_mem 254

class uvm::uvm_reg 227

class uvm::uvm_reg_block 203

class uvm::uvm_vreg 272
get_max_messages, member function

class uvm::uvm_comparer 40
get_max_quit_count, member function

class uvm::uvm_default_report_server 163

class uvm::uvm_report_server 160

Language Reference Manual

get_max_size, member function

class uvm::uvm_mem 255

class uvm::uvm_reg 228

class uvm::uvm_reg_field 242
get_mem_by name, member function

class uvm::uvm_reg_block 205
get_mem_by_offset, member function

class uvm::uvm_reg_map 218
get_memories, member function

class uvm::uvm_reg_block 203

class uvm::uvm_reg_map 217
get_memory, member function

class uvm::uvm_mem_mam 291

class uvm::uvm_mem_region 294

class uvm::uvm_vreg 272
get_message, member function

class uvm::uvm_report_catcher 168

class uvm::uvm_report_message 148
get_mirrored_value, member function

class uvm::uvm_reg 230

classuvm::uvm_reg_field 245
get_miscompare_string, member function

class uvm::uvm_comparer 41
get_n_bits, member function

class uvm::uvm_mem 255

class uvm::uvm_reg 228

classuvm::uvm_reg_field 242

classuvm::uvm _vreg_field 281
get_n_bytes, member function

class uvm::uvm_mem 255

class uvm::uvm_mem_region 294

class uvm::uvm_reg 228

class uvm::uvm_reg_map 216

class uvm::uvm_vreg 273
get_n_maps, member function

class uvm::uvm_mem 254

class uvm::uvm_reg 227

class uvm::uvm_vreg 272
get_n_memlocs, member function

class uvm::uvm_vreg 273
get_name, member function

class uvm::uvm_export_base 23

class uvm::uvm_mem 253

class uvm::uvm_object 11

class uvm::uvm_port_base 21

class uvm::uvm_reg 227

class uvm::uvm_reg_block 202

class uvm::uvm_reg_field 242

classuvm::uvm_reg_file 221

class uvm::uvm_reg_map 215

class uvm::uvm_vreg 272

class uvm::uvm_vreg_field 280
get_next_child, member function

class uvm::uvm_component 62
get_next_item, member function

class uvm::uvm_sequencer 89

class uvm::uvm_sqgr_if_base 193
get_next, member function

class uvm::uvm_callbacks 144

332

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

get_num_children, member function

class uvm::uvm_component 62
get_object_type, member function

class uvm::uvm_object 12
get_objection_count, member function

class uvm::uvm_objection 138
get_objection_total, member function

class uvm::uvm_objection 138
get_objection, member function

class uvm::uvm_phase 129
get_objectors, member function

class uvm::uvm_objection 138
get_offset_in_memory, member function

class uvm::uvm_vreg 274
get_offset, member function

class uvm::uvm_mem 256

class uvm::uvm_reg 229
get_packed_size, member function

class uvm::uvm_packer 30
get_parent_map, member function

class uvm::uvm_reg_map 216
get_parent_sequence, member function

class uvm::uvm_sequence_item 95
get_parent, member function

class uvm::uvm_component 61

class uvm::uvm_export_base 23

class uvm::uvm_mem 254

class uvm::uvm_phase 128

class uvm::uvm_port_base 22

class uvm::uvm_reg 227

class uvm::uvm_reg_block 202

classuvm::uvm_reg_field 242

class uvm::uvm_reg_file 222

class uvm::uvm_reg_map 215

class uvm::uvm_vreg 272

class uvm::uvm_vreg_field 280
get_peek_request_export, export

class uvm::uvm_tim_req _rsp_channel 192
get_peek_response_export, export

class uvm::uvm_tim_req _rsp_channel 192
get_phase_type, member function

class uvm::uvm_phase 126
get_physical_addresses, member function

class uvm::uvm_reg_map 218
get_policy, member function

class uvm::uvm_comparer 40
get_prev, member function

class uvm::uvm_callbacks 144
get_priority, member function

class uvm::uvm_sequence_base 100
get_quit_count, member function

class uvm::uvm_default_report_server 163

class uvm::uvm_report_server 160
get_reg_by name, member function

class uvm::uvm_reg_block 204
get_reg_by offset, member function

class uvm::uvm_reg_map 218
get_regfile, member function

class uvm::uvm_reg 227

class uvm::uvm_reg_file 222

get_region, member function

class uvm::uvm_vreg 271
get_registers, member function

class uvm::uvm_reg_block 203

class uvm::uvm_reg_map 217
get_report_action, member function

class uvm::uvm_report_object 155
get_report_catcher, member function

class uvm::uvm_report_catcher 169
get_report_file_handle, member function

class uvm::uvm_report_object 155
get_report_handler, member function

class uvm::uvm_report_message 147

class uvm::uvm_report_object 157
get_report_object, member function

class uvm::uvm_report_message 146
get_report_server, member function

class uvm::uvm_coreservices t 320

class uvm::uvm_default_coreservices t 321

class uvm::uvm_report_message 147
get_report_verbosity _level, member function

class uvm::uvm_report_object 154
get_request_export, export

classuvm::uvm_tlm_req rsp_channel 191
get_reset, member function

class uvm::uvm_reg 230

classuvm::uvm_reg_field 245
get_response_export, export

class uvm::uvm_tlm_req rsp_channel 192
get_response_queue_depth, member function

class uvm::uvm_sequence_base 104

get_response_queue_error_report_disabled, member

function

class uvm::uvm_sequence_base 104
get_response, member function

class uvm::uvm_sequence 106
get_result, member function

class uvm::uvm_comparer 42
get_rights, member function

class uvm::uvm_mem 254

class uvm::uvm_reg 228

class uvm::uvm_vreg 273
get_root_blocks, member function

class uvm::uvm_reg_block 202
get_root_map, member function

class uvm::uvm_reg_map 215
get_root_sequence_name, member function

class uvm::uvm_sequence_item 95
get_root_sequence, member function

class uvm::uvm_sequence_item 95
get_root, member function

class uvm::uvm_coreservices t 320

class uvm::uvm_default_coreservices t 322
get_run_count, member function

class uvm::uvm_phase 127
get_schedule_name, member function

class uvm::uvm_phase 128
get_schedule, member function

class uvm::uvm_phase 128

333

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

get_scope, member function

class uvm::uvm_resource_hase 115
get_sequence_path, member function

class uvm::uvm_sequence_item 95
get_sequence_state, member function

class uvm::uvm_sequence_base 97
get_sequencer, member function

class uvm::uvm_reg_map 216

class uvm::uvm_sequence_item 94
get_server, member function

class uvm::uvm_report_server 162
get_severity_count, member function

class uvm::uvm_default_report_server 164

class uvm::uvm_report_server 160
get_severity _set, member function

class uvm::uvm_default_report_server 164

class uvm::uvm_report_server 161
get_severity, member function

class uvm::uvm_comparer 41

class uvm::uvm_report_catcher 167

class uvm::uvm_report_message 147
get_size, member function

class uvm::uvm_mem 255

class uvm::uvm_vreg 273
get_start_offset, member function

class uvm::uvm_mem_region 293
get_starting_phase, member function

class uvm::uvm_sequence_base 99
get_state, member function

class uvm::uvm_phase 126
get_submap_offset, member function

class uvm::uvm_reg_map 215
get_submaps, member function

class uvm::uvm_reg_map 217
get_transaction_id, member function

class uvm::uvm_transaction 93
get_type_handle, member function

class uvm::uvm_resource 122

class uvm::uvm_resource_hase 114
get_type_name, member function

class uvm::uvm_agent 79

class uvm::uvm_analysis _export 188

class uvm::uvm_analysis imp 189

class uvm::uvm_analysis port 187

class uvm::uvm_blocking_get_peek port 181

class uvm::uvm_blocking_get_port 179

class uvm::uvm_blocking_peek port 180

class uvm::uvm_blocking_put_port 178

class uvm::uvm_callback 139

class uvm::uvm_component_registry 48

class uvm::uvm_driver 77

class uvm::uvm_env 79

class uvm::uvm_export_base 23

class uvm::uvm_monitor 78

class uvm::uvm_nonblocking_get_peek_port 185

class uvm::uvm_nonblocking_get_port 183
class uvm::uvm_nonblocking_peek_port 184
class uvm::uvm_nonblocking_put_port 182
class uvm::uvm_object 12

class uvm::uvm_object_registry 45, 46

class uvm::uvm_port_base 22

class uvm::uvm_scoreboard 81

class uvm::uvm_seq_item_pull_export 197

class uvm::uvm_seq_item_pull_imp 197

class uvm::uvm_seq_item_pull_port 196

class uvm::uvm_subscriber 82

class uvm::uvm_test 80
get_type, member function

class uvm::uvm_object 12

class uvm::uvm_resource 122
get_use response_handler, member function

class uvm::uvm_sequence_base 104
get_use sequence_info, member function

class uvm::uvm_sequence_item 94
get_uvm_domain, member function

class uvm::uvm_domain 131
get_uvm_schedule, member function

class uvm::uvm_domain 131
get_verbosity level, member function

class uvm::uvm_report_handler 158
get_verbosity, member function

class uvm::uvm_comparer 41

class uvm::uvm_report_catcher 167

class uvm::uvm_report_message 148
get_vfield_by name, member function

class uvm::uvm_mem 256

class uvm::uvm_reg_block 205
get_virtual_fields, member function

class uvm::uvm_mem 255

class uvm::uvm_reg_block 204

class uvm::uvm_reg_map 217
get_virtual_registers, member function

class uvm::uvm_mem 255

class uvm::uvm_mem_region 294

class uvm::uvm_reg_block 204

class uvm::uvm_reg_map 217
get_vreg_by name, member function

class uvm::uvm_mem 255

class uvm::uvm_reg_block 205
get_vreg_by_offset, member function

class uvm::uvm_mem 256
get, member function

class uvm::uvm_blocking_get_peek port 181

class uvm::uvm_blocking_get port 179

class uvm::uvm_component_registry 48

class uvm::uvm_config_db 108

class uvm::uvm_coreservices t 320

class uvm::uvm_default_coreservices t 322

class uvm::uvm_factory 50

class uvm::uvm_object_registry 46

class uvm::uvm_reg 230

classuvm::uvm_reg_field 245

class uvm::uvm_reg_fifo 267

class uvm::uvm_resource_pool 118

class uvm::uvm_sequencer 90

classuvm::uvm_sqgr_if_base 194
global objects

uvm::uvm_default_comparer 43

uvm::uvm_default_line_printer 42

uvm::uvm_default_packer 43

334

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm::uvm_default_printer 43
uvm::uvm_default_recorder 43
uvm::uvm_default_table printer 42
uvm::uvm_default_tree printer 42
global types
uvm::uvm_hdl_path_slice 297
uvm::uvm_reg_addr_logic_t 296
uvm::uvm_reg_addr_t 296
uvm::uvm_reg_byte en_t 297
uvm::uvm_reg_cvr_t 297
uvm::uvm_reg_data logic_t 296
uvm::uvm_reg_data t 296
grab, member function
class uvm::uvm_sequence_base 101
class uvm::uvm_sequencer_base 85
GREEDY
uvm::uvm_mem_mam::alloc_mode_e, enumeration
292

H

has_child, member function

class uvm::uvm_component 62
has_coverage, member function

class uvm::uvm_mem 262

class uvm::uvm_reg 237

class uvm::uvm_reg_block 206
has_do_available, member function

class uvm::uvm_sequencer_base 86
has_hdl_path, member function

class uvm::uvm_mem 260

class uvm::uvm_reg 235

class uvm::uvm_reg_block 210

classuvm::uvm_reg_file 222
has_lock, member function

class uvm::uvm_sequence_base 101

class uvm::uvm_sequencer_base 85
has_reset, member function

class uvm::uvm_reg 231

classuvm::uvm_reg_field 245

implement, member function

class uvm::uvm_vreg 270
implementation, glossary 324
include_coverage, member function

class uvm::uvm_reg 236
incr_id_count, member function

class uvm::uvm_default_report_server 165
incr_quit_count, member function

class uvm::uvm_default_report_server 163
incr_severity_count, member function

class uvm::uvm_default_report_server 164
init_access record, member function

class uvm::uvm_resource_hase 116
is_after, member function

class uvm::uvm_phase 127

is_auditing, member function

class uvm::uvm_resource_options 113
is_before, member function

class uvm::uvm_phase 127
is_blocked, member function

class uvm::uvm_sequence_base 101

class uvm::uvm_sequencer_base 85
is_busy, member function

class uvm::uvm_reg 233
is_child, member function

class uvm::uvm_sequencer_base 84
is_enabled, member function

class uvm::uvm_callback 139
is_grabbed, member function

class uvm::uvm_sequencer_base 86
is_hdl_path_root, member function

class uvm::uvm_reg_block 211
is_in_map, member function

class uvm::uvm_mem 254

class uvm::uvm_reg 227

class uvm::uvm_vreg 272
is_indv_accessible, member function

classuvm::uvm_reg_field 248
is_item, member function

class uvm::uvm_sequence_item 95
is_known_access, member function

class uvm::uvm_reg_field 244
is_locked, member function

class uvm::uvm_reg_block 202
is_null, member function

class uvm::uvm_packer 28
is_quit_count_reached, member function

class uvm::uvm_default_report_server 164

is read_only, member function

class uvm::uvm_resource_base 115
is_relevant, member function

class uvm::uvm_sequence_base 100
is_tracing, member function

class uvm::uvm_resource_db_options 112

is_volatile, member function
class uvm::uvm_reg_field 244
is, member function
class uvm::uvm_phase 127
issue, member function
class uvm::uvm_report_catcher 170
item_done, member function
class uvm::uvm_sequencer 90
classuvm::uvm_sqgr_if_base 194

