
Copyright © 2005 by the Open SystemC Initiative (OSCI)
All rights reserved.

April 25 2005

Draft Standard SystemC Language
Reference Manual

Abstract: This is a draft of the SystemC Language Reference Manual.
Keywords: TBD

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Introduction

This document defines the SystemC standard.

Contributors

The development of the OSCI SystemC 2.1 LRM was sponsored by the Open SystemC Initiative (OSCI) and
was created under the leadership of the following people:

Authors: John Aynsley (Core), David Long (Data Types)
Typographical Editor: Sofie Vandeputte
LRM Working Group Chair: Stuart Swan

The following is a list of contributors to the development of SystemC and participants in the LRM Working
Group.

El Mustapha Aboulhamid
Mike Baird
Bishnupriya Bhattacharya
David C Black
Dundar Dumlogal
Abhijit Ghosh
Andy Goodrich
Serge Goossens
Robert Graulich
Thorsten Groetker
Martin Jannsen
Kevin Kranen
Evan Lavelle
Mike Meredith
Wolfgang Mueller
César Quiroz
Adam Rose

Ray Ryan
Kurt Schwartz
Minoru Shoji
Bob Shur
Vincent Viteau
Cop
yright © 2005 OSCI. All rights reserved.

ii

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Contents

1. Overview.. 1

1.1 Scope.. 1

1.2 Subsets ... 1

1.3 Relationship with C++... 1

1.4 Guidance for readers .. 2

2. References.. 2

3. Terminology and conventions used in this standard.. 3

3.1 Terminology... 3

3.1.1 Shall, should, may, can .. 3
3.1.2 Implementation, application .. 3
3.1.3 Call, called from, derived from.. 3
3.1.4 Specific technical terms ... 3

3.2 Syntactic conventions .. 5

3.2.1 Implementation-defined... 5
3.2.2 Disabled ... 5
3.2.3 Ellipsis (...)... 5
3.2.4 Class names.. 5
3.2.5 Embolded text .. 5

3.3 Semantic conventions .. 6

3.3.1 Class definitions and the inheritance hierarchy ... 6
3.3.2 Function definitions and side-effects ... 6
3.3.3 Functions whose return type is a reference or a pointer .. 6

3.3.3.1 Functions that return *this or an actual argument.. 6
3.3.3.2 Functions that return char* .. 6
3.3.3.3 Functions that return a reference or pointer to an object in

the module hierarchy ... 7
3.3.3.4 Functions that return a reference or pointer to a transient object 7
3.3.3.5 Functions sc_time_stamp and sc_signal::read... 8

3.3.4 Namespaces and internal naming .. 8
3.3.5 Non-compliant applications and errors.. 8

3.4 Notes and examples ... 9

4. Elaboration and simulation semantics ... 10

4.1 Elaboration... 10

4.1.1 Instantiation ... 10
4.1.2 Static process creation ... 12
Copyright © 2005 OSCI. All rights reserved.
iii

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
4.1.3 Port binding and export binding .. 12
4.1.4 Setting the time resolution ... 13

4.2 Simulation .. 13

4.2.1 The scheduling algorithm .. 14
4.2.1.1 Initialization phase ... 15
4.2.1.2 Evaluation phase .. 15
4.2.1.3 Update phase.. 16
4.2.1.4 Delta notification phase ... 16
4.2.1.5 Timed notification phase ... 16

4.2.2 Cycles in the scheduling algorithm.. 16

4.3 Running elaboration and simulation .. 17

4.3.1 Function declarations ... 17
4.3.2 Function sc_elab_and_sim... 17
4.3.3 Functions sc_argc and sc_argv .. 18
4.3.4 Running under application control using functions sc_main and sc_start..................... 18

4.3.4.1 Function sc_main... 18
4.3.4.2 Function sc_start .. 19

4.3.5 Running under control of the kernel .. 19

4.4 Elaboration and simulation callbacks .. 20

4.4.1 before_end_of_elaboration .. 20
4.4.2 end_of_elaboration .. 21
4.4.3 start_of_simulation .. 21
4.4.4 end_of_simulation ... 22

4.5 Other functions related to the scheduler .. 22

4.5.1 Function declarations ... 22
4.5.2 Function sc_stop, sc_set_stop_mode, and sc_get_stop_mode 23
4.5.3 Function sc_time_stamp .. 24
4.5.4 Function sc_delta_count .. 24
4.5.5 Function sc_is_running.. 24

5. Core language class definitions ... 25

5.1 Class header files ... 25

5.1.1 "systemc" ... 25
5.1.2 "systemc.h" .. 25

5.2 sc_module .. 27

5.2.1 Description... 27
5.2.2 Class definition .. 27
5.2.3 Constraints on usage .. 29
5.2.4 kind .. 29
5.2.5 SC_MODULE ... 29
5.2.6 Constructors ... 30
5.2.7 SC_CTOR.. 30
Copyright © 2005 OSCI. All rights reserved.
iv

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.2.8 SC_HAS_PROCESS ... 31
5.2.9 SC_METHOD, SC_THREAD, SC_CTHREAD... 31
5.2.10 Method process .. 32
5.2.11 Thread and clocked thread processes... 32
5.2.12 Clocked thread processes and reset_signal_is ... 34
5.2.13 sensitive ... 35
5.2.14 dont_initialize .. 36
5.2.15 set_stack_size... 37
5.2.16 next_trigger .. 37
5.2.17 wait... 39
5.2.18 Positional port binding... 41
5.2.19 before_end_of_elaboration, end_of_elaboration, start_of_simulation,

end_of_simulation ... 42
5.2.20 get_child_objects ... 42
5.2.21 sc_gen_unique_name... 43
5.2.22 sc_behavior and sc_channel... 43

5.3 sc_module_name ... 45

5.3.1 Description... 45
5.3.2 Class definition .. 45
5.3.3 Constraints on usage .. 45
5.3.4 Module hierarchy... 46
5.3.5 Member functions .. 46

5.4 sc_sensitive† ..48

5.4.1 Description... 48
5.4.2 Class definition .. 48
5.4.3 Constraints on usage .. 48
5.4.4 operator<<.. 48

5.5 sc_spawn_options and sc_spawn... 50

5.5.1 Description... 50
5.5.2 Class definition .. 50
5.5.3 Constraints on usage .. 51
5.5.4 Constructors ... 51
5.5.5 Member functions .. 51
5.5.6 sc_spawn.. 52
5.5.7 SC_FORK and SC_JOIN... 54

5.6 sc_process_handle ... 55

5.6.1 Description... 55
5.6.2 Class definition .. 55
5.6.3 Constraints on usage .. 56
5.6.4 Constructors ... 56
5.6.5 Member functions .. 56
5.6.6 sc_get_current_process_handle ... 57

5.7 sc_event_finder and sc_event_finder_t ... 59

5.7.1 Description... 59
Copyright © 2005 OSCI. All rights reserved.
v

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.7.2 Class definition .. 59
5.7.3 Constraints on usage .. 59

5.8 sc_event_and_list† and sc_event_or_list† ..61

5.8.1 Description... 61
5.8.2 Class definition .. 61
5.8.3 Constraints on usage .. 61
5.8.4 Event lists... 61

5.9 sc_event ... 62

5.9.1 Description... 62
5.9.2 Class definition .. 62
5.9.3 Constraints on usage .. 62
5.9.4 notify and cancel .. 62
5.9.5 Event lists... 63
5.9.6 Multiple event notifications ... 63

5.10 sc_time ... 64

5.10.1 Description... 64
5.10.2 Class definition .. 64
5.10.3 Time resolution .. 65
5.10.4 Functions and operators ... 65
5.10.5 SC_ZERO_TIME .. 65

5.11 sc_port.. 67

5.11.1 Description... 67
5.11.2 Class definition .. 67
5.11.3 Template parameters.. 68
5.11.4 Constraints on usage .. 68
5.11.5 Constructors ... 69
5.11.6 kind .. 69
5.11.7 Named port binding ... 69
5.11.8 Member functions for bound ports and port-to-port binding... 70

5.11.8.1 size ... 70
5.11.8.2 operator->... 70
5.11.8.3 operator[] ... 71
5.11.8.4 get_interface... 73

5.11.9 before_end_of_elaboration, end_of_elaboration, start_of_simulation,
end_of_simulation ... 73

5.12 sc_export .. 74

5.12.1 Description... 74
5.12.2 Class definition .. 74
5.12.3 Template parameters.. 75
5.12.4 Constraints on usage .. 75
5.12.5 Constructors ... 75
5.12.6 kind .. 75
5.12.7 Export binding ... 75
5.12.8 Member functions for bound exports and export-to-export binding 77
Copyright © 2005 OSCI. All rights reserved.
vi

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.12.8.1 operator-> and operator IF&.. 77
5.12.8.2 get_interface... 77