J

jump, member function
class uvm::uvm_phase 130

K

kernel, glossary 324
kill, member function
class uvm::uvm_sequence_base 102

335

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

kind, data member

class uvm::uvm_reg_bus _op 304
knobs, data member

class uvm::uvm_printer 36

L

last, member function

class uvm::uvm_callback_iter 140
lineno, data member

class uvm::uvm_reg_item 303
local_map, data member

class uvm::uvm_reg_item 302
locality_e, enumeration

class uvm::uvm_mem_mam 292
lock_model, member function

class uvm::uvm_reg_block 202
lock, member function

class uvm::uvm_sequence_base 101

class uvm::uvm_sequencer_base 85
lookup_name, member function

class uvm::uvm_resource_pool 119
lookup_regex_names, member function

class uvm::uvm_resource_pool 120
lookup_regex, member function

class uvm::uvm_resource_pool 120
lookup_scope, member function

class uvm::uvm_resource_pool 120
lookup_type, member function

class uvm::uvm_resource_pool 119
lookup, member function

class uvm::uvm_component 63

M

macros
UVM_COMPONENT_PARAM_UTILS 172
UVM_COMPONENT _UTILS 172
UVM_CREATE 174
UVM_CREATE_ON 174
UVM_DECLARE_P_SEQUENCER 90, 174
UVM_DO 174
UVM_DO _CALLBACKS176
UVM_DO ON 174
UVM_DO ON_PRI 174
UVM_DO PRI 174
UVM_ERROR 173
UVM_FATAL 173
UVM_INFO 173
UVM_OBJECT PARAM_UTILS172
UVM_OBJECT UTILS172
UVM_REGISTER CB 176
UVM_WARNING 173

main_phase, member function
class uvm::uvm_component 67

map, data member
class uvm::uvm_reg_item 302
class uvm::uvm_reg_predictor 309

master_export, export

class uvm::uvm_tlm_req rsp_channel 192
match_scope, member function

class uvm::uvm_resource _base 115
member function, glossary 324
method, glossary 324
mid_do, member function

class uvm::uvm_sequence_base 98
mirror_reg, member function

class uvm::uvm_reg_sequence 313
mirror, member function

class uvm::uvm_reg 232

class uvm::uvm_reg_block 208

classuvm::uvm_reg_field 248

class uvm::uvm_reg_fifo 267
model, data member

class uvm::uvm_reg_sequence 314
monitor, glossary 324

N

n_bits, data member

class uvm::uvm_reg_bus_op 304
NEARBY

enum uvm::uvm_mem_mam::locality_e 292
needs_update, member function

class uvm::uvm_reg 230

class uvm::uvm_reg_block 207

classuvm::uvm_reg_field 246
next, member function

class uvm::uvm_callback_iter 141
non blocking, glossary 324

O

offset, data member

class uvm::uvm_reg_item 302
operator const char*()

class uvm::uvm_component_name 25
override t, typedef

class uvm::uvm_resource_types 124

P

pack_bytes, member function
class uvm::uvm_object 15
pack_field_int, member function
class uvm::uvm_packer 28
pack_field, member function
class uvm::uvm_packer 27
pack_ints, member function
class uvm::uvm_object 16
pack_object, member function
class uvm::uvm_packer 28
pack_real, member function
class uvm::uvm_packer 28
pack_string, member function
class uvm::uvm_packer 28

336

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

pack_time, member function

class uvm::uvm_packer 28
pack, member function

class uvm::uvm_object 15
parent_sequence, data member

class uvm::uvm_reg_adapter 306
parent, data member

class uvm::uvm_reg_item 302
path, data member

class uvm::uvm_reg_item 302
peek_mem, member function

class uvm::uvm_reg_sequence 314
peek_reg, member function

class uvm::uvm_reg_sequence 312
peek, member function

class uvm::uvm_blocking_get_peek port 181

class uvm::uvm_blocking_peek port 180

class uvm::uvm_mem 258

class uvm::uvm_mem_region 296

class uvm::uvm_reg 232

classuvm::uvm_reg_field 247

class uvm::uvm_sequencer 90

classuvm::uvm_sgr_if _base 195

class uvm::uvm_vreg 275

class uvm::uvm_vreg_field 282
phase_ended, member function

class uvm::uvm_component 69
phase_ready to_end, member function

class uvm::uvm_component 69
phase_started, member function

class uvm::uvm_component 68
physical, data member

class uvm::uvm_packer 30
poke_mem, member function

class uvm::uvm_reg_sequence 313
poke _reg, member function

class uvm::uvm_reg_sequence 312
poke, member function

class uvm::uvm_mem 258

class uvm::uvm_mem_region 295

class uvm::uvm_reg 232

classuvm::uvm_reg_field 247

class uvm::uvm_vreg 275

class uvm::uvm_vreg_field 282
port_write, member function

class uvm::uvm_vreg 276
post_body, member function

class uvm::uvm_sequence_base 99
post_configuration_phase, member function

class uvm::uvm_component 66
post_do, member function

class uvm::uvm_sequence_base 98
post_main_phase, member function

class uvm::uvm_component 67
post_predict, member function

class uvm::uvm_reg_chs 288
post_read, member function

class uvm::uvm_mem 262

class uvm::uvm_reg 239

class uvm::uvm_reg_chs 287

class uvm::uvm_reg_field 250

class uvm::uvm_vreg 277

class uvm::uvm_vreg_chs 278

class uvm::uvm_vreg_field 283

class uvm::uvm_vreg_field _chs 285
post_reset_phase, member function

class uvm::uvm_component 66
post_shutdown_phase, member function

class uvm::uvm_component 68
post_start, member function

class uvm::uvm_sequence_base 99
post_write, member function

class uvm::uvm_mem 261

class uvm::uvm_reg 238

class uvm::uvm_reg_chs 286

class uvm::uvm_reg_field 249

class uvm::uvm_vreg_chs 277

class uvm::uvm_vreg_field 283

class uvm::uvm_vreg_field _chs 284
pre_abort, member function

class uvm::uvm_component 75
pre_body, member function

class uvm::uvm_sequence_base 98
pre_configuration_phase, member function

class uvm::uvm_component 66
pre_do, member function

class uvm::uvm_sequence_base 98
pre_main_phase, member function

class uvm::uvm_component 67
pre_predict, member function

class uvm::uvm_reg_predictor 308
pre_read, member function

class uvm::uvm_mem 261

class uvm::uvm_reg 239

class uvm::uvm_reg_chs 287

class uvm::uvm_reg_field 249

class uvm::uvm_reg_fifo 268

class uvm::uvm_vreg 276

class uvm::uvm_vreg_chs 278

class uvm::uvm_vreg_field 283

class uvm::uvm_vreg_field _chs 285
pre_reset_phase, member function

class uvm::uvm_component 65
pre_shutdown_phase, member function

class uvm::uvm_component 67
pre_start, member function

class uvm::uvm_sequence_base 98
pre_write, member function

class uvm::uvm_mem 261

class uvm::uvm_reg 238

class uvm::uvm_reg_chs 286

class uvm::uvm_reg_field 249

class uvm::uvm_reg_fifo 268

class uvm::uvm_vreg 276

class uvm::uvm_vreg_chs 277

class uvm::uvm_vreg_field 282

class uvm::uvm_vreg_field _chs 284
precedence, data member

class uvm::uvm_resource_base 116

337

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

predict, member function

class uvm::uvm_reg 233

classuvm::uvm_reg_field 248
prev, member function

class uvm::uvm_callback_iter 141
PRI_HIGH

enum uvm::uvm_resource_types::priority_e 124
PRI_LOW

enum uvm::uvm_resource_types::priority_e 124
primary (host) methodology, glossary 324
print_accessors, member function

class uvm::uvm_resource _hase 116
print_array_footer, member function

class uvm::uvm_printer 35
print_array_header, member function

class uvm::uvm_printer 35
print_array_range, member function

class uvm::uvm_printer 35
print_catcher, member function

class uvm::uvm_report_catcher 169
print_config_matches, member function

class uvm::uvm_component 71
print_config_with_audit, member function

class uvm::uvm_component 71
print_config, member function

class uvm::uvm_component 70
print_double, member function

class uvm::uvm_printer 33
print_field_int, member function

class uvm::uvm_printer 33
print_field, member function

class uvm::uvm_printer 32
print_generic, member function

class uvm::uvm_printer 34
print_msg, member function

class uvm::uvm_comparer 40
print_object_header, member function

class uvm::uvm_printer 34
print_object, member function

class uvm::uvm_printer 33
print_override_info, member function

class uvm::uvm_component 73
print_real, member function

class uvm::uvm_printer 33
print_resources, member function

class uvm::uvm_resource _pool 121
print_string, member function

class uvm::uvm_printer 34
print_time, member function

class uvm::uvm_printer 34
print_topology, member function

class uvm::uvm_root 20
print, member function

class uvm::uvm_default_factory 58

class uvm::uvm_factory 54

class uvm::uvm_object 13
prior, data member

class uvm::uvm_reg_item 303
priority_e, enumeration

class uvm::uvm_resource_types 124

process, glossary 324
provides responses, data member
class uvm::uvm_reg_adapter 306
put_request_export, export
classuvm::uvm_tlm req rsp_channel 191
put_response_export, export
classuvm::uvm_tlm_req rsp_channel 191
put, member function
class uvm::uvm_blocking_put_port 178
class uvm::uvm_sequencer 90
class uvm::uvm_sqgr_if_base 195

R

raise_objection, member function
class uvm::uvm_objection 136
class uvm::uvm_phase 129
raised, member function
class uvm::uvm_component 71
class uvm::uvm_objection 137
read_by name, member function
class uvm::uvm_resource_db 111
read_by_type, member function
class uvm::uvm_resource_db 111
read_mem_by name, member function
class uvm::uvm_reg_block 209
read_mem, member function
class uvm::uvm_reg_sequence 313
read_reg_by name, member function
class uvm::uvm_reg_block 208
read_reg, member function
class uvm::uvm_reg_sequence 312
read, member function
class uvm::uvm_mem 257
class uvm::uvm_mem_region 294
class uvm::uvm_reg 231
classuvm::uvm_reg_field 247
class uvm::uvm_reg_fifo 266
class uvm::uvm_resource 123
class uvm::uvm_vreg 275
classuvm::uvm_vreg_field 281
recipient, glossary 324
reconfigure, member function
class uvm::uvm_mem_mam 290
record_read _access, member function
class uvm::uvm_resource_base 116
record_write_access, member function
class uvm::uvm_resource_base 116
record, member function
class uvm::uvm_object 14
reg_ap, port
class uvm::uvm_reg_predictor 308
reg_segr, data member
class uvm::uvm_reg_sequence 314
reg2bus, member function
class uvm::uvm_reg_adapter 305
class uvm::uvm_reg_tlm_adapter 307
release_all_regions, member function
class uvm::uvm_mem_mam 291

338

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

release_region, member function

class uvm::uvm_mem_mam 291

class uvm::uvm_mem_region 294

class uvm::uvm_vreg 271
report_phase, member function

class uvm::uvm_component 68
report_summarize, member function

class uvm::uvm_default_report_server 165

class uvm::uvm_report_server 161
report, member function

class uvm::uvm_report_handler 159
request_ap, port

class uvm::uvm_tim_req rsp_channel 191
request_region, member function

class uvm::uvm_mem_mam 290
request, glossary 324
reserve_region, member function

class uvm::uvm_mem_mam 290
reset_phase, member function

class uvm::uvm_component 66
reset_quit_count, member function

class uvm::uvm_default_report_server 164
reset_report_handler, member function

class uvm::uvm_report_object 157
reset_severity_counts, member function

class uvm::uvm_default_report_server 164
reset, member function

class uvm::uvm_reg 230

class uvm::uvm_reg_block 207

classuvm::uvm_reg_field 245

class uvm::uvm_reg_map 215

class uvm::uvm_vreg 276
response_ap, port

class uvm::uvm_tim_req rsp_channel 191
response_handler, member function

class uvm::uvm_sequence_base 104
response, glossary 324
resume, member function

class uvm::uvm_component 70
root sequence, glossary 324
rsp_port, port

class uvm::uvm_driver 77
rsrc_q_t, typedef

class uvm::uvm_resource_types 124
run_phase, member function

class uvm::uvm_component 65
run_test, member function

class uvm::uvm_root 18
rw_info, data member

class uvm::uvm_reg_frontdoor 315

S

sample_values, member function
class uvm::uvm_reg 238
class uvm::uvm_reg_block 206
sample, member function
class uvm::uvm_mem 263
class uvm::uvm_reg 238
class uvm::uvm_reg_block 206

scoreboard, glossary 324
send_request, member function

class uvm::uvm_sequence 105

class uvm::uvm_sequence_base 103

class uvm::uvm_sequencer_base 87

class uvm::uvm_sequencer_param_base 88
sender, glossary 324
seq_item_export, export

class uvm::uvm_sequencer 89
seq_item_port, port

class uvm::uvm_driver 77
sequence, glossary 324
sequencer, data member

class uvm::uvm_reg_frontdoor 315
sequencer, glossary 324
set_access, member function

classuvm::uvm_reg_field 242
set_action, member function

class uvm::uvm_report_catcher 169

class uvm::uvm_report_message 149
set_anonymous, member function

class uvm::uvm_resource _db 111
set_arbitration, member function

class uvm::uvm_sequencer_base 87
set_auto_predict, member function

class uvm::uvm_reg_map 218
set_automatic_phase_objection, member function

class uvm::uvm_sequence_base 99
set_backdoor, member function

class uvm::uvm_mem 259

class uvm::uvm_reg 234

class uvm::uvm_reg_block 209
set_base_addr, member function

class uvm::uvm_reg_map 215
set_check_on_read, member function

class uvm::uvm_reg_map 219
set_compare, member function

classuvm::uvm_reg_field 248

class uvm::uvm_reg_fifo 266
set_context, member function

class uvm::uvm_report_message 149
set_coverage, member function

class uvm::uvm_mem 262

class uvm::uvm_reg 237

class uvm::uvm_reg_block 206
set_default_hdl_path, member function

class uvm::uvm_reg_block 210

classuvm::uvm_reg_file 223
set_default_map, member function

class uvm::uvm_reg_block 201
set_default, member function

class uvm::uvm_resource_db 110
set_depth, member function

class uvm::uvm_sequence_item 95
set_domain, member function

class uvm::uvm_component 69
set_drain_time, member function

class uvm::uvm_objection 137
set_factory, member function

class uvm::uvm_coreservices t 320

339

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvm::uvm_default_coreservices t 321
set_field_attribute, member function