5.12.9 before_end_of_elaboration, end_of_elaboration, start_of_simulation,
end_of_simulation ... 78

5.13 sc_interface .. 79

5.13.1 Description... 79
5.13.2 Class definition .. 79
5.13.3 Constraints on usage .. 79
5.13.4 register_port ... 80
5.13.5 default_event.. 80

5.14 sc_prim_channel .. 82

5.14.1 Description... 82
5.14.2 Class definition .. 82
5.14.3 Constraints on usage .. 83
5.14.4 Constructors ... 83
5.14.5 kind .. 83
5.14.6 request_update and update... 83
5.14.7 next_trigger and wait ... 84
5.14.8 before_end_of_elaboration, end_of_elaboration, start_of_simulation,

end_of_simulation ... 84

5.15 sc_object .. 86

5.15.1 Description... 86
5.15.2 Class definition .. 86
5.15.3 Constraints on usage .. 87
5.15.4 Constructors and hierarchical names ... 87
5.15.5 name, basename, and kind ... 88
5.15.6 print and dump ... 89
5.15.7 Functions for object hierarchy traversal .. 89
5.15.8 Member functions for attributes .. 90

5.16 sc_attr_base.. 92

5.16.1 Description... 92
5.16.2 Class definition .. 92
5.16.3 Member functions .. 92

5.17 sc_attribute... 93

5.17.1 Description... 93
5.17.2 Class definition .. 93
5.17.3 Template parameters.. 93
5.17.4 Member functions and data members .. 93

5.18 sc_attr_cltn... 94

5.18.1 Description... 94
5.18.2 Class definition .. 94
5.18.3 Constraints on usage .. 94
Copyright © 2005 OSCI. All rights reserved.
vii

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.18.4 Iterators .. 94

6. Predefined channel class definitions.. 96

6.1 sc_signal_in_if ... 96

6.1.1 Description... 96
6.1.2 Class definition .. 96
6.1.3 Member functions .. 96

6.2 sc_signal_in_if<bool> and sc_signal_in_if<sc_dt::sc_logic>... 97

6.2.1 Description... 97
6.2.2 Class definition .. 97
6.2.3 Member functions .. 98

6.3 sc_signal_inout_if .. 99

6.3.1 Description... 99
6.3.2 Class definition .. 99
6.3.3 write ... 99

6.4 sc_signal... 100

6.4.1 Description... 100
6.4.2 Class definition .. 100
6.4.3 Template parameter T.. 101
6.4.4 Reading and writing signals... 101
6.4.5 Constructors ... 102
6.4.6 register_port ... 102
6.4.7 Member functions for reading ... 102
6.4.8 Member functions for writing.. 103
6.4.9 Member functions for events ... 103
6.4.10 Diagnostic member functions .. 103
6.4.11 Operator<<... 104

6.5 sc_signal<bool> and sc_signal<sc_dt::sc_logic>.. 106

6.5.1 Description... 106
6.5.2 Class definition .. 106
6.5.3 Member functions .. 107

6.6 sc_buffer .. 109

6.6.1 Description... 109
6.6.2 Class definition .. 109
6.6.3 Constructors ... 109
6.6.4 Member functions .. 109

6.7 sc_clock ... 112

6.7.1 Description... 112
6.7.2 Class definition .. 112
6.7.3 Characteristic properties .. 113
Copyright © 2005 OSCI. All rights reserved.
viii

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.7.4 Constructors ... 113
6.7.5 write ... 113
6.7.6 Diagnostic member functions .. 113
6.7.7 before_end_of_elaboration .. 114
6.7.8 sc_in_clk .. 114

6.8 sc_in ... 115

6.8.1 Description... 115
6.8.2 Class definition .. 115
6.8.3 Member functions .. 116
6.8.4 Function sc_trace ... 116
6.8.5 end_of_elaboration .. 116

6.9 sc_in<bool> and sc_in<sc_dt::sc_logic>... 117

6.9.1 Description... 117
6.9.2 Class definition .. 117
6.9.3 Member functions .. 119

6.10 sc_inout .. 120

6.10.1 Description... 120
6.10.2 Class definition .. 120
6.10.3 Member functions .. 121
6.10.4 initialize ... 121
6.10.5 Function sc_trace ... 121
6.10.6 end_of_elaboration .. 122
6.10.7 Binding... 122

6.11 sc_inout<bool> and sc_inout<sc_dt::sc_logic> .. 123

6.11.1 Description... 123
6.11.2 Class definition .. 123
6.11.3 Member functions .. 125

6.12 sc_out ... 126

6.12.1 Description... 126
6.12.2 Class definition .. 126
6.12.3 Member functions .. 126

6.13 sc_signal_resolved ... 127

6.13.1 Description... 127
6.13.2 Class definition .. 127
6.13.3 Constructors ... 127
6.13.4 Resolution semantics ... 128
6.13.5 Member functions .. 129

6.14 sc_in_resolved ... 130

6.14.1 Description... 130
6.14.2 Class definition .. 130
Copyright © 2005 OSCI. All rights reserved.
ix

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.14.3 Member functions .. 130

6.15 sc_inout_resolved .. 131

6.15.1 Description... 131
6.15.2 Class definition .. 131
6.15.3 Member functions .. 131

6.16 sc_out_resolved ... 133

6.16.1 Description... 133
6.16.2 Class definition .. 133
6.16.3 Member functions .. 133

6.17 sc_signal_rv ... 134

6.17.1 Description... 134
6.17.2 Class definition .. 134
6.17.3 Semantics and member functions .. 134

6.18 sc_in_rv.. 136

6.18.1 Description... 136
6.18.2 Class definition .. 136
6.18.3 Member functions .. 136

6.19 sc_inout_rv... 137

6.19.1 Description... 137
6.19.2 Class definition .. 137
6.19.3 Member functions .. 137

6.20 sc_out_rv.. 139

6.20.1 Description... 139
6.20.2 Class definition .. 139
6.20.3 Member functions .. 139

6.21 sc_fifo_in_if... 140

6.21.1 Description... 140
6.21.2 Class definition .. 140
6.21.3 Member functions .. 140

6.22 sc_fifo_out_if... 142

6.22.1 Description... 142
6.22.2 Class definition .. 142
6.22.3 Member functions .. 142

6.23 sc_fifo .. 144

6.23.1 Description... 144
6.23.2 Class definition .. 144
Copyright © 2005 OSCI. All rights reserved.
x

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.23.3 Template parameter T.. 145
6.23.4 Constructors ... 145
6.23.5 register_port ... 145
6.23.6 Member functions for reading ... 146
6.23.7 Member functions for writing.. 146
6.23.8 The update phase ... 147
6.23.9 Member functions for events ... 147
6.23.10Member functions for available values and free slots ... 147
6.23.11Diagnostic member functions .. 147
6.23.12Operator<<... 148

6.24 sc_fifo_in ... 149

6.24.1 Description... 149
6.24.2 Class definition .. 149
6.24.3 Member functions .. 149

6.25 sc_fifo_out ... 150

6.25.1 Description... 150
6.25.2 Class definition .. 150
6.25.3 Member functions .. 150

6.26 sc_mutex_if.. 153

6.26.1 Description... 153
6.26.2 Class definition .. 153
6.26.3 Member functions .. 153

6.27 sc_mutex .. 154

6.27.1 Description... 154
6.27.2 Class definition .. 154
6.27.3 Constructors ... 154
6.27.4 Member functions .. 155

6.28 sc_semaphore_if .. 156

6.28.1 Description... 156
6.28.2 Class definition .. 156
6.28.3 Member functions .. 156

6.29 sc_semaphore... 157

6.29.1 Description... 157
6.29.2 Class definition .. 157
6.29.3 Constructors ... 157
6.29.4 Member functions .. 158

6.30 sc_event_queue .. 159

6.30.1 Description... 159
6.30.2 Class definition .. 159
6.30.3 Constraints on usage .. 159
Copyright © 2005 OSCI. All rights reserved.
xi

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.30.4 Constructors ... 159
6.30.5 kind .. 160
6.30.6 Member functions .. 160

7. Data types .. 162

7.1 Introduction.. 162

7.2 Common characteristics... 164

7.2.1 Initialization and assignment operators ... 164
7.2.2 Base class default word length... 165
7.2.3 Word length ... 166
7.2.4 Bit-select .. 166
7.2.5 Part-select... 166
7.2.6 Concatenation .. 167
7.2.7 Reduction operators ... 169
7.2.8 Integer conversion.. 169
7.2.9 String input and output .. 169
7.2.10 Conversion of application-defined types in integer expressions 170

7.3 String literals.. 171

7.4 sc_value_base†..173

7.4.1 Description... 173
7.4.1.1 Class definition .. 173
7.4.1.2 Constraints on usage .. 173
7.4.1.3 Member functions .. 173