class uvm::uvm_comparer 41
set_file, member function

class uvm::uvm_report_message 150
set_filename, member function

class uvm::uvm_report_message 148
set_finish_on_completion, member function

class uvm::uvm_root 19
set_frontdoor, member function

class uvm::uvm_mem 258

class uvm::uvm_reg 233
set_hdl_path_root, member function

class uvm::uvm_reg_block 210
set_id_count, member function

class uvm::uvm_default_report_server 164

class uvm::uvm_report_server 160
set_id_info, member function

class uvm::uvm_sequence_item 94
set_id, member function

class uvm::uvm_report_catcher 169

class uvm::uvm_report_message 148
set_inst_override_by name, member function

class uvm::uvm_default_factory 56

class uvm::uvm_factory 51
set_inst_override_by type, member function

class uvm::uvm_component 72

class uvm::uvm_default_factory 56

class uvm::uvm_factory 51
set_inst_override, member function

class uvm::uvm_component 73

class uvm::uvm_component_registry 49

class uvm::uvm_object_registry 47
set_line, member function

class uvm::uvm_report_message 149
set_max_messages, member function

class uvm::uvm_comparer 40
set_max_quit_count, member function

class uvm::uvm_default_report_server 163

class uvm::uvm_report_server 160
set_message, member function

class uvm::uvm_report_catcher 169

class uvm::uvm_report_message 148
set_miscompare_string, member function

class uvm::uvm_comparer 41
set_name_override, member function

class uvm::uvm_resource _pool 118
set_name, member function

class uvm::uvm_object 11
set_offset, member function

class uvm::uvm_mem 253

class uvm::uvm_reg 226
set_override, member function

class uvm::uvm_resource 122

class uvm::uvm_resource _pool 118
set_parent_sequence, member function

class uvm::uvm_sequence_item 94
set_phase_imp, member function

class uvm::uvm_component 69

set_policy, member function

class uvm::uvm_comparer 40
set_priority_name, member function

class uvm::uvm_resource_pool 120
set_priority_type, member function

class uvm::uvm_resource_pool 120
set_priority, member function

class uvm::uvm_resource 123

class uvm::uvm_resource_base 115

class uvm::uvm_resource_pool 120

class uvm::uvm_sequence_base 100
set_quit_count, member function

class uvm::uvm_default_report_server 163

class uvm::uvm_report_server 160
set_read_only, member function

class uvm::uvm_resource_base 114
set_report_default_file_hier, member function

class uvm::uvm_component 75
set_report_default_file, member function

class uvm::uvm_report_object 155
set_report_handler, member function

class uvm::uvm_report_message 147

class uvm::uvm_report_object 157
set_report_id_action_hier, member function

class uvm::uvm_component 74
set_report_id_action, member function

class uvm::uvm_report_object 155
set_report_id_file_hier, member function

class uvm::uvm_component 75
set_report_id_file, member function

class uvm::uvm_report_object 156
set_report_id_verbosity _hier, member function

class uvm::uvm_component 74
set_report_id_verbosity, member function

class uvm::uvm_report_object 154
set_report_message, member function

class uvm::uvm_report_message 150
set_report_object, member function

class uvm::uvm_report_message 147
set_report_server, member function

class uvm::uvm_coreservices t 320

class uvm::uvm_default_coreservices t 321

class uvm::uvm_report_message 147
set_report_severity_action_hier, member function

class uvm::uvm_component 74
set_report_severity_action, member function

class uvm::uvm_report_object 155
set_report_severity_file_hier, member function

class uvm::uvm_component 75
set_report_severity_file, member function

class uvm::uvm_report_object 156
set_report_severity_id_action_hier, member function

class uvm::uvm_component 74
set_report_severity_id_action, member function

class uvm::uvm_report_object 155
set_report_severity_id _file_hier, member function

class uvm::uvm_component 75
set_report_severity_id_file, member function

class uvm::uvm_report_object 156

340

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

set_report_severity_id_override, member function
class uvm::uvm_report_object 156

set_report_severity_id verbosity _hier, member function

class uvm::uvm_component 74
set_report_severity_id verbosity, member function

class uvm::uvm_report_object 154
set_report_severity_override, member function

class uvm::uvm_report_object 156
set_report_verbosity _level _hier, member function

class uvm::uvm_component 75
set_report_verbosity_level, member function

class uvm::uvm_report_object 154
set_reset, member function

class uvm::uvm_reg 231

class uvm::uvm_reg_field 246
set_response_queue_depth, member function

class uvm::uvm_sequence_base 104
set_response_queue_error_report_disabled, member

function

class uvm::uvm_sequence_base 104
set_scope, member function

class uvm::uvm_resource_hase 115
set_sequencer, member function

class uvm::uvm_reg_map 214

class uvm::uvm_sequence_item 94
set_server, member function

class uvm::uvm_report_server 162
set_severity_count, member function

class uvm::uvm_default_report_server 164

class uvm::uvm_report_server 160
set_severity, member function

class uvm::uvm_comparer 41

class uvm::uvm_report_catcher 168

class uvm::uvm_report_message 147
set_starting_phase, member function

class uvm::uvm_sequence_base 99
set_submap_offset, member function

class uvm::uvm_reg_map 214
set_timeout, member function

class uvm::uvm_root 19
set_transaction_id, member function

class uvm::uvm_transaction 93
set_type override_by name, member function

class uvm::uvm_default_factory 56

class uvm::uvm_factory 52
set_type override_by type, member function

class uvm::uvm_component 72

class uvm::uvm_default_factory 56

class uvm::uvm_factory 52
set_type_override, member function

class uvm::uvm_component 73

class uvm::uvm_component_registry 49

class uvm::uvm_object_registry 46

class uvm::uvm_resource _pool 118
set_use sequence_info, member function

class uvm::uvm_sequence_item 94
set_verbosity, member function

class uvm::uvm_comparer 40

class uvm::uvm_report_catcher 169

class uvm::uvm_report_message 148

set_volatility, member function

class uvm::uvm_reg_field 244
set, member function

class uvm::uvm_config_db 108

class uvm::uvm_reg 229

classuvm::uvm_reg_field 244

class uvm::uvm_reg_fifo 267

class uvm::uvm_resource 122

class uvm::uvm_resource_db 110

class uvm::uvm_resource_pool 118
shutdown_phase, member function

class uvm::uvm_component 67
size, member function

class uvm::uvm_reg_fifo 266
slave_export, export

class uvm::uvm_tlm_req rsp_channel 192
sort_by_precedence, member function

class uvm::uvm_resource_pool 119
spawned process, glossary 324
spell_check, member function

class uvm::uvm_resource_pool 118
sprint, member function

class uvm::uvm_object 13
start_item, member function

class uvm::uvm_sequence_base 102
start_of _simulation_phase, member function

class uvm::uvm_component 65
start_phase_segquence, member function

class uvm::uvm_sequencer_base 84
start, member function

class uvm::uvm_sequence_base 97
status, data member

class uvm::uvm_reg_bus _op 304

class uvm::uvm_reg_item 302
stop_sequences, member function

class uvm::uvm_sequencer 90

class uvm::uvm_sequencer_base 86
summarize_report_catcher, member function

class uvm::uvm_report_catcher 171
supports_byte enable, data member

class uvm::uvm_reg_adapter 306
suspend, member function

class uvm::uvm_component 70
sync, member function

class uvm::uvm_phase 129

T

test, glossary 324
testbench, glossary 325
THRIFTY

uvm::uvm_mem_mam::alloc_mode_e, enumeration

292
trace_mode, member function
class uvm::uvm_objection 135
transaction, glossary 325
transactor, glossary 325
traverse, member function
class uvm::uvm_bottomup_phase 132
class uvm::uvm_process_phase 134

341

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

class uvm::uvm_topdown_phase 133
try_get, member function

class uvm::uvm_nonblocking_get_peek_port 186
try_next_item, member function

class uvm::uvm_sequencer 90

class uvm::uvm_sqr_if_base 194
try_peek, member function

class uvm::uvm_nonblocking_get_peek_port 186

class uvm::uvm_nonblocking_peek_port 184
try_put, member function

class uvm::uvm_nonblocking_put_port 182
turn_off_auditing, member function

class uvm::uvm_resource_options 113
turn_off_tracing, member function

class uvm::uvm_resource_db_options 112
turn_on_auditing, member function

class uvm::uvm_resource_options 113
turn_on_tracing, member function

class uvm::uvm_resource_db_options 112

U

ungrab, member function

class uvm::uvm_sequence_base 101

class uvm::uvm_sequencer_base 86
unlock, member function

class uvm::uvm_sequence_base 101

class uvm::uvm_sequencer_base 86
unpack_bytes, member function

class uvm::uvm_object 16
unpack_field_int, member function

class uvm::uvm_packer 29
unpack_field, member function

class uvm::uvm_packer 29
unpack_ints, member function

class uvm::uvm_object 17
unpack_object, member function

class uvm::uvm_packer 29
unpack_real, member function

class uvm::uvm_packer 29
unpack_string, member function

class uvm::uvm_packer 29
unpack_time, member function

class uvm::uvm_packer 29
unpack, member function

class uvm::uvm_object 16
unsync, member function

class uvm::uvm_phase 130
update_reg, member function

class uvm::uvm_reg_sequence 312
update, member function

class uvm::uvm_reg 232

class uvm::uvm_reg_block 207

classuvm::uvm_reg_fifo 267
use_metadata, data member

class uvm::uvm_packer 31
use_response_handler, member function

class uvm::uvm_sequence_base 103
user_priority_arbitration, member function

class uvm::uvm_sequencer_base 84

UVM_ACTIVE

enum uvm::uvm_active passive_enum 318
UVM_BACKDOOR

uvm::uvm_path_e, enumeration 297
UVM_BIG_ENDIAN

uvm::uvm_endianness_e, enumeration 298
UVM_BIG_FIFO

uvm::uvm_endianness_e, enumeration 298
UVM_BODY

enum uvm::uvim_sequence_state_enum 319
UVM_CALL_HOOK

enum uvm::uvm_action 318
uvm_callback_iter, class 140
uvm_callback, class 138
UVM_CHECK

uvm::uvm_check_e, enumeration 298
UVM_COMPONENT_PARAM_UTILS, macro 172
UVM_COMPONENT_UTILS, macro 172
UVM_COUNT

enum uvm::uvm_action 318
UVM_CREATE

macro 174
UVM_CREATE_ON

macro 174
UVM_CREATED

enum uvm::uvm_sequence_state_enum 319
UVM_CVR_ALL

uvm::uvm_coverage_model_e, enumeration 299
UVM_CVR_FIELD_VALS

uvm::uvm_coverage_model_e, enumeration 299
UVM_CVR_REG BITS

uvm::uvm_coverage_model_e, enumeration 299
UVM_DECLARE_P_SEQUENCER

macro 174
UVM_DECLARE_P_SEQUENCER, macro

class uvm::uvm_sequencer 90
UVM_DEFAULT_PATH

uvm::uvm_path_e, enumeration 297
UVM_DEFAULT_TIMEOUT, define 317
UVM_DISPLAY

enum uvm::uvm_action 318
UVM_DO

macro 174
UVM_DO_ALL_REG_MEM_TESTS

uvm::uvm_reg_mem_tests e, enumeration 299
UVM_DO_CALLBACKS, macro 176
UVM_DO_MEM_ACCESS

uvm::uvm_reg_mem_tests e, enumeration 299
UVM_DO_MEM_WALK

uvm::uvm_reg_mem_tests e, enumeration 299
UVM_DO_ON

macro 174
UVM_DO_ON_PRI

macro 174
UVM_DO PRI

macro 174
UVM_DO_REG_ACCESS

uvm::uvm_reg_mem_tests e, enumeration 299
UVM_DO_REG BIT_BASH

uvm::uvm_reg_mem_tests e, enumeration 299

342

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

UVM_DO_REG HW_RESET

uvm::uvm_reg_mem_tests e, enumeration 299
UVM_DO_SHARED_ACCESS

uvm::uvm_reg_mem_tests e, enumeration 299
UVM_ENDED

enum uvm::vm_sequence_state_enum 319
UVM_ERROR

enum uvm::uvm_severity 318

macro 173
UVM_EXIT

enum uvm::uvm_action 318
UVM_FATAL

enum uvm::uvm_severity 318

macro 173
UVM_FIELD

uvm::uvm_elem_kind_e, enumeration 298
UVM_FINISHED

enum uvm::uvm_sequence_state_enum 319
UVM_FRONTDOOR

uvm::uvm_path_e, enumeration 297
UVM_FULL

enum uvm::uvm_verbosity 318
UVM_HAS X

uvm::uvm_status e, enumeration 297
UVM_HIER

uvm::uvm_hier_e, enumeration 298
UVM_HIGH

enum uvm::uvm_verbosity 318
UVM_INFO

enum uvm::uvm_severity 318

macro 173
UVM_IS OK

uvm::uvm_status e, enumeration 297
UVM_LITTLE_ENDIAN

uvm::uvm_endianness_e, enumeration 298
UVM_LITTLE_FIFO

uvm::uvm_endianness_e, enumeration 298
UVM_LOG

enum uvm::uvm_action 318
UVM_LOW

enum uvm::uvm_verbosity 318
UVM_MAX_STREAMBITS, define 317
UVM_MEDIUM

enum uvm::uvm_verbosity 318
UVM_MEM

uvm::uvm_elem_kind_e, enumeration 298
UVM_NO_ACTION

enum uvm::uvm_action 318
UVM_NO_CHECK

uvm::uvm_check_e, enumeration 298
UVM_NO_COVERAGE

uvm::uvm_coverage_model_e, enumeration 299
UVM_NO_ENDIAN

uvm::uvm_endianness_e, enumeration 298
UVM_NO HIER

uvm::uvm_hier_e, enumeration 298
UVM_NONE

enum uvm::uvm_verbosity 318
UVM_NOT_OK

uvm::uvm_status e, enumeration 297

UVM_OBJECT_PARAM_UTILS, macro 172
UVM_OBJECT_UTILS, macro 172
UVM_PACKER _MAX_BYTES, define 317
UVM_PASSIVE

enum uvm::uvm_active passive_enum 318
UVM_PHASE_DOMAIN

enum uvm::uvm_phase _type 319
UVM_PHASE_IMP

enum uvm::uvm_phase _type 319
UVM_PHASE_NODE

enum uvm::uvm_phase _type 319
UVM_PHASE SCHEDULE

enum uvm::uvm_phase _type 319
UVM_PHASE TERMINAL

enum uvm::uvm_phase type 319
UVM_POST_BODY

enum uvm::uvm_sequence_state_enum 319
UVM_POST_START

enum uvm_sequence_state_enum 319
UVM_PRE_BODY

enum uvm::uvim_sequence_state_enum 319
UVM_PRE_START

enum uvm::uvim_sequence_state_enum 319
UVM_PREDICT

uvm::uvm_path_e, enumeration 297
UVM_PREDICT_DIRECT

uvm::uvm_predict_e, enumeration 298
UVM_PREDICT_READ

uvm::uvm_predict_e, enumeration 298
UVM_PREDICT_WRITE

uvm::uvm_predict_e, enumeration 298
UVM_READ

uvm::uvm_access_e, enumeration 298
UVM_REG

uvm::uvm_elem_kind_e, enumeration 298
UVM_REGISTER_CB, macro 176
uvm_report_enabled, member function

class uvm::uvm_report_object 153
uvm_report_error, member function

class uvm::uvm_report_catcher 170

class uvm::uvm_report_object 154
uvm_report_fatal, member function

class uvm::uvm_report_catcher 170

class uvm::uvm_report_object 154
uvm_report_info, member function

class uvm::uvm_report_catcher 170

class uvm::uvm_report_object 153
uvm_report_warning, member function

class uvm::uvm_report_catcher 170

class uvm::uvm_report_object 153
UVM_STOP

enum uvm::uvm_action 318
UVM_STOPPED

enum uvm::uvm_sequence_state_enum 319
uvm_top, data member

class uvm::uvm_root 20
UVM_WARNING

enum uvm::uvm_severity 318

macro 173

343

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

UVM_WRITE

uvm::uvm_access_e, enumeration 298
uvm::run_test, global function 316
uvm::uvm_access_e, enumeration 298
uvm::uvm_action, enumeration 318
uvm::uvm_active_passive_enum, enumeration 318
uvm::uvm_agent, class 78
uvm::uvm_analysis_export, class 188
uvm::uvm_analysis imp, class 189
uvm::uvm_analysis port, class 186
uvm::uvm_bitstream _t, typdef 317
uvm::uvm_blocking_get_peek_port, class 180
uvm::uvm_blocking_get_port, class 178
uvm::uvm_blocking_peek_port, class 179
uvm::uvm_blocking_put_port, class 177
uvm::uvm_bottomup_phase, class 132
uvm::uvm_callbacks, class 141
uvm::uvm_check_e, enumeration 298
uvm::uvm_comparer, class 37
uvm::uvm_component_name, class 24
uvm::uvm_component_registry, class 47
uvm::uvm_component, class 59
uvm::uvm_config_db, class 107
uvm::uvm_config_int, typdef 317
uvm::uvm_config_object, typdef 317
uvm::uvm_config_string, typdef 317
uvm::uvm_config_wrapper, typdef 318
uvm::uvm_coreservices t, class 319
uvm::uvm_coverage_model_e, enumeration 299
uvm::uvm_default_comparer, global object 43
uvm::uvm_default_coreservices t, class 321
uvm::uvm_default_factory, class 55
uvm::uvm_default_line_printer, global object 42
uvm::uvm_default_packer, global object 43
uvm::uvm_default_printer, global object 43
uvm::uvm_default_recorder, global object 43
uvm::uvm_default_report_server, class 162
uvm::uvm_default_table printer, global object 42
uvm::uvm_default_tree printer, global object 42
uvm::uvm_domain, class 130
uvm::uvm_driver, class 76
uvm::uvm_elem_kind_e, enumeration 298
uvm::uvm_endianness_e, enumeration 298
uvm::uvm_env, class 79
uvm::uvm_export_base, class 22
uvm::uvm_factory, class 49
uvm::UVM_FILE, typdef 317
uvm::uvm_hdl_path_dlice, global type 297
uvm::uvm_hier_e, enumeration 298
uvm::uvm_integral_t, typdef 317
uvm::uvm_line_printer, class 37
uvm::uvm_mem_mam, class 289
uvm::uvm_mem_mam::alloc_mode_e, enumeration 292
uvm::uvm_mem_mam::locality_e, enumeration 292
uvm::uvm_mem_region, class 292
uvm::uvm_mem, class 250
uvm::uvm_monitor, class 77
uvm::uvm_nonblocking_get peek_port, class 185
uvm::uvm_nonblocking_get port, class 183
uvm::uvm_nonblocking_peek_port, class 184

uvm::
uvm::
uvm::
uvm::
uvm:
uvm:
uvm::
uvm:
uvm::
;:uvm_port_base, class 21
:uvm_predict_e, enumeration 298
:uvm_printer, class 31

uvm

uvm:
uvm:
uvm::
uvm::
uvm:
uvm::
uvm:
uvm::
uvm::
uvm:
uvm::
uvm::
uvm::
uvm::
uvm:
uvm::
uvm:
uvm:
uvm:
uvm::
uvm::
uvm:
uvm::
uvm::
uvm::
uvm::
uvm:
uvm::
uvm:
uvm::
uvm::
uvm:
uvm::
uvm::
uvm::
uvm::
uvm:
uvm::
uvm::
uvm::
uvm::
::uvm_seq_item_pull_export, class 196
:uvm_seq_item_pull_imp, class 197

:uvm_seq_item_pull_port, class 195

uvm

uvm:
uvm:
uvm::
uvm::
uvm:
uvm::
uvm:
uvm::

344

uvm_nonblocking_put_port, class 181
uvm_object_registry, class 45
uvm_object_wrapper, class 44
uvm_object, class 10

:uvm_objection, class 134
:uvm_packer, class 26

uvm_path_e, enumeration 297

:uvm_phase_type, enumeration 319

uvm_phase, class 125

uvm_process_phase, class 133
uvm_reg_adapter, class 305

:uvm_reg_addr_logic _t, global type 296

uvm_reg_addr_t, global type 296

:uvm_reg_block, class 198

uvm_reg_bus op, class 303
uvm_reg_byte en_t, global type 297

:uvm_reg_cbs, class 285

uvm_reg_cvr_t, global type 297
uvm_reg_data logic t, global type 296
uvm_reg_data t, global type 296
uvm_reg_field, class 239

:uvm_reg_fifo, class 264

uvm_reg_file, class 220

:uvm_reg_frontdoor, class 314
:uvm_reg_indirect_data, class 263
:uvm_reg_item, class 300

uvm_reg_map, class 211
uvm_reg_mem_tests e, enumeration 299

:uvm_reg_predictor, class 307

uvm_reg_sequence, class 309
uvm_reg_tlm_adapter, class 306
uvm_reg, class 223
uvm_report_catcher, class 166

:uvm_report_ch, typdef 317

uvm_report_handler, class 157

:uvm_report_message, class 145

uvm_report_object, class 151
uvm_report_server, class 159

:uvm_resource_base, class 113

uvm_resource_db_options, class 112
uvm_resource_db, class 109
uvm_resource_options, class 113
uvm_resource_pool, class 117

:uvm_resource_types, class 124

uvm_resource_types::priority_e 124
uvm_resource, class 121

uvm_root, class 18
uvm_scoreboard, class 80

uvm_sequence _base, class 96
uvm_sequence_item, class 93

:uvm_sequence_state_enum, enumeration 319

uvm_sequence, class 105

:uvm_sequencer_base, class 83

uvm_sequencer_param_base, class 87

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

uvm::
uvm::
uvm::
uvm::
uvm:
uvm::
uvm:
uvm::
uvm:
uvm::
uvm::
uvm::
uvm::
uvm::
uvm::
uvm:
uvm::
uvm:
uvm::

Vv

Universal Verification Methodology for SystemC (UVM-SystemC)
Language Reference Manual

uvm_sequencer, class 89
uvm_set_config_int, global function 316
uvm_set_config_string, global function 316
uvm_severity, enumeration 318

:uvm_sqr_if_base, class 193

uvm_status_e, enumeration 297

:uvm_subscriber, class 81

uvm_table printer, class 36

:uvm_test, class 80

uvm_tlm_req_rsp_channel, class 190
uvm_topdown_phase, class 132
uvm_transaction, class 92
uvm_tree_printer, class 36
uvm_verbosity, enumeration 318
uvm_void, class 10

:uvm_vreg_cbs, class 277

uvm_vreg_field _cbs, class 284

:uvm_vreg_field, class 278

uvm_vreg, class 268

value, data member

class uvm::uvm_reg_item 302

virtual sequence, glossary 325

w

wait_for_grant, member function

class uvm::uvm_sequence_base 103
class uvm::uvm_sequencer_base 84

wait_for_item_done, member function

class uvm::uvm_sequence_base 103
class uvm::uvm_sequencer_base 85

wait_for_relevant, member function

class uvm::uvm_sequence_base 100

wait_for_sequence_state, member function

class uvm::uvm_sequence_base 97

wait_for_sequences, member function

class uvm::uvm_sequencer_base 87

wait_for_state, member function

class uvm::uvm_phase 130

wait_for, member function

class uvm::uvm_objection 138

wait_modified, member function

class uvm::uvm_config_db 109
class uvm::uvm_resource_hase 115

write_by _name, member function

class uvm::uvm_resource_db 111

write_by_type, member function

class uvm::uvm_resource_db 111

write_mem_by name, member function

class uvm::uvm_reg_block 208

write_mem, member function

class uvm::uvm_reg_sequence 313

write_reg_by_name, member function

class uvm::uvm_reg_block 208

write_reg, member function

class uvm::uvm_reg_sequence 312

write, member function

345

classuvm::
classuvm::
classuvm::
classuvm::
classuvm::
classuvm::
classuvm::
classuvm::
classuvm::
classuvm::

uvm_analysis imp 190
uvm_analysis_port 187
uvm_mem 257
uvm_mem_region 294
uvm_reg 231
uvm_reg_field 246
uvm_reg_fifo 266
uvm_resource 123
uvm_vreg 274
uvm_vreg_field 281

Copyright © 2023 Accellera Systems Initiative. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

	Notices
	Contributors
	Contents
	1. Introduction
	2. Terminology
	2.1 Shall, should, may, can
	2.2 Implementation, application
	2.3 Call, called from, derived from
	2.4 Implementation-defined

	3. Overview
	3.1 Namespace
	3.2 Header files
	3.3 Global functions
	3.4 Base classes
	3.5 Policy classes
	3.6 Registry and factory classes
	3.7 Component hierarchy classes
	3.8 Sequencer classes
	3.9 Sequence classes
	3.10 Configuration and resource classes
	3.11 Phasing and synchronization classes
	3.12 Reporting classes
	3.13 Macros
	3.14 TLM classes
	3.15 Register abstraction classes
	3.16 Existing SystemC functionality used in UVM-SystemC
	3.17 Methodology for hierarchy construction

	4. Base classes
	4.1 uvm_void
	4.1.1 Class definition

	4.2 uvm_object
	4.2.1 Class definition
	4.2.2 Constructors
	4.2.3 Identification
	4.2.3.1 set_name
	4.2.3.2 get_name
	4.2.3.3 get_full_name
	4.2.3.4 get_inst_id
	4.2.3.5 get_inst_count
	4.2.3.6 get_type
	4.2.3.7 get_object_type
	4.2.3.8 get_type_name

	4.2.4 Creation
	4.2.4.1 create
	4.2.4.2 clone

	4.2.5 Printing
	4.2.5.1 print
	4.2.5.2 sprint
	4.2.5.3 do_print
	4.2.5.4 convert2string

	4.2.6 Recording
	4.2.6.1 record
	4.2.6.2 do_record

	4.2.7 Copying
	4.2.7.1 copy
	4.2.7.2 do_copy

	4.2.8 Comparing
	4.2.8.1 compare
	4.2.8.2 do_compare

	4.2.9 Packing
	4.2.9.1 pack
	4.2.9.2 pack_bytes
	4.2.9.3 pack_ints
	4.2.9.4 do_pack

	4.2.10 Unpacking
	4.2.10.1 unpack
	4.2.10.2 unpack_bytes
	4.2.10.3 unpack_ints
	4.2.10.4 do_unpack

	4.2.11 Object macros

	4.3 uvm_root
	4.3.1 Class definition
	4.3.2 Simulation control
	4.3.2.1 run_test
	4.3.2.2 die
	4.3.2.3 set_timeout
	4.3.2.4 set_finish_on_completion
	4.3.2.5 get_finish_on_completion