7.5 Fixed-precision integer types... 175

7.5.1 Type definitions ... 175
7.5.2 sc_int_base... 176

7.5.2.1 Description... 176
7.5.2.2 Class definition .. 176
7.5.2.3 Constraints on usage .. 178
7.5.2.4 Constructors ... 178
7.5.2.5 Assignment operators .. 178
7.5.2.6 Implicit type conversion .. 178
7.5.2.7 Explicit type conversion .. 179
7.5.2.8 Arithmetic, bitwise, and comparison operators ... 179

7.5.3 sc_uint_base... 181
7.5.3.1 Description... 181
7.5.3.2 Class definition .. 181
7.5.3.3 Constraints on usage .. 183
7.5.3.4 Constructors ... 183
7.5.3.5 Assignment operators .. 183
7.5.3.6 Implicit type conversion .. 183
7.5.3.7 Explicit type conversion .. 184
7.5.3.8 Arithmetic, bitwise, and comparison operators ... 184

7.5.4 sc_int .. 186
7.5.4.1 Description... 186
7.5.4.2 Class definition .. 186
Copyright © 2005 OSCI. All rights reserved.
xii

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.5.4.3 Constraints on usage .. 187
7.5.4.4 Constructors ... 187
7.5.4.5 Assignment operators .. 187
7.5.4.6 Arithmetic and bitwise operators ... 188

7.5.5 sc_uint .. 189
7.5.5.1 Description... 189
7.5.5.2 Class definition .. 189
7.5.5.3 Constraints on usage .. 190
7.5.5.4 Constructors ... 190
7.5.5.5 Assignment operators .. 190
7.5.5.6 Arithmetic and bitwise operators ... 191

7.5.6 Bit-selects... 192
7.5.6.1 Description... 192
7.5.6.2 Class definition .. 192
7.5.6.3 Constraints on usage .. 194
7.5.6.4 Assignment operators .. 194
7.5.6.5 Implicit type conversion .. 194

7.5.7 Part-Selects .. 196
7.5.7.1 Description... 196
7.5.7.2 Class definition .. 196
7.5.7.3 Constraints on usage .. 199
7.5.7.4 Assignment operators .. 199
7.5.7.5 Implicit type conversion .. 200
7.5.7.6 Explicit type conversion .. 200

7.6 Arbitrary-precision integer types ... 201

7.6.1 Type definitions ... 201
7.6.2 Constraints on usage .. 201
7.6.3 sc_signed.. 202

7.6.3.1 Description... 202
7.6.3.2 Class definition .. 202
7.6.3.3 Constraints on usage .. 204
7.6.3.4 Constructors ... 204
7.6.3.5 Assignment operators .. 204
7.6.3.6 Explicit type conversion .. 204
7.6.3.7 Arithmetic, bitwise, and comparison operators ... 205

7.6.4 sc_unsigned.. 209
7.6.4.1 Description... 209
7.6.4.2 Class definition .. 209
7.6.4.3 Constraints on usage .. 211
7.6.4.4 Constructors ... 211
7.6.4.5 Assignment operators .. 211
7.6.4.6 Explicit type conversion .. 211
7.6.4.7 Arithmetic, bitwise, and comparison operators ... 212

7.6.5 sc_bigint... 216
7.6.5.1 Description... 216
7.6.5.2 Class definition .. 216
7.6.5.3 Constraints on usage .. 217
7.6.5.4 Constructors ... 217
7.6.5.5 Assignment operators .. 217

7.6.6 sc_biguint... 218
7.6.6.1 Description... 218
7.6.6.2 Class definition .. 218
Copyright © 2005 OSCI. All rights reserved.
xiii

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.6.6.3 Constraints on usage .. 219
7.6.6.4 Constructors ... 219
7.6.6.5 Assignment operators .. 219

7.6.7 Bit-selects... 220
7.6.7.1 Description... 220
7.6.7.2 Class definition .. 220
7.6.7.3 Constraints on usage .. 222
7.6.7.4 Assignment operators .. 222
7.6.7.5 Implicit type conversion .. 222

7.6.8 Part-Selects .. 224
7.6.8.1 Description... 224
7.6.8.2 Class definition .. 224
7.6.8.3 Constraints on usage .. 227
7.6.8.4 Assignment operators .. 227
7.6.8.5 Implicit type conversion .. 228
7.6.8.6 Explicit type conversion .. 228

7.7 Integer concatenations ... 229

7.7.1 Description... 229
7.7.2 Class definition .. 229
7.7.3 Constraints on usage .. 230
7.7.4 Assignment operators .. 230
7.7.5 Implicit type conversion .. 230
7.7.6 Explicit type conversion .. 231

7.8 Generic base proxy class.. 232

7.8.1 Description... 232
7.8.2 Class definition .. 232
7.8.3 Constraints on usage .. 232

7.9 Logic and arbitrary width vector types .. 233

7.9.1 Type definitions ... 233
7.9.2 sc_logic .. 234

7.9.2.1 Description... 234
7.9.2.2 Class definition .. 235
7.9.2.3 Constraints on usage .. 236
7.9.2.4 Constructors ... 236
7.9.2.5 Explicit type conversion .. 236
7.9.2.6 Bitwise and comparison operators ... 237
7.9.2.7 sc_logic constant definitions.. 237

7.9.3 sc_bv_base ... 239
7.9.3.1 Description... 239
7.9.3.2 Class definition .. 239
7.9.3.3 Constraints on usage .. 241
7.9.3.4 Constructors ... 241
7.9.3.5 Assignment operators .. 241
7.9.3.6 Explicit type conversion .. 241
7.9.3.7 Bitwise and comparison operators ... 242

7.9.4 sc_lv_base .. 245
7.9.4.1 Description... 245
7.9.4.2 Class definition .. 245
Copyright © 2005 OSCI. All rights reserved.
xiv

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.4.3 Constraints on usage .. 246
7.9.4.4 Constructors ... 247
7.9.4.5 Assignment operators .. 247
7.9.4.6 Explicit type conversion .. 247
7.9.4.7 Bitwise and comparison operators ... 248

7.9.5 sc_bv .. 251
7.9.5.1 Description... 251
7.9.5.2 Class definition .. 251
7.9.5.3 Constraints on usage .. 252
7.9.5.4 Constructors ... 252
7.9.5.5 Assignment operators .. 252

7.9.6 sc_lv ... 253
7.9.6.1 Description... 253
7.9.6.2 Class definition .. 253
7.9.6.3 Constraints on usage .. 254
7.9.6.4 Constructors ... 254
7.9.6.5 Assignment operators .. 254

7.9.7 Bit-selects... 255
7.9.7.1 Description... 255
7.9.7.2 Class definition .. 255
7.9.7.3 Constraints on usage .. 256
7.9.7.4 Assignment operators .. 257
7.9.7.5 Implicit type conversion .. 257
7.9.7.6 Explicit type conversion .. 257
7.9.7.7 Bitwise and comparison operators ... 257

7.9.8 Part-Selects .. 258
7.9.8.1 Description... 258
7.9.8.2 Class definition .. 258
7.9.8.3 Constraints on usage .. 260
7.9.8.4 Assignment operators .. 260
7.9.8.5 Explicit type conversion .. 260
7.9.8.6 Bitwise and comparison operators ... 261
7.9.8.7 Other methods.. 263

7.9.9 Concatenations... 264
7.9.9.1 Description... 264
7.9.9.2 Class definition .. 264
7.9.9.3 Constraints on usage .. 266
7.9.9.4 Assignment operators .. 266
7.9.9.5 Explicit type conversion .. 266
7.9.9.6 Bitwise and comparison operators ... 267

7.10 Fixed-point types ... 270

7.10.1 Fixed-point representation ... 270
7.10.2 Fixed-point type conversion .. 271
7.10.3 Fixed-point data types.. 271

7.10.3.1 Fixed precision fixed-point types .. 271
7.10.3.2 Limited-precision fixed-point types... 272

7.10.4 Fixed-point expressions and operations... 272
7.10.5 Bit and part selection ... 276
7.10.6 Arbitrary fixed-point value limits .. 276
7.10.7 Fixed-point word length and mode.. 276

7.10.7.1 Reading parameter settings .. 277
7.10.7.2 Value attributes .. 278
Copyright © 2005 OSCI. All rights reserved.
xv

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.8 Conversions to character string.. 279
7.10.8.1 String shortcut methods ... 280
7.10.8.2 Bit pattern string conversion.. 280

7.10.9 Finite word length effects .. 280
7.10.9.1 Overflow modes... 281
7.10.9.2 Overflow for signed fixed-point numbers ... 281
7.10.9.3 Overflow for unsigned fixed-point numbers ... 283
7.10.9.4 SC_SAT ... 284
7.10.9.5 SC_SAT_ZERO... 285
7.10.9.6 SC_SAT_SYM .. 286
7.10.9.7 SC_WRAP ... 287
7.10.9.8 SC_WRAP_SM ... 289
7.10.9.9 Quantization modes ... 294
7.10.9.10Quantization for signed fixed-point numbers ... 295
7.10.9.11Quantization for unsigned fixed-point numbers ... 296
7.10.9.12SC_RND ... 298
7.10.9.13SC_RND_ZERO... 299
7.10.9.14SC_RND_MIN_INF... 300
7.10.9.15SC_RND_INF... 301
7.10.9.16SC_RND_CONV.. 302
7.10.9.17SC_TRN.. 303
7.10.9.18SC_TRN_ZERO ... 304

7.10.10sc_fxnum.. 305
7.10.10.1Description.. 305
7.10.10.2Class definition ... 305
7.10.10.3Constraints on usage ... 308
7.10.10.4Assignment operators ... 308
7.10.10.5Implicit type conversion ... 308
7.10.10.6Explicit type conversion ... 309

7.10.11sc_fxval .. 310
7.10.11.1Description.. 310
7.10.11.2Class definition ... 310
7.10.11.3Constraints on usage ... 313
7.10.11.4Public constructors.. 313
7.10.11.5Operators... 313
7.10.11.6Implicit type conversion ... 314
7.10.11.7Explicit type conversion ... 314

7.10.12sc_fxval_fast .. 315
7.10.12.1Description.. 315
7.10.12.2Class definition ... 315
7.10.12.3Constraints on usage ... 318
7.10.12.4Public constructors.. 318
7.10.12.5Operators... 318
7.10.12.6Implicit type conversion ... 318
7.10.12.7Explicit type conversion ... 318

7.10.13sc_fix.. 320
7.10.13.1Description.. 320
7.10.13.2Class definition ... 320
7.10.13.3Constraints on usage ... 322
7.10.13.4Public constructors.. 322
7.10.13.5Assignment operators ... 322
7.10.13.6Bitwise operators .. 322

7.10.14sc_ufix.. 323
7.10.14.1Description.. 323
Copyright © 2005 OSCI. All rights reserved.
xvi

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.14.2Class definition ... 323
7.10.14.3Constraints on usage ... 325
7.10.14.4Public constructors.. 325
7.10.14.5Assignment operators ... 325
7.10.14.6Bitwise operators .. 326

7.10.15sc_fix_fast .. 327
7.10.15.1Description.. 327
7.10.15.2Class definition ... 327
7.10.15.3Constraints on usage ... 329
7.10.15.4Public constructors.. 329
7.10.15.5Assignment operators ... 329
7.10.15.6Bitwise operators .. 329

7.10.16sc_ufix_fast .. 330
7.10.16.1Description.. 330
7.10.16.2Class definition ... 330
7.10.16.3Constraints on usage ... 332
7.10.16.4Public constructors.. 332
7.10.16.5Assignment operators ... 332
7.10.16.6Bitwise operators .. 332

7.10.17sc_fixed .. 333
7.10.17.1Description.. 333
7.10.17.2Class definition ... 333
7.10.17.3Constraints on usage ... 334
7.10.17.4Public constructors.. 334
7.10.17.5Assignment operators ... 335

7.10.18sc_ufixed.. 336
7.10.18.1Description.. 336
7.10.18.2Class definition ... 336
7.10.18.3Constraints on usage ... 338
7.10.18.4Public constructors.. 338
7.10.18.5Assignment operators ... 338

7.10.19sc_fixed_fast .. 339
7.10.19.1Description.. 339
7.10.19.2Class definition ... 339
7.10.19.3Constraints on usage ... 340
7.10.19.4Public constructors.. 340
7.10.19.5Assignment operators ... 341

7.10.20sc_ufixed_fast .. 342
7.10.20.1Description.. 342
7.10.20.2Class definition ... 342
7.10.20.3Constraints on usage ... 344
7.10.20.4Public constructors.. 344
7.10.20.5Assignment operators ... 344

7.10.21Bit-selects... 345
7.10.21.1Description.. 345
7.10.21.2Class definition ... 345
7.10.21.3Constraints on usage ... 346
7.10.21.4Assignment operators ... 347
7.10.21.5Implicit type conversion ... 347

7.10.22Part-Selects .. 348
7.10.22.1Description.. 348
7.10.22.2Class definition ... 348
7.10.22.3Constraints on usage ... 352
7.10.22.4Assignment operators ... 352
Copyright © 2005 OSCI. All rights reserved.
xvii

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.10.22.5Bitwise operators .. 352
7.10.22.6Implicit type conversion ... 353
7.10.22.7Explicit type conversion ... 353

7.11 Contexts ... 354

7.11.1 sc_length_param .. 354
7.11.1.1 Description... 354
7.11.1.2 Class definition .. 354
7.11.1.3 Constraints on usage .. 354
7.11.1.4 Public constructors... 354
7.11.1.5 Public methods... 355
7.11.1.6 Public operators ... 355

7.11.2 sc_length_context .. 356
7.11.2.1 Description... 356
7.11.2.2 Class definition .. 356
7.11.2.3 Public constructor .. 356
7.11.2.4 Public member functions ... 356

7.11.3 sc_fxtype_params .. 357
7.11.3.1 Description... 357
7.11.3.2 Class definition .. 357
7.11.3.3 Constraints on usage .. 357
7.11.3.4 Public constructors... 357
7.11.3.5 Public member functions ... 358
7.11.3.6 Operators.. 359

7.11.4 sc_fxtype_context .. 360
7.11.4.1 Description... 360
7.11.4.2 Class definition .. 360
7.11.4.3 Public constructor .. 360
7.11.4.4 Public member functions ... 360

7.11.5 sc_fxcast_switch .. 361
7.11.5.1 Description... 361
7.11.5.2 Class definition .. 361
7.11.5.3 Public constructors... 361
7.11.5.4 Public member functions ... 361
7.11.5.5 Explicit conversion .. 361
7.11.5.6 Operators.. 362

7.11.6 sc_fxcast_context... 363
7.11.6.1 Description... 363
7.11.6.2 Class definition .. 363
7.11.6.3 Public constructor .. 363
7.11.6.4 Public member functions ... 363

7.12 Control of string representation ... 364

7.12.1 Description... 364
7.12.2 Class definition .. 364
7.12.3 Functions.. 364

8. Utility class definitions .. 365

8.1 sc_string ... 365

8.1.1 Description... 365
Copyright © 2005 OSCI. All rights reserved.
xviii

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8.1.2 Definition ... 365

8.2 Trace files .. 366

8.2.1 Class definition and function declarations... 366
8.2.2 sc_trace_file ... 366
8.2.3 sc_create_vcd_trace_file.. 367
8.2.4 sc_close_vcd_trace_file ... 367
8.2.5 sc_write_comment ... 367
8.2.6 sc_trace .. 367

8.3 sc_report... 370

8.3.1 Description... 370
8.3.2 Class definition .. 370
8.3.3 Constraints on usage .. 370
8.3.4 sc_severity ... 371
8.3.5 Copy constructor and assignment .. 371
8.3.6 Member functions .. 371

8.4 sc_report_handler... 373

8.4.1 Description... 373
8.4.2 Class definition .. 373
8.4.3 Constraints on usage .. 375
8.4.4 sc_actions... 375
8.4.5 report .. 375
8.4.6 set_actions.. 376
8.4.7 stop_after ... 376
8.4.8 get_count.. 377
8.4.9 suppress and force.. 377
8.4.10 set_handler ... 378
8.4.11 get_new_action_id ... 379
8.4.12 sc_interrupt_here and sc_stop_here... 379
8.4.13 get_cached_report and clear_cached_report.. 379
8.4.14 set_log_file_name and get_log_file_name .. 379

8.5 sc_exception... 381

8.5.1 Description... 381
8.5.2 Definition ... 381

8.6 Utility functions ... 382

8.6.1 Function declarations ... 382
8.6.2 sc_abs... 382
8.6.3 sc_max ... 382
8.6.4 sc_min.. 382
8.6.5 sc_copyright... 382
8.6.6 sc_version .. 383
8.6.7 sc_release ... 383

Annex A (informative) Introduction to SystemC .. 385
Copyright © 2005 OSCI. All rights reserved.
xix

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Annex B (informative) Glossary ... 389

Annex C (informative) Deprecated features.. 399

Annex D (informative) Changes between the different SystemC versions ... 401

D.1 Significant changes made between SystemC version 2.0.1 and
version 2.1 Beta Oct 12 2004... 401

D.2 Changes made between SystemC version 2.1 Beta Oct 12 2004 and this standard 401
Copyright © 2005 OSCI. All rights reserved.
xx

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Draft Standard for SystemC

1. Overview

1.1 Scope

SystemC is a C++ class library. The purpose of this standard is to provide a precise and complete definition
of that class library such that a SystemC implementation can be developed with reference to this standard
alone.