	4.3.3 Topology
	4.3.3.1 find
	4.3.3.2 find_all
	4.3.3.3 print_topology
	4.3.3.4 enable_print_topology

	4.3.4 Global variable
	4.3.4.1 uvm_top

	4.4 uvm_port_base
	4.4.1 Class definition
	4.4.2 Template parameter IF
	4.4.3 Constructor
	4.4.4 Member functions
	4.4.4.1 get_name
	4.4.4.2 get_full_name
	4.4.4.3 get_parent
	4.4.4.4 get_type_name
	4.4.4.5 connect

	4.5 uvm_export_base§
	4.5.1 Class definition
	4.5.2 Template parameter IF
	4.5.3 Constructor
	4.5.4 Member functions
	4.5.4.1 get_name
	4.5.4.2 get_full_name
	4.5.4.3 get_parent
	4.5.4.4 get_type_name
	4.5.4.5 connect

	4.6 uvm_component_name§
	4.6.1 Class definition
	4.6.2 Constraints on usage
	4.6.3 Constructor
	4.6.4 Destructor
	4.6.5 operator const char*

	5. Policy classes
	5.1 uvm_packer
	5.1.1 Class definition
	5.1.2 Constraints on usage
	5.1.3 Packing
	5.1.3.1 pack_field
	5.1.3.2 pack_field_int
	5.1.3.3 pack_string
	5.1.3.4 pack_time
	5.1.3.5 pack_real
	5.1.3.6 pack_object

	5.1.4 Unpacking
	5.1.4.1 is_null
	5.1.4.2 unpack_field_int
	5.1.4.3 unpack_field
	5.1.4.4 unpack_string
	5.1.4.5 unpack_time
	5.1.4.6 unpack_real
	5.1.4.7 unpack_object
	5.1.4.8 get_packed_size

	5.1.5 operator<<, operator>>
	5.1.6 Data members (variables)
	5.1.6.1 physical
	5.1.6.2 abstract
	5.1.6.3 use_metadata
	5.1.6.4 big_endian

	5.2 uvm_printer
	5.2.1 Class definition
	5.2.2 Constraints on usage
	5.2.3 Printing types
	5.2.3.1 print_field
	5.2.3.2 print_field_int
	5.2.3.3 print_real
	5.2.3.4 print_double
	5.2.3.5 print_object
	5.2.3.6 print_object_header
	5.2.3.7 print_string
	5.2.3.8 print_time
	5.2.3.9 print_generic

	5.2.4 Printer subtyping
	5.2.4.1 emit
	5.2.4.2 format_row
	5.2.4.3 format_header
	5.2.4.4 format_footer
	5.2.4.5 adjust_name
	5.2.4.6 print_array_header
	5.2.4.7 print_array_range
	5.2.4.8 print_array_footer

	5.2.5 Data members
	5.2.5.1 knobs

	5.3 uvm_table_printer
	5.3.1 Class definition
	5.3.2 Constructor
	5.3.3 emit

	5.4 uvm_tree_printer
	5.4.1 Class definition
	5.4.2 Constructor
	5.4.3 emit

	5.5 uvm_line_printer
	5.5.1 Class definition
	5.5.2 Constructor
	5.5.3 emit

	5.6 uvm_comparer
	5.6.1 Class definition
	5.6.2 Constraints on usage
	5.6.3 Member functions
	5.6.3.1 compare_field
	5.6.3.2 compare_field_int
	5.6.3.3 compare_field_real
	5.6.3.4 compare_object
	5.6.3.5 compare_string
	5.6.3.6 print_msg

	5.6.4 Comparer settings
	5.6.4.1 set_policy
	5.6.4.2 get_policy
	5.6.4.3 set_max_messages
	5.6.4.4 get_max_messages
	5.6.4.5 set_verbosity
	5.6.4.6 get_verbosity
	5.6.4.7 set_severity
	5.6.4.8 get_severity
	5.6.4.9 set_miscompare_string
	5.6.4.10 get_miscompare_string
	5.6.4.11 set_field_attribute
	5.6.4.12 get_field_attribute
	5.6.4.13 compare_type
	5.6.4.14 get_result

	5.7 Default policy objects
	5.7.1 uvm_default_table_printer
	5.7.2 uvm_default_tree_printer
	5.7.3 uvm_default_line_printer
	5.7.4 uvm_default_printer
	5.7.5 uvm_default_packer
	5.7.6 uvm_default_comparer
	5.7.7 uvm_default_recorder

	6. Registry and factory classes
	6.1 uvm_object_wrapper
	6.1.1 Class definition
	6.1.2 Member functions
	6.1.2.1 create_object
	6.1.2.2 create_component
	6.1.2.3 get_type_name

	6.2 uvm_object_registry
	6.2.1 Class definition
	6.2.2 Template parameter T
	6.2.3 Member functions
	6.2.3.1 create_object
	6.2.3.2 get_type_name
	6.2.3.3 get
	6.2.3.4 create
	6.2.3.5 destroy§
	6.2.3.6 set_type_override
	6.2.3.7 set_inst_override

	6.3 uvm_component_registry
	6.3.1 Class definition
	6.3.2 Template parameter T
	6.3.3 Member functions
	6.3.3.1 create_component
	6.3.3.2 get_type_name
	6.3.3.3 get
	6.3.3.4 create
	6.3.3.5 destroy§
	6.3.3.6 set_type_override
	6.3.3.7 set_inst_override

	6.4 uvm_factory
	6.4.1 Class definition
	6.4.2 Access and registration
	6.4.2.1 get
	6.4.2.2 do_register° (register†)

	6.4.3 Type and instance overrides
	6.4.3.1 set_inst_override_by_type
	6.4.3.2 set_inst_override_by_name
	6.4.3.3 set_type_override_by_type
	6.4.3.4 set_type_override_by_name

	6.4.4 Creation
	6.4.4.1 create_object_by_type
	6.4.4.2 create_object_by_name
	6.4.4.3 create_component_by_type
	6.4.4.4 create_component_by_name

	6.4.5 Debug
	6.4.5.1 debug_create_by_type
	6.4.5.2 debug_create_by_name
	6.4.5.3 find_override_by_type
	6.4.5.4 find_override_by_name
	6.4.5.5 print

	6.5 uvm_default_factory
	6.5.1 Class definition
	6.5.2 Registration
	6.5.2.1 do_register° (register†)

	6.5.3 Type and instance overrides
	6.5.3.1 set_inst_override_by_type
	6.5.3.2 set_inst_override_by_name
	6.5.3.3 set_type_override_by_type
	6.5.3.4 set_type_override_by_name

	6.5.4 Creation
	6.5.4.1 create_object_by_type
	6.5.4.2 create_object_by_name
	6.5.4.3 create_component_by_type
	6.5.4.4 create_component_by_name

	6.5.5 Debug
	6.5.5.1 debug_create_by_type
	6.5.5.2 debug_create_by_name
	6.5.5.3 find_override_by_type
	6.5.5.4 find_override_by_name
	6.5.5.5 print

	7. Component hierarchy classes
	7.1 uvm_component
	7.1.1 Class definition
	7.1.2 Construction interface
	7.1.2.1 Constructor

	7.1.3 Hierarchy interface
	7.1.3.1 get_parent
	7.1.3.2 get_full_name
	7.1.3.3 get_children
	7.1.3.4 get_child
	7.1.3.5 get_first_child
	7.1.3.6 get_first_child
	7.1.3.7 get_num_children
	7.1.3.8 has_child
	7.1.3.9 lookup
	7.1.3.10 get_depth

	7.1.4 Phasing interface
	7.1.4.1 Pre-run phases
	7.1.4.2 Run-time phases
	7.1.4.3 Post-run phases
	7.1.4.4 build_phase
	7.1.4.5 connect_phase
	7.1.4.6 end_of_elaboration_phase
	7.1.4.7 start_of_simulation_phase
	7.1.4.8 run_phase
	7.1.4.9 pre_reset_phase
	7.1.4.10 reset_phase
	7.1.4.11 post_reset_phase
	7.1.4.12 pre_configuration_phase
	7.1.4.13 configuration_phase
	7.1.4.14 post_configuration_phase
	7.1.4.15 pre_main_phase
	7.1.4.16 main_phase
	7.1.4.17 post_main_phase
	7.1.4.18 pre_shutdown_phase
	7.1.4.19 shutdown_phase
	7.1.4.20 post_shutdown_phase
	7.1.4.21 extract_phase
	7.1.4.22 check_phase
	7.1.4.23 report_phase
	7.1.4.24 final_phase
	7.1.4.25 phase_started
	7.1.4.26 phase_ready_to_end
	7.1.4.27 phase_ended
	7.1.4.28 set_domain
	7.1.4.29 get_domain
	7.1.4.30 define_domain
	7.1.4.31 set_phase_imp

	7.1.5 Process control interface
	7.1.5.1 suspend
	7.1.5.2 resume

	7.1.6 Configuration interface
	7.1.6.1 print_config
	7.1.6.2 print_config_with_audit
	7.1.6.3 print_config_matches

	7.1.7 Objection interface
	7.1.7.1 raised
	7.1.7.2 dropped
	7.1.7.3 all_dropped

	7.1.8 Factory interface
	7.1.8.1 create_component
	7.1.8.2 create_object
	7.1.8.3 set_type_override_by_type
	7.1.8.4 set_inst_override_by_type
	7.1.8.5 set_type_override
	7.1.8.6 set_inst_override
	7.1.8.7 print_override_info

	7.1.9 Hierarchical reporting interface
	7.1.9.1 set_report_id_verbosity_hier
	7.1.9.2 set_report_severity_id_verbosity_hier
	7.1.9.3 set_report_severity_action_hier
	7.1.9.4 set_report_id_action_hier
	7.1.9.5 set_report_severity_id_action_hier
	7.1.9.6 set_report_default_file_hier
	7.1.9.7 set_report_severity_file_hier
	7.1.9.8 set_report_id_file_hier
	7.1.9.9 set_report_severity_id_file_hier
	7.1.9.10 set_report_verbosity_level_hier
	7.1.9.11 pre_abort

	7.1.10 Macros

	7.2 uvm_driver
	7.2.1 Class definition
	7.2.2 Template parameters
	7.2.3 Ports
	7.2.3.1 seq_item_port
	7.2.3.2 rsp_port

	7.2.4 Member functions
	7.2.4.1 Constructor
	7.2.4.2 get_type_name

	7.3 uvm_monitor
	7.3.1 Class definition
	7.3.2 Member functions
	7.3.2.1 Constructor
	7.3.2.2 get_type_name

	7.4 uvm_agent
	7.4.1 Class definition
	7.4.2 Member functions
	7.4.2.1 Constructor
	7.4.2.2 get_type_name
	7.4.2.3 get_is_active

	7.5 uvm_env
	7.5.1 Class definition
	7.5.2 Member functions
	7.5.2.1 Constructor
	7.5.2.2 get_type_name

	7.6 uvm_test
	7.6.1 Class definition
	7.6.2 Member functions
	7.6.2.1 Constructor
	7.6.2.2 get_type_name

	7.7 uvm_scoreboard
	7.7.1 Class definition
	7.7.2 Member functions
	7.7.2.1 Constructor
	7.7.2.2 get_type_name

	7.8 uvm_subscriber
	7.8.1 Class definition
	7.8.2 Template parameter T
	7.8.3 Export
	7.8.3.1 analysis_export

	7.8.4 Member functions
	7.8.4.1 Constructor
	7.8.4.2 get_type_name

	8. Sequencer classes
	8.1 uvm_sequencer_base
	8.1.1 Class definition
	8.1.2 Constructor
	8.1.3 Member functions
	8.1.3.1 is_child
	8.1.3.2 user_priority_arbitration
	8.1.3.3 execute_item
	8.1.3.4 start_phase_sequence
	8.1.3.5 wait_for_grant
	8.1.3.6 wait_for_item_done
	8.1.3.7 is_blocked
	8.1.3.8 has_lock
	8.1.3.9 lock
	8.1.3.10 grab
	8.1.3.11 unlock
	8.1.3.12 ungrab
	8.1.3.13 stop_sequences
	8.1.3.14 is_grabbed
	8.1.3.15 current_grabber
	8.1.3.16 has_do_available
	8.1.3.17 set_arbitration
	8.1.3.18 get_arbitration
	8.1.3.19 wait_for_sequences
	8.1.3.20 send_request

	8.2 uvm_sequencer_param_base
	8.2.1 Class definition
	8.2.2 Template parameters
	8.2.3 Constructor
	8.2.4 Requests
	8.2.4.1 send_request
	8.2.4.2 get_current_item

	8.3 uvm_sequencer
	8.3.1 Class definition
	8.3.2 Template parameters
	8.3.3 Constructor
	8.3.4 Exports
	8.3.4.1 seq_item_export

	8.3.5 Sequencer interface
	8.3.5.1 get_next_item
	8.3.5.2 try_next_item
	8.3.5.3 item_done
	8.3.5.4 get
	8.3.5.5 peek
	8.3.5.6 put
	8.3.5.7 stop_sequences

	8.3.6 Macros
	8.3.6.1 UVM_DECLARE_P_SEQUENCER

	9. Sequence classes
	9.1 uvm_transaction
	9.1.1 Class definition
	9.1.2 Constructors
	9.1.3 Constraints on usage
	9.1.4 Member functions
	9.1.4.1 set_transaction_id
	9.1.4.2 get_transaction_id

	9.2 uvm_sequence_item
	9.2.1 Class definition
	9.2.2 Constructors
	9.2.3 Member functions
	9.2.3.1 set_use_sequence_info
	9.2.3.2 get_use_sequence_info
	9.2.3.3 set_id_info
	9.2.3.4 set_sequencer
	9.2.3.5 get_sequencer
	9.2.3.6 set_parent_sequence
	9.2.3.7 get_parent_sequence
	9.2.3.8 set_depth
	9.2.3.9 get_depth
	9.2.3.10 is_item
	9.2.3.11 get_root_sequence_name
	9.2.3.12 get_root_sequence
	9.2.3.13 get_sequence_path