Prior to the publication of this standard, SystemC was defined by an open source proof-of-concept C++
library, also known as the reference simulator, available from the Open SystemC Initiative (OSCI). In the
event of discrepancies between the behavior of the reference simulator and statements made in this standard,
this standard shall be taken to be definitive.

This standard is not intended to serve as a users’ guide or to provide an introduction to SystemC. Readers
requiring a SystemC tutorial or information on the intended use of SystemC should consult the OSCI web
site (www.systemc.org) locate the many books and training classes available.

This standard defines the public interface to the SystemC class library, and also defines constraints on how
those classes may be used. The SystemC class library may be implemented in any manner whatsoever,
provided only that the obligations imposed by this standard are honored.

1.2 Subsets

It is anticipated that tool vendors will create implementations that support only a subset of this standard, or
that impose further constraints on the use of this standard. Such implementations are not fully compliant
with this standard, but may nevertheless claim partial compliance with this standard and may use the name
SystemC.

1.3 Relationship with C++

This standard is closely related to the C++ programming language, and adheres to the terminology used in
that ISO/IEC standard. This standard does not seek to restrict the usage of the C++ programming language;
a SystemC application may use any of the facilities provided by C++, which in turn may use any of the
facilities provided by C. However, where the facilities provided by this standard are used, they shall be used
in accordance with the rules and constraints set out in this standard.

It is in the nature of a C++ class library that it may be extended using the mechanisms provided by the C++
language. Implementors and users are free to extend SystemC in this way, only provided that they do not
violate this standard.
NOTE—It is possible to create a well-formed C++ program that is legal according to the C++ programming language
standard but that violates this standard. An implementation is not obliged to detect every violation of this standard.
.
Copyright © 2005 OSCI. All rights reserved. 1

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
1.4 Guidance for readers

Readers who are not entirely familiar with SystemC should start with Annex A, “Introduction to SystemC”
on page 385, which provides a brief informal summary of the subject intended to aid in the understanding of
the normative definitions. Such readers may also find it helpful to scan the examples embedded in the
normative definitions, and also see Annex B, “Glossary” on page 389.

Serious readers should pay close attention to Clause 3, “Terminology and conventions used in this standard”
on page 3. An understanding of the terminology defined in Clause 3 is necessary for a precise interpretation
of this standard.

Clause 4, “Elaboration and simulation semantics” on page 10, defines the behavior of the SystemC kernel,
and is central to an understanding of SystemC. The semantic definitions given in the subsequent clauses
detailing the individual classes are built upon the foundations laid in Clause 4.

The clauses from Clause 5 onward define the public interface to the SystemC class library. The information
listed for each class is as follows:

a) A C++ source code listing of the class definition
b) A statement of any constraints on the use of the class and its members
c) A statement of the semantics of the class and its members
d) For certain classes, a description of functions, typedefs, and macros associated with the class.
e) Informative examples illustrating both typical and atypical uses of the class

The reader should bear in mind that the primary obligation on a tool vendor is to implement the abstract
semantics defined in Clause 4 using the framework and constraints provided by the class definitions starting
in Clause 5.

Annex A is intended to aid the reader in the understanding of the structure and intent of the SystemC class
library.

Annex B is a glossary giving informal descriptions of the terms used in this standard.

Annex C gives a list of features that were present in SystemC version 2.0.1 and are now removed for
SystemC version 2.1.

Annex D gives a list of changes between SystemC version 2.0.1 and version 2.1 Beta Oct 12 2004, and a list
changes between SystemC 2.1 Beta Oct 12 2004 and this standard.

2. References

This standard shall be used in conjunction with the following publications:

ISO/IEC 14882:1998, Programming Languages - C++

IEEE Std 1364-2001, IEEE Standard Verilog® Hardware Description Language

C++ Boost, the free C++ source libraries. See http://www.boost.org
2 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
3. Terminology and conventions used in this standard

3.1 Terminology

3.1.1 Shall, should, may, can

The word shall is used to indicate a mandatory requirement.

The word should is used to recommend a particular course of action, but does not impose any obligation.

The word may is used to mean shall be permitted (in the sense of being legally allowed).

The word can is used to mean shall be able to (in the sense of being technically possible).

In some cases word usage is qualified to indicate on whom the obligation falls, such as an application may
or an implementation shall.

3.1.2 Implementation, application

The word implementation is used to mean any specific implementation of the full SystemC class library as
defined in this standard, only the public interface of which need be exposed to the application.

The word application is used to mean a C++ program, written by an end user, that uses the SystemC class
library, that is, uses classes, functions, or macros defined in this standard.

3.1.3 Call, called from, derived from

The term call is taken to mean call directly or indirectly. Call indirectly means call an intermediate function
which in turn calls the function in question, where the chain of function calls may be extended indefinitely.

Similarly, called from means called from directly or indirectly.

Except where explicitly qualified, the term derived from is taken to mean derived directly or indirectly from.
Derived indirectly from means derived via one or more intermediate base classes.

3.1.4 Specific technical terms

The terms below are sometimes used to refer to classes, and sometimes used to refer to objects of those
classes. When the distinction is important, the usage of the term may be qualified. For example, a port
instance is an object of a class derived from the class sc_port, whereas a port class is a class derived from
class sc_port.

A module is a class derived from the class sc_module.

A port is either a class derived from the class sc_port or an object of class sc_port.

An export is an object of class sc_export.

An interface is a class derived from the class sc_interface.

An interface proper is an abstract class derived from the class sc_interface but not derived from the class
sc_object.
.
Copyright © 2005 OSCI. All rights reserved. 3

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
A primitive channel is a non-abstract class derived from one or more interfaces and also derived from the
class sc_prim_channel.

A hierarchical channel is a non-abstract class derived from one or more interfaces and also derived from the
class sc_module.

A channel is a non-abstract class derived from one or more interfaces. A channel may be a primitive channel
or a hierarchical channel. If not, it is strongly recommended that a channel be derived from the class
sc_object.

An event is an object of the class sc_event.

A signal is an object of the class sc_signal.

A process instance is an object of an implementation-defined class derived from the class sc_object and
created by either one of the three macros SC_METHOD, SC_THREAD, SC_CTHREAD or by calling the
function sc_spawn.

The term process refers to either a process instance or to the member function that is associated with a
process instance when it is created. The meaning is made clear by the context.

A static process is a process created by one of the three macros SC_METHOD, SC_THREAD,
SC_CTHREAD.

A dynamic process is a process created by calling the function sc_spawn.

A process handle is an object of the class sc_process_handle.

The module hierarchy is the total set of module instances constructed during elaboration. The term is
sometimes used to include all of the objects instantiated within those modules during elaboration. The
module hierarchy is a subset of the object hierarchy.

The object hierarchy is the total set of objects of class sc_object. Part of the object hierarchy is constructed
during elaboration (the module hierarchy) and includes module, port, primitive channel, and process
instances. Part is constructed dynamically and destroyed dynamically during simulation and includes
dynamic process instances. (See 5.15.)

A given instance is within module M if the constructor of the instance is called (explicitly or implicitly) from
the constructor of module M, and also provided that the instance is not within another module instance that
is itself within module M.

A given module is said to contain a given instance if the instance is within that module.

A child of a given module is an instance that is within that module.

A parent of a given instance is a module having that instance as a child.

A top-level module is a module that is not instantiated within any other module.

The concepts of elaboration and simulation are defined in Clause 4. The terms during elaboration and
during simulation indicate that an action may or may not happen at that time. The implementation makes a
number of callbacks to the application during elaboration and simulation. Whether a particular action is
allowed within a particular callback cannot be inferred from the terms during elaboration and during
simulation alone, but is defined in detail in 4.4.
4 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
3.2 Syntactic conventions

3.2.1 Implementation-defined

The italicized term implementation-defined is used where part of a C++ definition is omitted from this
standard. In such cases, an implementation shall provide an appropriate definition that honors the semantics
defined in this standard.

3.2.2 Disabled

The italicized term disabled is used within a C++ class definition to indicate a group of member functions
that shall be disabled by the implementation such that they cannot be called by an application. The disabled
member functions are typically the default constructor, the copy constructor, or the assignment operator.

3.2.3 Ellipsis (...)

The ellipsis symbol consisting of three consecutive dots (...) is used to indicate that irrelevant or repetitive
parts of a C++ code listing or example have been omitted for clarity.

3.2.4 Class names

Class names italicized and annotated with a superscript dagger (†) should not be used explicitly within an
application. Moreover, an application shall not create an object of such a class. An implementation is
strongly recommended to use the given class name. However, an implementation may substitute an
alternative class name in place of every occurrence of a particular daggered class name.

Only the class name is being considered here. Whether any part of the definition of the class is
implementation-defined is a separate issue.

The class names in question are the following:

3.2.5 Embolded text

Embolding is used to enhance readability in this standard but has no significance in SystemC itself.
Embolding is used for names of types, classes, functions, and operators in running text, and in code

sc_bind_proxy† sc_fxnum_bitref† sc_signed_bitref† sc_uint_subref_r†

sc_bitref† sc_fxnum_fast_bitref† sc_signed_bitref_r† sc_unsigned_bitref†

sc_bitref_r† sc_fxnum_fast_subref† sc_signed_subref† sc_unsigned_bitref_r†

sc_concatref† sc_fxnum_subref† sc_signed_subref_r† sc_unsigned_subref†

sc_concref† scfx_params† sc_subref† sc_unsigned_subref_r†

sc_concref_r† sc_int_bitref† sc_subref_r† sc_value_base†

sc_context_begin† sc_int_bitref_r† sc_switch†

sc_enc† sc_int_subref† sc_uint_bitref†

sc_event_and_list† sc_int_subref_r† sc_uint_bitref_r†

sc_event_or_list† sc_sensitive† sc_uint_subref†
.
Copyright © 2005 OSCI. All rights reserved. 5

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
fragments where these names are defined. Embolding is never used for uppercase names of macros,
constants, and enum literals.

3.3 Semantic conventions

3.3.1 Class definitions and the inheritance hierarchy

An implementation may differ from this standard in that an implementation may introduce additional base
classes, class members, and friends to the classes defined in this standard. An implementation may modify
the inheritance hierarchy in that it may move class members defined by this standard into base classes not
defined by this standard. Such additions and modifications may be made as necessary in order to implement
the semantics defined by this standard, or in order to introduce additional functionality not defined by this
standard.

3.3.2 Function definitions and side-effects

This standard explicitly defines the semantics of the C++ functions in the SystemC class library. Such
functions shall not have any side-effects that would contradict the behavior explicitly mandated by this
standard. In general, the reader should assume the common sense rule that if it is explicitly stated that a
function shall perform action A, then that function shall not perform any action other than A, either directly
or by calling another function defined in this standard. However, a function may, and indeed in certain
circumstances shall, perform any tasks necessary for resource management, performance optimization, or to
support any ancillary features of an implementation. As an example of resource management, it is assumed
that a destructor will perform any tasks necessary to release the resources allocated by the corresponding
constructor. As an example of an ancillary feature, an implementation could have the constructor for class
sc_module increment a count of the number of module instances in the module hierarchy.

3.3.3 Functions whose return type is a reference or a pointer

Many functions in this standard return a reference to an object or a pointer to an object, that is, the return
type of the function is a reference or a pointer. This clause gives some general rules defining the lifetime and
the validity of such objects.

An object returned from a function by pointer or by reference is said to be valid during any period in which
the object is not deleted and the value or behavior of the object remains accessible to the application. If an
application refers to the returned object after it ceases to be valid, the behavior of the implementation shall
be undefined.

3.3.3.1 Functions that return *this or an actual argument

In certain cases, the object so returned is either an object (*this) returned by reference from its own member
function (for example, the assignment operators), or is an object that was passed by reference as an actual
argument to the function being called (for example, std::ostream& operator<< (std::ostream&, const
T&)). In either case, the function call itself places no additional obligations on the implementation
concerning the lifetime and validity of the object following return from the function call.

3.3.3.2 Functions that return char*

Certain functions have the return type char*, that is, they return a pointer to a null-terminated character
string. Such strings shall remain valid until the end of the program.
6 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
3.3.3.3 Functions that return a reference or pointer to an object in the module hierarchy

Certain functions return a reference to an object that forms part of the module hierarchy or a property of such
an object. The return types of these functions include:

a) sc_interface * // Returns a channel
b) sc_event& // Returns an event
c) sc_event_finder& // Returns an event finder
d) sc_time& // Returns a property of primitive channel sc_clock

The implementation is obliged to ensure that the returned object is valid until either the channel, event, or
event finder in question is deleted explicitly by the application or until the destruction of the module
hierarchy, whichever is sooner.

3.3.3.4 Functions that return a reference or pointer to a transient object

Certain functions return a reference to an object that may be deleted by the application before the destruction
of the module hierarchy. The return types of these functions include:

a) sc_object *
b) sc_attr_base *
c) std::string& // Property of an attribute object

The functions concerned are the following:

sc_object* sc_process_handle::get_parent_object() const;
sc_object* sc_object::get_parent_object() const;
const sc_object* sc_find_object(const char*);
sc_attr_base* sc_object::get_attribute(const std::string&);
const sc_attr_base* sc_object::get_attribute(const std::string&) const;
sc_attr_base* sc_object::remove_attribute(const std::string&);
const std::string& sc_attr_base::name() const;

The implementation is only obliged to ensure that the returned reference is valid until the sc_object,
sc_attr_base, or std::string object itself is deleted by the application.

Certain functions return a reference to an object that represents a transient collection of other objects, where
the application may add or delete objects before the destruction of the module hierarchy such that the
contents of the collection would be modified. The return types of these functions include:

a) std::vector< sc_object * > &
b) sc_attr_cltn *

The functions concerned are the following:

virtual const std::vector<sc_object*>& sc_module::get_child_objects() const;
const std::vector<sc_object*>& sc_process_handle::get_child_objects() const;
virtual const std::vector<sc_object*>& sc_object::get_child_objects() const;
const std::vector<sc_object*>& sc_get_top_level_objects();
sc_attr_cltn& sc_object::attr_cltn();
const sc_attr_cltn& sc_object::attr_cltn() const;
.
Copyright © 2005 OSCI. All rights reserved. 7

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The implementation is only obliged to ensure that the returned object (the vector or collection) is itself valid
until an sc_object or an attribute is added or deleted by the application that would affect the collection
returned by the function were it to be called again.

3.3.3.5 Functions sc_time_stamp and sc_signal::read

The implementation is obliged to keep the object returned from function sc_time_stamp valid until the start
of the next timed notification phase.

The implementation is obliged to keep the object returned from function sc_signal::read valid until the end
of the current evaluation phase.

For both functions, the application is strongly recommended to be written in such a way that it would have
identical behavior whether these functions return a reference to an object or return the same object by value.

3.3.4 Namespaces and internal naming

An implementation shall place every declaration and every macro definition specified by this standard
within one of the two namespaces sc_core and sc_dt. The core language and predefined channels shall be
placed in the namespace sc_core. The data types shall be placed in the namespace sc_dt. The utilities are
divided between the two namespaces.

An implementation is recommended to use nested namespaces within sc_core and sc_dt in order to reduce
to a minimum the number of implementation-defined names in these two namespaces. The names of any
such nested namespaces shall be implementation-defined.

In general, the choice of internal, implementation-specific names within an implementation can cause
naming conflicts within an application. It is up to the implementor to choose names that are unlikely to cause
naming conflicts with an application.

3.3.5 Non-compliant applications and errors

In the case where an application fails to meet an obligation imposed by this standard, the behavior of the
SystemC implementation shall be undefined in general. In some cases this will result in the violation of a
diagnosable rule of the C++ standard, in which case the C++ implementation will issue a diagnostic message
in conformance with the C++ standard.

There are cases where this standard states explicitly that the failure of an application to meet a specific
obligation is an error or a warning, in which case the SystemC implementation shall generate a diagnostic
message by calling the function sc_report_handler::report. The distinction between these two terms is
intended to suggest a suitable severity level.

An implementation or an application may choose to suppress runtime error checking and diagnostic
messages due to considerations of efficiency or practicality. For example, an application may call member
function set_actions of class sc_report_handler to take no action for certain categories of report. An
application that fails to meet the obligations imposed by this standard remains in error nonetheless.

There are cases where this standard states explicitly that a certain behavior or result is undefined. This
standard places no obligations on the implementation in such a circumstance. In particular, such a
circumstance may or may not result in an error or a warning.
8 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
3.4 Notes and examples

Notes appear at the end of certain subclauses, designated by the upper case word NOTE. Notes often
describe consequences of rules defined elsewhere in this standard. Certain subclauses include examples
consisting of fragments of C++ source code. Such notes and examples are informative, are meant to help the
reader, but are not an official part of this standard.
.
Copyright © 2005 OSCI. All rights reserved. 9

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
4. Elaboration and simulation semantics

An implementation of the SystemC class library includes a public shell consisting of those predefined
classes, functions, macros, and so forth that can be used directly by an application. Such features are defined
in Clauses 5, 6, 7, and 8 of this standard. An implementation also includes a private kernel that implements
the core functionality of the class library. The underlying semantics of the kernel are defined in this clause.

The execution of a SystemC application consists of elaboration followed by simulation. Elaboration results
in the creation of the module hierarchy. Elaboration involves the execution of application code, the public
shell (as mentioned in the preceding paragraph), and kernel code. Simulation involves the execution of the
scheduler, part of the kernel, which in turn may execute processes within the application.