	9.3 uvm_sequence_base
	9.3.1 Class definition
	9.3.2 Constructor
	9.3.3 Sequence state
	9.3.3.1 get_sequence_state
	9.3.3.2 wait_for_sequence_state

	9.3.4 Sequence execution
	9.3.4.1 start
	9.3.4.2 pre_start
	9.3.4.3 pre_body
	9.3.4.4 pre_do
	9.3.4.5 mid_do
	9.3.4.6 body
	9.3.4.7 post_do
	9.3.4.8 post_body
	9.3.4.9 post_start

	9.3.5 Run-time phasing
	9.3.5.1 get_starting_phase
	9.3.5.2 set_starting_phase
	9.3.5.3 get_automatic_phase_objection
	9.3.5.4 set_automatic_phase_objection

	9.3.6 Sequence control
	9.3.6.1 set_priority
	9.3.6.2 get_priority
	9.3.6.3 is_relevant
	9.3.6.4 wait_for_relevant
	9.3.6.5 lock
	9.3.6.6 grab
	9.3.6.7 unlock
	9.3.6.8 ungrab
	9.3.6.9 is_blocked
	9.3.6.10 has_lock
	9.3.6.11 kill
	9.3.6.12 do_kill

	9.3.7 Sequence item execution
	9.3.7.1 create_item
	9.3.7.2 start_item
	9.3.7.3 finish_item
	9.3.7.4 wait_for_grant
	9.3.7.5 send_request
	9.3.7.6 wait_for_item_done

	9.3.8 Response interface
	9.3.8.1 use_response_handler
	9.3.8.2 get_use_response_handler
	9.3.8.3 response_handler
	9.3.8.4 set_response_queue_error_report_disabled
	9.3.8.5 get_response_queue_error_report_disabled
	9.3.8.6 set_response_queue_depth
	9.3.8.7 get_response_queue_depth
	9.3.8.8 clear_response_queue

	9.4 uvm_sequence
	9.4.1 Class definition
	9.4.2 Template parameters
	9.4.3 Constructor
	9.4.4 Member functions
	9.4.4.1 send_request
	9.4.4.2 get_current_item
	9.4.4.3 get_response

	10. Configuration and resource classes
	10.1 uvm_config_db
	10.1.1 Class definition
	10.1.2 Template parameter T
	10.1.3 Constraints on usage
	10.1.4 Member functions
	10.1.4.1 set
	10.1.4.2 get
	10.1.4.3 exists
	10.1.4.4 wait_modified

	10.2 uvm_resource_db
	10.2.1 Class definition
	10.2.2 Template parameter T
	10.2.3 Constraints on usage
	10.2.4 Member functions
	10.2.4.1 get_by_type
	10.2.4.2 get_by_name
	10.2.4.3 set_default
	10.2.4.4 set
	10.2.4.5 set_anonymous
	10.2.4.6 read_by_name
	10.2.4.7 read_by_type
	10.2.4.8 write_by_name
	10.2.4.9 write_by_type
	10.2.4.10 dump

	10.3 uvm_resource_db_options
	10.3.1 Class definition
	10.3.2 Member functions
	10.3.2.1 turn_on_tracing
	10.3.2.2 turn_off_tracing
	10.3.2.3 is_tracing

	10.4 uvm_resource_options
	10.4.1 Class definition
	10.4.2 Member functions
	10.4.2.1 turn_on_auditing
	10.4.2.2 turn_off_auditing
	10.4.2.3 is_auditing

	10.5 uvm_resource_base
	10.5.1 Class definition
	10.5.2 Constructor
	10.5.3 Resource database interface
	10.5.3.1 get_type_handle

	10.5.4 Read-only interface
	10.5.4.1 set_read_only
	10.5.4.2 is_read_only

	10.5.5 Notification
	10.5.5.1 wait_modified

	10.5.6 Scope interface
	10.5.6.1 set_scope
	10.5.6.2 get_scope
	10.5.6.3 match_scope

	10.5.7 Priority
	10.5.7.1 set_priority

	10.5.8 Utility functions
	10.5.8.1 do_print

	10.5.9 Audit trail
	10.5.9.1 record_read_access
	10.5.9.2 record_write_access
	10.5.9.3 print_accessors
	10.5.9.4 init_access_record

	10.5.10 Data members
	10.5.10.1 precedence
	10.5.10.2 default_precedence

	10.6 uvm_resource_pool
	10.6.1 Class definition
	10.6.2 get
	10.6.3 spell_check
	10.6.4 Set interface
	10.6.4.1 set
	10.6.4.2 set_override
	10.6.4.3 set_name_override
	10.6.4.4 set_type_override

	10.6.5 Lookup
	10.6.5.1 lookup_name
	10.6.5.2 get_highest_precedence
	10.6.5.3 sort_by_precedence
	10.6.5.4 get_by_name
	10.6.5.5 lookup_type
	10.6.5.6 get_by_type
	10.6.5.7 lookup_regex_names
	10.6.5.8 lookup_regex
	10.6.5.9 lookup_scope

	10.6.6 Priority interface
	10.6.6.1 set_priority_type
	10.6.6.2 set_priority_name
	10.6.6.3 set_priority

	10.6.7 Debug
	10.6.7.1 find_unused_resources
	10.6.7.2 print_resources
	10.6.7.3 dump

	10.7 uvm_resource
	10.7.1 Class definition
	10.7.2 Template parameter T
	10.7.3 Type interface
	10.7.3.1 get_type
	10.7.3.2 get_type_handle

	10.7.4 Set/Get interface
	10.7.4.1 set
	10.7.4.2 set_override
	10.7.4.3 get_by_name
	10.7.4.4 get_by_type

	10.7.5 Read/Write interface
	10.7.5.1 read
	10.7.5.2 write

	10.7.6 Priority interface
	10.7.6.1 set_priority
	10.7.6.2 get_highest_precedence

	10.8 uvm_resource_types
	10.8.1 Class definition
	10.8.2 Type definitions (typedefs)
	10.8.2.1 rsrc_q_t
	10.8.2.2 override_t
	10.8.2.3 priority_e

	11. Phasing and synchronization classes
	11.1 uvm_phase
	11.1.1 Class definition
	11.1.2 Construction
	11.1.2.1 Constructor
	11.1.2.2 get_phase_type

	11.1.3 State
	11.1.3.1 get_state
	11.1.3.2 uvm_phase_get_run_count
	11.1.3.3 find_by_name
	11.1.3.4 find
	11.1.3.5 is
	11.1.3.6 is_before
	11.1.3.7 is_after

	11.1.4 Callbacks
	11.1.4.1 exec_func
	11.1.4.2 exec_process° (exec_task†)

	11.1.5 Schedule
	11.1.5.1 add
	11.1.5.2 get_parent
	11.1.5.3 get_full_name
	11.1.5.4 get_schedule
	11.1.5.5 get_schedule_name
	11.1.5.6 get_domain
	11.1.5.7 get_domain_name
	11.1.5.8 get_imp

	11.1.6 Synchronization
	11.1.6.1 get_objection
	11.1.6.2 raise_objection
	11.1.6.3 drop_objection
	11.1.6.4 sync
	11.1.6.5 unsync
	11.1.6.6 wait_for_state

	11.1.7 Jumping
	11.1.7.1 jump
	11.1.7.2 get_jump_target

	11.2 uvm_domain
	11.2.1 Class definition
	11.2.2 Constructor
	11.2.3 Member functions
	11.2.3.1 get_domains
	11.2.3.2 get_uvm_schedule
	11.2.3.3 get_common_domain
	11.2.3.4 add_uvm_phases
	11.2.3.5 get_uvm_domain

	11.3 uvm_bottomup_phase
	11.3.1 Class definition
	11.3.2 Constructor
	11.3.3 Member functions
	11.3.3.1 traverse
	11.3.3.2 execute

	11.4 uvm_topdown_phase
	11.4.1 Class definition
	11.4.2 Constructor
	11.4.3 Member functions
	11.4.3.1 traverse
	11.4.3.2 execute

	11.5 uvm_process_phase° (uvm_task_phase†)
	11.5.1 Class definition
	11.5.2 Member functions
	11.5.2.1 traverse
	11.5.2.2 execute

	11.6 uvm_objection
	11.6.1 Class definition
	11.6.2 Constructors
	11.6.3 Objection control
	11.6.3.1 clear
	11.6.3.2 trace_mode
	11.6.3.3 raise_objection
	11.6.3.4 drop_objection
	11.6.3.5 set_drain_time

	11.6.4 Callback hooks
	11.6.4.1 raised
	11.6.4.2 dropped
	11.6.4.3 all_dropped

	11.6.5 Objections status
	11.6.5.1 get_objectors
	11.6.5.2 wait_for
	11.6.5.3 get_objection_count
	11.6.5.4 get_objection_total
	11.6.5.5 get_drain_time
	11.6.5.6 display_objections

	11.7 uvm_callback
	11.7.1 Class definition
	11.7.2 Constructor
	11.7.3 Member functions
	11.7.3.1 callback_mode
	11.7.3.2 is_enabled
	11.7.3.3 get_type_name

	11.8 uvm_callback_iter
	11.8.1 Class definition
	11.8.2 Template parameter T
	11.8.3 Template parameter CB
	11.8.4 Constructor
	11.8.5 Member functions
	11.8.5.1 first
	11.8.5.2 last
	11.8.5.3 next
	11.8.5.4 prev
	11.8.5.5 get_cb

	11.9 uvm_callbacks
	11.9.1 Class definition
	11.9.2 Template parameter T
	11.9.3 Template parameter CB
	11.9.4 Constructor
	11.9.5 Add/delete interface
	11.9.5.1 add
	11.9.5.2 add_by_name
	11.9.5.3 do_delete°(delete†)
	11.9.5.4 delete_by_name

	11.9.6 Iterator interfaces
	11.9.6.1 get_first
	11.9.6.2 get_last
	11.9.6.3 get_next
	11.9.6.4 get_prev

	11.9.7 Debug
	11.9.7.1 display

	12. Reporting classes
	12.1 uvm_report_message
	12.1.1 Class definition
	12.1.2 Constructor
	12.1.3 Infrastructure references
	12.1.3.1 do_print
	12.1.3.2 get_report_object
	12.1.3.3 set_report_object
	12.1.3.4 get_report_handler
	12.1.3.5 set_report_handler
	12.1.3.6 get_report_server
	12.1.3.7 set_report_server

	12.1.4 Message fields
	12.1.4.1 get_severity
	12.1.4.2 set_severity
	12.1.4.3 get_id
	12.1.4.4 set_id
	12.1.4.5 get_message
	12.1.4.6 set_message
	12.1.4.7 get_verbosity
	12.1.4.8 set_verbosity
	12.1.4.9 get_filename
	12.1.4.10 set_filename
	12.1.4.11 get_line
	12.1.4.12 set_line
	12.1.4.13 get_context
	12.1.4.14 set_context
	12.1.4.15 get_action
	12.1.4.16 set_action
	12.1.4.17 get_file
	12.1.4.18 set_file
	12.1.4.19 get_element_container
	12.1.4.20 set_report_message

	12.1.5 Message element APIs
	12.1.5.1 add_int
	12.1.5.2 add_string
	12.1.5.3 add_object

	12.2 uvm_report_object
	12.2.1 Class definition
	12.2.2 Constructors
	12.2.3 Reporting
	12.2.3.1 uvm_report_enabled
	12.2.3.2 uvm_report_info
	12.2.3.3 uvm_report_warning
	12.2.3.4 uvm_report_error
	12.2.3.5 uvm_report_fatal

	12.2.4 Verbosity configuration
	12.2.4.1 get_report_verbosity_level
	12.2.4.2 set_report_verbosity_level
	12.2.4.3 set_report_id_verbosity
	12.2.4.4 set_report_severity_id_verbosity

	12.2.5 Action configuration
	12.2.5.1 get_report_action
	12.2.5.2 set_report_severity_action
	12.2.5.3 set_report_id_action
	12.2.5.4 set_report_severity_id_action

	12.2.6 File configuration
	12.2.6.1 get_report_file_handle
	12.2.6.2 set_report_default_file
	12.2.6.3 set_report_id_file
	12.2.6.4 set_report_severity_file
	12.2.6.5 set_report_severity_id_file

	12.2.7 Override configuration
	12.2.7.1 set_report_severity_override
	12.2.7.2 set_report_severity_id_override

	12.2.8 Report handler configuration
	12.2.8.1 set_report_handler
	12.2.8.2 get_report_handler
	12.2.8.3 reset_report_handler

	12.3 uvm_report_handler
	12.3.1 Class definition
	12.3.2 Constructor
	12.3.3 Member functions
	12.3.4 get_verbosity_level
	12.3.5 get_action
	12.3.6 get_file_handle
	12.3.7 report
	12.3.8 format_action

	12.4 uvm_report_server
	12.4.1 Class definition
	12.4.2 Member functions
	12.4.2.1 set_max_quit_count
	12.4.2.2 get_max_quit_count
	12.4.2.3 set_quit_count
	12.4.2.4 get_quit_count
	12.4.2.5 set_severity_count
	12.4.2.6 get_severity_count
	12.4.2.7 set_id_count
	12.4.2.8 get_id_count
	12.4.2.9 get_id_set
	12.4.2.10 get_severity_set
	12.4.2.11 do_copy
	12.4.2.12 execute_report_message
	12.4.2.13 compose_report_message
	12.4.2.14 report_summarize
	12.4.2.15 set_server
	12.4.2.16 get_server

	12.5 uvm_default_report_server
	12.5.1 Class definition
	12.5.2 Constructor
	12.5.3 Quit count
	12.5.3.1 set_max_quit_count
	12.5.3.2 get_max_quit_count
	12.5.3.3 set_quit_count
	12.5.3.4 get_quit_count
	12.5.3.5 incr_quit_count
	12.5.3.6 reset_quit_count
	12.5.3.7 is_quit_count_reached