In addition to providing support for elaboration and implementing the scheduler, the kernel may also
provide implementation-specific functionality beyond the scope of this standard. As examples of such
functionality, the kernel may save the state of the module hierarchy after elaboration and run or restart
simulation from that point, or may support the graphical display of state variables on-the-fly during
simulation.

The phases of elaboration and simulation shall run in the following sequence:
a) Elaboration—Construction of the module hierarchy
b) Elaboration—Callbacks to function before_end_of_elaboration
c) Elaboration—Callbacks to function end_of_elaboration
d) Simulation—Callbacks to function start_of_simulation
e) Simulation—Initialization phase
f) Simulation—Evaluation, update, delta notification, and timed notification phases (repeated)
g) Simulation—Callbacks to function end_of_simulation
h) Simulation—Destruction of the module hierarchy

4.1 Elaboration

The primary purpose of elaboration is to create internal data structures within the kernel as required to
support the semantics of simulation. During elaboration, the parts of the module hierarchy (modules, ports,
primitive channels, and processes) are created and ports and exports are bound to channels.

The actions stated in the following subclauses can occur during elaboration, and only during elaboration.

NOTES

1—Because these actions can only occur during elaboration, SystemC does not support the dynamic creation or
modification of the module hierarchy during simulation, although it does support dynamic processes.

2—Other actions besides those listed below may occur during elaboration only provided that they do not contradict any
statement made in this standard. For example, objects of class sc_dt::sc_logic may be created during elaboration and
dynamic processes may be created during elaboration, but the function notify of class sc_event shall not be called
during elaboration.

4.1.1 Instantiation

Instances of the following classes (or classes derived from these classes) can be created during elaboration
and only during elaboration. Such instances shall not be deleted before the destruction of the module
hierarchy at the end of simulation.
10 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_module (See 5.2.)
sc_port (See 5.11.)
sc_prim_channel (See 5.14.)

An implementation shall permit an application to have zero or one top-level modules, and may permit more
than one top-level module (see 4.3.4.1 and 4.3.5).

Instances of class sc_module and class sc_prim_channel can only be created within a module or within
function sc_main. Instances of class sc_port can only be created within a module. It shall be an error to
instantiate a module or primitive channel other than within a module or within function sc_main, or to
instantiate a port other than within a module.

The instantiation of a module also implies the construction of objects of class sc_module_name and class
sc_sensitive†. (See 5.4.)

Although these rules allow for considerable flexibility in instantiating the module hierarchy, it is strongly
recommended that, wherever possible, module, port, and primitive channel instances should be data
members of a module, or their addresses should be stored in data members of a module. Moreover, the
names of those data members should match the string names of the instances wherever possible.

NOTES—

1—The three classes sc_module, sc_port, and sc_prim_channel are derived from a common base class, namely
sc_object, and thus have some member functions in common. (See 5.15.)

2—Objects of classed derived from sc_object but not derived from one of these three classes may be instantiated during
elaboration or during simulation, as may objects of user-defined classes.

Example:

#include <systemc.h>

struct Mod: sc_module
{

SC_CTOR(Mod) { }
};

struct S
{

Mod m; // Unusual coding style - not recommended
S(char* name_) : m(name_) {}

};

struct Top: sc_module // Five instances of module Mod exist within module Top.
{

Mod m1; // Recommended coding style
Mod *m2; // Recommended coding style
S s1;

SC_CTOR(Top)
: m1("m1"), // m1.name() returns "top.m1"

s1("s1") // s1.m.name() returns "top.s1"
{

m2 = new Mod("m2"); // m2->name() returns "top.m2"
f();
.
Copyright © 2005 OSCI. All rights reserved. 11

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
S *s2 = new S("s2"); // s2->m.name() returns "top.s2"
}
void f() {

Mod *m3 = new Mod("m3"); // Unusual coding style - not recommended
} // m3->name() returns "top.m3"

};

int sc_main(int argc, char* argv[])
{

Top top("top");
sc_start();
return 0;

}

4.1.2 Static process creation

A static process instance is a process created using one of the following three macros:
SC_METHOD
SC_THREAD
SC_CTHREAD

The name of a member function belonging to a class derived from class sc_module shall be passed as an
argument to the macro. This member function shall become the function associated with the process
instance.

Static processes can be created during elaboration and only during elaboration. Dynamic processes may be
created by calling the function sc_spawn during elaboration or during simulation.

The purpose of the static process macros is to register the associated function with the kernel such that the
scheduler can call back that member function during simulation. It is also possible to use dynamic processes
for this same purpose. The static process macros are provided for backward compatibility with earlier
versions of SystemC and to make it easy to identify static processes.

4.1.3 Port binding and export binding

Port instances can be bound to channel instances, to other port instances, or to export instances. Export
instances can be bound to channel instances or to other export instances, but not to port instances. Port
binding is an asymmetrical relationship and export binding is an asymmetrical relationship. If a port is
bound to a channel, it is not true to say that the channel is bound to the port. Rather, it is true to say that the
channel is the channel to which the port is bound.

Ports can be bound by name or by position. Named port binding is performed by a member function of class
sc_port (see 5.11.7). Positional port binding is performed by a member function of class sc_module (see
5.2.18). Exports can only be bound by name. Export binding is performed by a member function of class
sc_export (see 5.12).

A port should typically be bound within the parent of the module instance containing that port. Hence, when
a port A is bound to a port B, the module containing port A will typically be instantiated within the module
containing port B. An export should typically be bound within the module containing the export. A port
should typically be bound to a channel or a port that lies within the same module in which the port is bound,
or to an export within a child module. An export should typically be bound to a channel that lies within the
same module in which the export is bound, or to an export within a child module.
12 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
When a port A is bound to a port B, and port B is bound to a channel C, the effect shall be the same as if port
A were bound directly to channel C. Wherever this standard refers to a port A being bound to a channel C, it
shall be assumed this means that a port A is bound either directly to channel C or to another port which is
itself bound to channel C according to this very same rule. This same rule shall apply when binding exports.

Port and export binding can occur during elaboration and only during elaboration. Every port shall be bound
at least once and every export bound exactly once. A module may have zero or more ports and zero or more
exports. If a module has no ports, no (positional) port bindings are necessary or permitted for instances of
that module. Ports may be bound (by name) in any sequence. The binding of ports belonging to different
module instances may be interleaved. Since a port may be bound to another port that has not yet itself been
bound, the implementation may defer the completion of port binding until a later time during elaboration,
whereas exports shall be bound immediately.

The channel to which a port is bound shall not be deleted before the destruction of the module hierarchy at
the end of simulation.

Where permitted in the definition of the port object, a single port can be bound to multiple channel or port
instances. Such ports are known as multiports. (See 5.11.3). An export can only be bound once.

When a port is bound to a channel, the kernel shall call the member function register_port of the channel.
There is no corresponding function called when an export is bound. (See 5.13).

The purpose of port and export binding is to enable a port or export to forward interface method calls made
during simulation to the channel instances to which that port was bound during elaboration. This forwarding
is performed during simulation by member functions of the class sc_port, such as operator->. A port
requires the services defined by an interface (that is, the type of the port), whereas an export provides the
services defined by an interface (that is, the type of the export).

NOTES

1—A phrase such as bind a channel to a port is not used in this standard. However, it is recognized that such a phrase
may be used informally to mean bind a port to a channel.

2—A port of a child module instance can be bound to an export of that same child module instance.

3—Member function register_port is defined in the class sc_interface from which every channel is derived.

4.1.4 Setting the time resolution

The simulation time resolution can be set during elaboration and only during elaboration. Time resolution is
set by calling the function sc_set_time_resolution. (See 5.10.3).

NOTE—Time resolution can only be set globally. There is no concept of a local time resolution.

4.2 Simulation

This clause defines the behavior of the scheduler, and the semantics of simulated time and process
execution.

The primary purpose of the scheduler is to trigger or resume the execution of the processes that are supplied
by the user as part of the application. The scheduler is event-driven, meaning that processes are executed in
.
Copyright © 2005 OSCI. All rights reserved. 13

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
response to the occurrence of events. Events occur (are notified) at precise points in simulation time. Events
are represented by objects of the class sc_event, and by this class alone. (See 5.9).

Simulation time is an integer quantity. Simulation time is initialized to zero at the start of simulation, and
increases monotonically during simulation. The physical significance of the integer value representing time
within the kernel is determined by the simulation time resolution. Simulation time and time intervals are
represented by class sc_time. Certain functions allow time to be expressed as a value pair having the
signature double,sc_time_unit. (See 5.10.1).