	12.5.4 Severity count
	12.5.4.1 set_severity_count
	12.5.4.2 get_severity_count
	12.5.4.3 incr_severity_count
	12.5.4.4 reset_severity_counts
	12.5.4.5 get_severity_set

	12.5.5 ID count
	12.5.5.1 set_id_count
	12.5.5.2 get_id_count
	12.5.5.3 incr_id_count
	12.5.5.4 get_id_set

	12.5.6 Message processing
	12.5.6.1 execute_report_message
	12.5.6.2 compose_report_message
	12.5.6.3 report_summarize
	12.5.6.4 do_print

	12.6 uvm_report_catcher
	12.6.1 Class definition
	12.6.2 Constructor
	12.6.3 Current message state
	12.6.3.1 get_client
	12.6.3.2 get_severity
	12.6.3.3 get_verbosity
	12.6.3.4 get_id
	12.6.3.5 get_message
	12.6.3.6 get_action
	12.6.3.7 get_fname
	12.6.3.8 get_line

	12.6.4 Change message state
	12.6.4.1 set_severity
	12.6.4.2 set_verbosity
	12.6.4.3 set_id
	12.6.4.4 set_message
	12.6.4.5 set_action

	12.6.5 Debug
	12.6.5.1 get_report_catcher
	12.6.5.2 print_catcher

	12.6.6 Callback interface
	12.6.6.1 do_catch° (catch†)

	12.6.7 Reporting
	12.6.7.1 uvm_report_fatal
	12.6.7.2 uvm_report_error
	12.6.7.3 uvm_report_warning
	12.6.7.4 uvm_report_info
	12.6.7.5 issue
	12.6.7.6 summarize_report_catcher

	13. Macros
	13.1 Component and object registration macros
	13.1.1 Macro definitions
	13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS
	13.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS

	13.2 Reporting macros
	13.2.1 Macro definitions
	13.2.2 UVM_INFO
	13.2.3 UVM_WARNING
	13.2.4 UVM_ERROR
	13.2.5 UVM_FATAL

	13.3 Sequence execution macros
	13.3.1 Macro definitions
	13.3.2 UVM_DO
	13.3.3 UVM_DO_PRI
	13.3.4 UVM_DO_ON
	13.3.5 UVM_DO_ON_PRI
	13.3.6 UVM_CREATE
	13.3.7 UVM_CREATE_ON
	13.3.8 UVM_DECLARE_P_SEQUENCER

	13.4 Callback macros
	13.4.1 Macro definitions
	13.4.2 UVM_REGISTER_CB
	13.4.3 UVM_DO_CALLBACKS

	14. TLM classes
	14.1 uvm_blocking_put_port
	14.1.1 Class definition
	14.1.2 Template parameter T
	14.1.3 Constructor
	14.1.4 Member functions
	14.1.4.1 get_type_name
	14.1.4.2 put

	14.2 uvm_blocking_get_port
	14.2.1 Class definition
	14.2.2 Template parameter T
	14.2.3 Constructor
	14.2.4 Member functions
	14.2.4.1 get_type_name
	14.2.4.2 get

	14.3 uvm_blocking_peek_port
	14.3.1 Class definition
	14.3.2 Template parameter T
	14.3.3 Constructor
	14.3.4 Member functions
	14.3.4.1 get_type_name
	14.3.4.2 peek

	14.4 uvm_blocking_get_peek_port
	14.4.1 Class definition
	14.4.2 Template parameter T
	14.4.3 Constructor
	14.4.4 Member functions
	14.4.4.1 get_type_name
	14.4.4.2 get
	14.4.4.3 peek

	14.5 uvm_nonblocking_put_port
	14.5.1 Class definition
	14.5.2 Template parameter T
	14.5.3 Constructor
	14.5.4 Member functions
	14.5.4.1 get_type_name
	14.5.4.2 try_put
	14.5.4.3 can_put

	14.6 uvm_nonblocking_get_port
	14.6.1 Class definition
	14.6.2 Template parameter T
	14.6.3 Constructor
	14.6.4 Member functions
	14.6.4.1 get_type_name
	14.6.4.2 can_get

	14.7 uvm_nonblocking_peek_port
	14.7.1 Class definition
	14.7.2 Template parameter T
	14.7.3 Constructor
	14.7.4 Member functions
	14.7.4.1 get_type_name
	14.7.4.2 try_peek
	14.7.4.3 can_peek

	14.8 uvm_nonblocking_get_peek_port
	14.8.1 Class definition
	14.8.2 Template parameter T
	14.8.3 Constructor
	14.8.4 Member functions
	14.8.4.1 get_type_name
	14.8.4.2 try_get
	14.8.4.3 can_get
	14.8.4.4 try_peek
	14.8.4.5 can_peek

	14.9 uvm_analysis_port
	14.9.1 Class definition
	14.9.2 Template parameter T
	14.9.3 Constructor
	14.9.4 Member functions
	14.9.4.1 get_type_name
	14.9.4.2 connect
	14.9.4.3 write

	14.10 uvm_analysis_export
	14.10.1 Class definition
	14.10.2 Template parameter T
	14.10.3 Constructor
	14.10.4 Member functions
	14.10.4.1 get_type_name
	14.10.4.2 connect

	14.11 uvm_analysis_imp
	14.11.1 Class definition
	14.11.2 Template parameters
	14.11.3 Constructors
	14.11.4 Member functions
	14.11.4.1 get_type_name
	14.11.4.2 connect
	14.11.4.3 write

	14.12 uvm_tlm_req_rsp_channel
	14.12.1 Class definition
	14.12.2 Template parameters
	14.12.3 Ports and exports
	14.12.3.1 request_ap
	14.12.3.2 response_ap
	14.12.3.3 put_request_export
	14.12.3.4 put_response_export
	14.12.3.5 get_request_export
	14.12.3.6 get_response_export
	14.12.3.7 get_peek_request_export
	14.12.3.8 get_peek_response_export
	14.12.3.9 master_export
	14.12.3.10 slave_export

	14.12.4 Constructors

	14.13 uvm_sqr_if_base
	14.13.1 Class definition
	14.13.2 Template parameters
	14.13.3 Member functions
	14.13.3.1 get_next_item
	14.13.3.2 try_next_item
	14.13.3.3 item_done
	14.13.3.4 get
	14.13.3.5 peek
	14.13.3.6 put

	14.14 uvm_seq_item_pull_port
	14.14.1 Class definition
	14.14.2 Template parameters
	14.14.3 Constructor
	14.14.4 Member functions
	14.14.4.1 get_type_name

	14.15 uvm_seq_item_pull_export
	14.15.1 Class definition
	14.15.2 Template parameters
	14.15.3 Constructor
	14.15.4 Member functions
	14.15.4.1 get_type_name

	14.16 uvm_seq_item_pull_imp
	14.16.1 Class definition
	14.16.2 Template parameters
	14.16.3 Member functions
	14.16.3.1 get_type_name

	15. Register abstraction classes
	15.1 uvm_reg_block
	15.1.1 Class definition
	15.1.2 Constructor
	15.1.3 Initialization
	15.1.3.1 configure
	15.1.3.2 create_map
	15.1.3.3 check_data_width
	15.1.3.4 set_default_map
	15.1.3.5 get_default_map
	15.1.3.6 lock_model
	15.1.3.7 is_locked

	15.1.4 Introspection
	15.1.4.1 get_name
	15.1.4.2 get_full_name
	15.1.4.3 get_parent
	15.1.4.4 get_root_blocks
	15.1.4.5 find_blocks
	15.1.4.6 find_block
	15.1.4.7 get_blocks
	15.1.4.8 get_maps
	15.1.4.9 get_registers
	15.1.4.10 get_fields
	15.1.4.11 get_memories
	15.1.4.12 get_virtual_registers
	15.1.4.13 get_virtual_fields
	15.1.4.14 get_block_by_name
	15.1.4.15 get_map_by_name
	15.1.4.16 get_reg_by_name
	15.1.4.17 get_field_by_name
	15.1.4.18 get_mem_by_name
	15.1.4.19 get_vreg_by_name
	15.1.4.20 get_vfield_by_name

	15.1.5 Coverage
	15.1.5.1 build_coverage
	15.1.5.2 add_coverage
	15.1.5.3 has_coverage
	15.1.5.4 set_coverage
	15.1.5.5 get_coverage
	15.1.5.6 sample
	15.1.5.7 sample_values

	15.1.6 Access
	15.1.6.1 get_default_path
	15.1.6.2 reset
	15.1.6.3 needs_update
	15.1.6.4 update
	15.1.6.5 mirror
	15.1.6.6 write_reg_by_name
	15.1.6.7 read_reg_by_name
	15.1.6.8 write_mem_by_name
	15.1.6.9 read_mem_by_name

	15.1.7 Backdoor
	15.1.7.1 get_backdoor
	15.1.7.2 set_backdoor
	15.1.7.3 clear_hdl_path
	15.1.7.4 add_hdl_path
	15.1.7.5 has_hdl_path
	15.1.7.6 get_hdl_path
	15.1.7.7 get_full_hdl_path
	15.1.7.8 set_default_hdl_path
	15.1.7.9 get_default_hdl_path
	15.1.7.10 set_hdl_path_root
	15.1.7.11 is_hdl_path_root

	15.1.8 Data members (variables)
	15.1.8.1 default_map
	15.1.8.2 default_path

	15.2 uvm_reg_map
	15.2.1 Class definition
	15.2.2 Constructor
	15.2.3 Initialization
	15.2.3.1 configure
	15.2.3.2 add_reg
	15.2.3.3 add_mem
	15.2.3.4 add_submap
	15.2.3.5 set_sequencer
	15.2.3.6 set_submap_offset
	15.2.3.7 get_submap_offset
	15.2.3.8 set_base_addr
	15.2.3.9 reset

	15.2.4 Introspection
	15.2.4.1 get_name
	15.2.4.2 get_full_name
	15.2.4.3 get_root_map
	15.2.4.4 get_parent
	15.2.4.5 get_parent_map
	15.2.4.6 get_base_addr
	15.2.4.7 get_n_bytes
	15.2.4.8 get_addr_unit_bytes
	15.2.4.9 get_endian
	15.2.4.10 get_sequencer
	15.2.4.11 get_adapter
	15.2.4.12 get_submaps
	15.2.4.13 get_registers
	15.2.4.14 get_fields
	15.2.4.15 get_memories
	15.2.4.16 get_virtual_registers
	15.2.4.17 get_virtual_fields
	15.2.4.18 get_physical_addresses
	15.2.4.19 get_reg_by_offset
	15.2.4.20 get_mem_by_offset

	15.2.5 Bus access
	15.2.5.1 set_auto_predict
	15.2.5.2 get_auto_predict
	15.2.5.3 set_check_on_read
	15.2.5.4 get_check_on_read
	15.2.5.5 do_bus_write
	15.2.5.6 do_bus_read
	15.2.5.7 do_write
	15.2.5.8 do_read

	15.2.6 Backdoor
	15.2.6.1 backdoor

	15.3 uvm_reg_file
	15.3.1 Class definition
	15.3.2 Constructor
	15.3.3 Initialization
	15.3.3.1 configure

	15.3.4 Introspection
	15.3.4.1 get_name
	15.3.4.2 get_full_name
	15.3.4.3 get_parent
	15.3.4.4 get_regfile

	15.3.5 Backdoor
	15.3.5.1 clear_hdl_path
	15.3.5.2 add_hdl_path
	15.3.5.3 has_hdl_path
	15.3.5.4 get_hdl_path
	15.3.5.5 get_full_hdl_path
	15.3.5.6 set_default_hdl_path
	15.3.5.7 get_default_hdl_path

	15.4 uvm_reg
	15.4.1 Class definition
	15.4.2 Constructor
	15.4.3 Initialization
	15.4.3.1 configure
	15.4.3.2 set_offset

	15.4.4 Introspection
	15.4.4.1 get_name
	15.4.4.2 get_full_name
	15.4.4.3 get_parent
	15.4.4.4 get_regfile
	15.4.4.5 get_n_maps
	15.4.4.6 is_in_map
	15.4.4.7 get_maps
	15.4.4.8 get_rights
	15.4.4.9 get_n_bits
	15.4.4.10 get_n_bytes
	15.4.4.11 get_max_size
	15.4.4.12 get_fields
	15.4.4.13 get_field_by_name
	15.4.4.14 get_offset
	15.4.4.15 get_address
	15.4.4.16 get_addresses

	15.4.5 Access
	15.4.5.1 set
	15.4.5.2 get
	15.4.5.3 get_mirrored_value
	15.4.5.4 needs_update
	15.4.5.5 reset
	15.4.5.6 get_reset
	15.4.5.7 has_reset
	15.4.5.8 set_reset
	15.4.5.9 write
	15.4.5.10 read
	15.4.5.11 poke
	15.4.5.12 peek
	15.4.5.13 update
	15.4.5.14 mirror
	15.4.5.15 predict
	15.4.5.16 is_busy

	15.4.6 Frontdoor
	15.4.6.1 set_frontdoor
	15.4.6.2 get_frontdoor

	15.4.7 Backdoor
	15.4.7.1 set_backdoor
	15.4.7.2 get_backdoor
	15.4.7.3 clear_hdl_path
	15.4.7.4 add_hdl_path
	15.4.7.5 add_hdl_path_slice
	15.4.7.6 has_hdl_path
	15.4.7.7 get_hdl_path
	15.4.7.8 get_hdl_path_kinds
	15.4.7.9 get_full_hdl_path
	15.4.7.10 backdoor_read
	15.4.7.11 backdoor_write
	15.4.7.12 backdoor_watch

	15.4.8 Coverage
	15.4.8.1 include_coverage
	15.4.8.2 build_coverage
	15.4.8.3 add_coverage
	15.4.8.4 has_coverage
	15.4.8.5 set_coverage
	15.4.8.6 get_coverage
	15.4.8.7 sample
	15.4.8.8 sample_values

	15.4.9 Callbacks
	15.4.9.1 pre_write
	15.4.9.2 post_write
	15.4.9.3 pre_read
	15.4.9.4 post_read

	15.5 uvm_reg_field
	15.5.1 Class definition
	15.5.2 Constructor
	15.5.3 Initialization
	15.5.3.1 configure

	15.5.4 Introspection
	15.5.4.1 get_name
	15.5.4.2 get_full_name
	15.5.4.3 get_parent
	15.5.4.4 get_lsb_pos
	15.5.4.5 get_n_bits
	15.5.4.6 get_max_size
	15.5.4.7 set_access
	15.5.4.8 define_access
	15.5.4.9 get_access
	15.5.4.10 is_known_access
	15.5.4.11 set_volatility
	15.5.4.12 is_volatile

	15.5.5 Access
	15.5.5.1 set
	15.5.5.2 get
	15.5.5.3 get_mirrored_value
	15.5.5.4 reset
	15.5.5.5 get_reset
	15.5.5.6 has_reset
	15.5.5.7 set_reset
	15.5.5.8 needs_update
	15.5.5.9 write
	15.5.5.10 read
	15.5.5.11 poke
	15.5.5.12 peek
	15.5.5.13 mirror
	15.5.5.14 set_compare
	15.5.5.15 get_compare
	15.5.5.16 is_indv_accessible
	15.5.5.17 predict

	15.5.6 Callbacks
	15.5.6.1 pre_write
	15.5.6.2 post_write
	15.5.6.3 pre_read
	15.5.6.4 post_read

	15.6 uvm_mem
	15.6.1 Class definition
	15.6.2 Constructor
	15.6.3 Initialization
	15.6.3.1 configure
	15.6.3.2 set_offset

	15.6.4 Introspection
	15.6.4.1 get_name
	15.6.4.2 get_full_name
	15.6.4.3 get_parent
	15.6.4.4 get_n_maps
	15.6.4.5 is_in_map
	15.6.4.6 get_maps
	15.6.4.7 get_rights
	15.6.4.8 get_access
	15.6.4.9 get_size
	15.6.4.10 get_n_bytes
	15.6.4.11 get_n_bits
	15.6.4.12 get_max_size
	15.6.4.13 get_virtual_registers
	15.6.4.14 get_virtual_fields
	15.6.4.15 get_vreg_by_name
	15.6.4.16 get_vfield_by_name
	15.6.4.17 get_vreg_by_offset
	15.6.4.18 get_offset
	15.6.4.19 get_address
	15.6.4.20 get_addresses

	15.6.5 HDL access
	15.6.5.1 write
	15.6.5.2 read
	15.6.5.3 burst_write
	15.6.5.4 burst_read
	15.6.5.5 poke
	15.6.5.6 peek

	15.6.6 Frontdoor
	15.6.6.1 set_frontdoor
	15.6.6.2 get_frontdoor

	15.6.7 Backdoor
	15.6.7.1 set_backdoor
	15.6.7.2 get_backdoor
	15.6.7.3 clear_hdl_path
	15.6.7.4 add_hdl_path
	15.6.7.5 add_hdl_path_slice
	15.6.7.6 has_hdl_path
	15.6.7.7 get_hdl_path
	15.6.7.8 get_full_hdl_path
	15.6.7.9 get_hdl_path_kinds
	15.6.7.10 backdoor_read
	15.6.7.11 backdoor_write

	15.6.8 Callbacks
	15.6.8.1 pre_write
	15.6.8.2 post_write
	15.6.8.3 pre_read
	15.6.8.4 post_read

	15.6.9 Coverage
	15.6.9.1 build_coverage
	15.6.9.2 add_coverage
	15.6.9.3 has_coverage
	15.6.9.4 set_coverage
	15.6.9.5 get_coverage
	15.6.9.6 sample

	15.7 uvm_reg_indirect_data
	15.7.1 Class definition
	15.7.2 Constructor
	15.7.3 Member functions
	15.7.3.1 configure

	15.8 uvm_reg_fifo
	15.8.1 Class definition
	15.8.2 Constructor
	15.8.3 Initialization
	15.8.3.1 set_compare

	15.8.4 Introspection
	15.8.4.1 size
	15.8.4.2 capacity

	15.8.5 Access
	15.8.5.1 write
	15.8.5.2 read
	15.8.5.3 set
	15.8.5.4 update
	15.8.5.5 mirror
	15.8.5.6 get
	15.8.5.7 do_predict

	15.8.6 Special overrides
	15.8.6.1 pre_write
	15.8.6.2 pre_read

	15.8.7 Data members
	15.8.7.1 fifo

	15.9 uvm_vreg
	15.9.1 Class definition
	15.9.2 Constructor
	15.9.3 Initialization
	15.9.3.1 configure
	15.9.3.2 implement
	15.9.3.3 allocate
	15.9.3.4 get_region
	15.9.3.5 release_region

	15.9.4 Introspection
	15.9.4.1 get_name
	15.9.4.2 get_full_name
	15.9.4.3 get_parent
	15.9.4.4 get_memory
	15.9.4.5 get_n_maps
	15.9.4.6 is_in_map
	15.9.4.7 get_maps
	15.9.4.8 get_rights
	15.9.4.9 get_access
	15.9.4.10 get_size
	15.9.4.11 get_n_bytes
	15.9.4.12 get_n_memlocs
	15.9.4.13 get_incr
	15.9.4.14 get_fields
	15.9.4.15 get_field_by_name
	15.9.4.16 get_offset_in_memory
	15.9.4.17 get_address

	15.9.5 HDL access
	15.9.5.1 write
	15.9.5.2 read
	15.9.5.3 poke
	15.9.5.4 peek
	15.9.5.5 reset

	15.9.6 Callbacks
	15.9.6.1 pre_write
	15.9.6.2 post_write
	15.9.6.3 pre_read
	15.9.6.4 post_read

	15.10 uvm_vreg_cbs
	15.10.1 Member functions
	15.10.1.1 pre_write
	15.10.1.2 post_write
	15.10.1.3 pre_read
	15.10.1.4 post_read

	15.11 uvm_vreg_field
	15.11.1 Class definition
	15.11.2 Constructor
	15.11.3 Initialization
	15.11.3.1 configure

	15.11.4 Introspection
	15.11.4.1 get_name
	15.11.4.2 get_full_name
	15.11.4.3 get_parent
	15.11.4.4 get_lsb_pos_in_register
	15.11.4.5 get_n_bits
	15.11.4.6 get_access

	15.11.5 HDL access
	15.11.5.1 write
	15.11.5.2 read
	15.11.5.3 poke
	15.11.5.4 peek

	15.11.6 Callbacks
	15.11.6.1 pre_write
	15.11.6.2 post_write
	15.11.6.3 pre_read
	15.11.6.4 post_read

	15.12 uvm_vreg_field_cbs
	15.12.1 Class definition
	15.12.2 Member functions
	15.12.2.1 pre_write
	15.12.2.2 post_write
	15.12.2.3 pre_read
	15.12.2.4 post_read

	15.13 uvm_reg_cbs
	15.13.1 Class definition
	15.13.2 Member functions
	15.13.2.1 pre_write
	15.13.2.2 post_write
	15.13.2.3 pre_read
	15.13.2.4 post_read
	15.13.2.5 post_predict
	15.13.2.6 encode
	15.13.2.7 decode

	15.14 uvm_mem_mam
	15.14.1 Class definition
	15.14.2 Constructor
	15.14.3 Initialization
	15.14.3.1 reconfigure

	15.14.4 Memory management
	15.14.4.1 reserve_region
	15.14.4.2 request_region
	15.14.4.3 release_region
	15.14.4.4 release_all_regions

	15.14.5 Introspection
	15.14.5.1 convert2string
	15.14.5.2 for_each
	15.14.5.3 get_memory

	15.14.6 Data members
	15.14.6.1 default_alloc

	15.14.7 Type definitions
	15.14.7.1 alloc_mode_e
	15.14.7.2 locality_e

	15.15 uvm_mem_region
	15.15.1 Class definition
	15.15.2 Member functions
	15.15.2.1 get_start_offset
	15.15.2.2 get_end_offset
	15.15.2.3 get_len
	15.15.2.4 get_n_bytes
	15.15.2.5 release_region
	15.15.2.6 get_memory
	15.15.2.7 get_virtual_registers
	15.15.2.8 write
	15.15.2.9 read
	15.15.2.10 burst_write
	15.15.2.11 burst_read
	15.15.2.12 poke
	15.15.2.13 peek

	15.16 Global declarations
	15.16.1 Types
	15.16.1.1 uvm_reg_data_t
	15.16.1.2 uvm_reg_data_logic_t
	15.16.1.3 uvm_reg_addr_t
	15.16.1.4 uvm_reg_addr_logic_t
	15.16.1.5 uvm_reg_byte_en_t
	15.16.1.6 uvm_reg_cvr_t
	15.16.1.7 uvm_hdl_path_slice

	15.16.2 Enumerations
	15.16.2.1 uvm_status_e
	15.16.2.2 uvm_path_e
	15.16.2.3 uvm_check_e
	15.16.2.4 uvm_endianness_e
	15.16.2.5 uvm_elem_kind_e
	15.16.2.6 uvm_access_e
	15.16.2.7 uvm_hier_e
	15.16.2.8 uvm_predict_e
	15.16.2.9 uvm_coverage_model_e
	15.16.2.10 uvm_reg_mem_tests_e

	16. Register interaction with DUT
	16.1 uvm_reg_item
	16.1.1 Class definition
	16.1.2 Constructor
	16.1.3 Member functions
	16.1.3.1 convert2string
	16.1.3.2 do_copy

	16.1.4 Data members
	16.1.4.1 element_kind
	16.1.4.2 element
	16.1.4.3 access_kind
	16.1.4.4 value
	16.1.4.5 offset
	16.1.4.6 status
	16.1.4.7 local_map
	16.1.4.8 map
	16.1.4.9 path
	16.1.4.10 parent
	16.1.4.11 prior
	16.1.4.12 extension
	16.1.4.13 bd_kind
	16.1.4.14 fname
	16.1.4.15 lineno

	16.2 uvm_reg_bus_op
	16.2.1 Class definition
	16.2.2 Data members
	16.2.2.1 kind
	16.2.2.2 addr
	16.2.2.3 data
	16.2.2.4 n_bits
	16.2.2.5 byte_en
	16.2.2.6 status

	16.3 uvm_reg_adapter
	16.3.1 Class definition
	16.3.2 Constructor
	16.3.3 Member functions
	16.3.3.1 reg2bus
	16.3.3.2 bus2reg
	16.3.3.3 get_item

	16.3.4 Data members
	16.3.4.1 supports_byte_enable
	16.3.4.2 provides_responses
	16.3.4.3 parent_sequence

	16.4 uvm_reg_tlm_adapter
	16.4.1 Class definition
	16.4.2 Constructor
	16.4.3 Member functions
	16.4.3.1 reg2bus
	16.4.3.2 bus2reg

	16.5 uvm_reg_predictor
	16.5.1 Class definition
	16.5.2 Constructor
	16.5.3 Ports
	16.5.3.1 bus_in
	16.5.3.2 reg_ap

	16.5.4 Member functions
	16.5.4.1 pre_predict
	16.5.4.2 check_phase

	16.5.5 Data members
	16.5.5.1 map
	16.5.5.2 adapter

	16.6 uvm_reg_sequence
	16.6.1 Class definition
	16.6.2 Constructor
	16.6.3 Sequence API
	16.6.3.1 body
	16.6.3.2 do_reg_item

	16.6.4 Convenience Write/Read API
	16.6.4.1 write_reg
	16.6.4.2 read_reg
	16.6.4.3 poke_reg
	16.6.4.4 peek_reg
	16.6.4.5 update_reg
	16.6.4.6 mirror_reg
	16.6.4.7 write_mem
	16.6.4.8 read_mem
	16.6.4.9 poke_mem
	16.6.4.10 peek_mem

	16.6.5 Data members
	16.6.5.1 model
	16.6.5.2 adapter
	16.6.5.3 reg_seqr

	16.7 uvm_reg_frontdoor
	16.7.1 Class definition
	16.7.2 Constructor
	16.7.3 Data members
	16.7.3.1 rw_info
	16.7.3.2 sequencer

	17. Global functionality
	17.1 Global functions
	17.1.1 uvm_set_config_int§
	17.1.2 uvm_set_config_string§
	17.1.3 run_test

	17.2 Global defines
	17.2.1 UVM_MAX_STREAMBITS
	17.2.2 UVM_PACKER_MAX_BYTES
	17.2.3 UVM_DEFAULT_TIMEOUT

	17.3 Global type definitions (typedefs)
	17.3.1 uvm_bitstream_t
	17.3.2 uvm_integral_t
	17.3.3 UVM_FILE
	17.3.4 uvm_report_cb
	17.3.5 uvm_config_int
	17.3.6 uvm_config_string
	17.3.7 uvm_config_object
	17.3.8 uvm_config_wrapper

	17.4 Global enumeration
	17.4.1 uvm_action
	17.4.2 uvm_severity
	17.4.3 uvm_verbosity
	17.4.4 uvm_active_passive_enum
	17.4.5 uvm_sequence_state_enum
	17.4.6 uvm_phase_type

	17.5 uvm_coreservices_t
	17.5.1 Class definition
	17.5.2 Member functions
	17.5.2.1 get_factory
	17.5.2.2 set_factory
	17.5.2.3 get_report_server
	17.5.2.4 set_report_server
	17.5.2.5 get_root
	17.5.2.6 get

	17.6 uvm_default_coreservices_t
	17.6.1 Class definition
	17.6.2 Member functions
	17.6.2.1 get_factory
	17.6.2.2 set_factory
	17.6.2.3 get_report_server
	17.6.2.4 set_report_server
	17.6.2.5 get_root
	17.6.2.6 get

	Annex A (informative) Glossary
	Index