The scheduler can execute a static or dynamic process instance as a consequence of one of the following
four causes, and these alone:

— In response to the process instance having been made runnable during the initialization phase (See
4.2.1.1)

— In response to a call to function sc_spawn during simulation
— In response to the occurrence of an event to which the process instance is sensitive
— In response to a time-out having occurred

The sensitivity of a process instance is the set of events and time-outs that can potentially cause the process
to be resumed or triggered. The static sensitivity of a static process instance is fixed during elaboration. The
static sensitivity of a dynamic process instance is fixed when the function sc_spawn is called. The dynamic
sensitivity of a process instance may vary over time under the control of the process itself. A process
instance is said to be sensitive to an event if the event has been added to the static sensitivity or dynamic
sensitivity of the process instance. A time-out occurs when a given time interval has elapsed.

The scheduler shall also manage event notifications and primitive channel update requests.

4.2.1 The scheduling algorithm

The semantics of the scheduling algorithm are defined in the subclauses below. For the sake of clarity,
imperative language is used in this description. The description of the scheduling algorithm makes use of the
following four sets:

— The set of runnable processes
— The set of update requests
— The set of delta notifications and time-outs
— The set of timed notifications and time-outs

An implementation may substitute an alternative scheme provided the scheduling semantics given here are
retained.

A process instance shall not appear more than once in the set of runnable processes. An attempt to add to this
set a process instance that is already runnable shall be ignored.

An update request results from, and only from, a call to member function request_update of class
sc_prim_channel. (See 5.14.6).

An immediate notification results from, and only from, a call to member function notify of class sc_event
with no arguments. (See 5.9.4).

A delta notification results from, and only from, a call to member function notify of class sc_event with a
zero-valued time argument.
14 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
A timed notification results from, and only from, a call to member function notify of class sc_event with a
non-zero-valued time argument. The time argument determines the time of the notification, relative to the
time when function notify is called.

A time-out results from, and only from, certain calls to functions wait or next_trigger, which are member
functions of class sc_module, member functions of class sc_prim_channel, and non-member functions. A
time-out resulting from a call with a zero-valued time argument is added to the set of delta notifications and
time-outs. A time-out resulting from a call with a non-zero-valued time argument is added to the set of timed
notifications and time-outs. (See 5.2.16 and 5.2.17).

The scheduler starts by executing the initialization phase.

4.2.1.1 Initialization phase

Perform the following three steps in the order given:
1) Run the update phase as defined below, but without continuing to the delta notification phase.
2) Add every static and dynamic method and thread process instance in the object hierarchy to the

set of runnable processes, but exclude those process instances for which the function
dont_initialize has been called, and exclude clocked thread processes.

3) Run the delta notification phase as defined in 4.2.1.4. At the end of the delta notification phase,
go to the evaluation phase.

NOTE—The update and delta notification phases are necessary because function request_update can be called during
elaboration in order to set initial values for primitive channels, for example from function initialize of class sc_inout.

4.2.1.2 Evaluation phase

From the set of runnable processes, select a process instance and trigger or resume its execution. Run the
process instance immediately and without interruption up to the point where it either returns or calls the
function wait.

Since process instances execute without interruption, only a single process instance can be running at any
one time, and no other process instance can execute until the currently executing process instance has
yielded control to the kernel. A process shall not pre-empt or interrupt the execution of another process. This
is known as co-routine semantics or co-operative multitasking.

The order in which process instances are selected from the set of runnable processes is implementation-
defined. However, if a specific version of a specific implementation runs a specific application using a
specific input data set, the order of process execution shall not vary from run to run.

A process may execute an immediate notification, in which case determine which process instances are
currently sensitive to the notified event and add all such process instances to the set of runnable processes.
Such processes shall be executed subsequently in this very same evaluation phase.

A process may call function sc_spawn to create a dynamic process instance, in which case the new process
instance shall be added to the set of runnable processes (unless function sc_spawn_options::dont_initialize
is called) and subsequently executed in this very same evaluation phase.

A process may call the member function request_update of a primitive channel, which will cause the
member function update of that same primitive channel to be called back during the very next update phase.

Repeat this step until the set of runnable processes is empty, then go on to the update phase.
.
Copyright © 2005 OSCI. All rights reserved. 15

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
NOTES

1—The scheduler is not preemptive. An application can assume that a method process will execute in its entirety without
interruption, and a thread or clocked thread process will execute the code between two consecutive calls to function
wait without interruption.

2—Because the order in which processes are run within the evaluation phase is not under the control of the application,
access to shared storage should be explicitly synchronized to avoid non-deterministic behavior.

3—An implementation running on a machine that provides hardware support for concurrent processes may permit two
or more processes to run concurrently provided that the behavior appears identical to the co-routine semantics defined in
this clause. In other words, the implementation would be obliged to analyze any dependencies between processes and
constrain their execution to match the co-routine semantics.

4—When an immediate notification occurs, only processes that are currently sensitive to the notified event shall be made
runnable. This excludes processes that are only made dynamically sensitive to the notified event later in the same
evaluation phase.

4.2.1.3 Update phase

Execute any and all pending calls to function update resulting from calls to function request_update made
in the immediately preceding evaluation phase.

If no remaining pending calls to function update exist, go on to the delta notification phase (except when
executed from the initialization phase).

4.2.1.4 Delta notification phase

If pending delta notifications or time-outs exist (which can only result from calls to function notify or
function wait in the immediately preceding evaluation phase or update phase):

1) Determine which process instances are sensitive to these events or time-outs.
2) Add all such process instances to the set of runnable processes.
3) Remove all such notifications and time-outs from the set of delta notifications and time-outs.

If, at the end of the delta notification phase, the set of runnable processes is non-empty, then go back to the
evaluation phase.

4.2.1.5 Timed notification phase

If pending timed notifications or time-outs exist:
1) Advance simulation time to the time of the earliest pending timed notification or time-out.
2) Determine which process instances are sensitive to the events notified and time-outs lapsing at

this precise time.
3) Add all such process instances to the set of runnable processes.
4) Remove all such notifications and time-outs from the set of timed notifications and time-outs.

If no pending timed notifications or time-outs exist, the end of simulation has been reached. So, exit the
scheduler.

If, at the end of the timed notification phase, the set of runnable processes is non-empty, then go back to the
evaluation phase.

4.2.2 Cycles in the scheduling algorithm

A delta cycle is a sequence of steps in the scheduling algorithm consisting of the following steps in the order
given:
16 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
1) An evaluation phase
2) An update phase
3) A delta notification phase

The initialization phase does not include a delta cycle.

NOTES

1—The scheduling algorithm implies the existence of three causal loops resulting from immediate notification, delta
notification, and timed notification, as follows:

— The immediate notification loop is restricted to a single evaluation phase.
— The delta notification loop takes the path of evaluation phase followed by update phase followed by delta notifi-

cation phase and back to evaluation phase. This loop advances simulation by one delta cycle.
— The timed notification loop takes the path of evaluation phase followed by update phase followed by delta noti-

fication phase followed by timed notification phase and back to evaluation phase. This loop advances simulation
time.

2—The immediate notification loop is non-deterministic in the sense that process execution can be interleaved with
immediate notification, and the order in which runnable processes are executed is undefined.

3—The delta notification and timed notification loops are deterministic in the sense that process execution alternates
with primitive channel updates. If, within a particular application, inter-process communication is confined to use only
deterministic primitive channels, then the behavior of the application will be independent of the order in which the
processes are executed within the evaluation phase (assuming no other explicit dependencies on process order such as
external input/output exist).

4.3 Running elaboration and simulation

An implementation shall provide either or both of the following two mechanisms for running elaboration
and simulation:

— Under application control using functions sc_main and sc_start
— Under control of the kernel

Both mechanisms are defined in the following subclauses. An implementation is not obliged to provide both
mechanisms.

4.3.1 Function declarations

namespace sc_core {

int sc_elab_and_sim(int argc, char* argv[]);
int sc_argc();
const char* const* sc_argv();
void sc_start();
void sc_start(const sc_time&);
void sc_start(double, sc_time_unit);

}

4.3.2 Function sc_elab_and_sim

The function main that is the start of the program may be provided by the implementation or by the
application. If function main is provided by the implementation, function main shall execute the
mechanisms for elaboration and simulation as described in this clause. If function main is provided by the
application, function main shall call the function sc_elab_and_sim.
.
Copyright © 2005 OSCI. All rights reserved. 17

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The implementation shall provide a function sc_elab_and_sim with the following prototype:

int sc_elab_and_sim(int argc, char* argv[]);

Function sc_elab_and_sim shall execute the mechanisms for running elaboration and simulation. The
application shall pass the values of the parameters from function main as arguments to function
sc_elab_and_sim. Whether the application may call function sc_elab_and_sim more than once is
implementation-defined.

A return value of 0 from function sc_elab_and_sim shall indicate successful completion. An
implementation may use other return values to indicate other termination conditions.

NOTE—Function sc_elab_and_sim was previously named sc_main_main.

4.3.3 Functions sc_argc and sc_argv

The implementation shall provide functions sc_argc and sc_argv with the following prototypes:

int sc_argc();
const char* const* sc_argv();

These two functions shall return the values of the arguments passed to function main or function
sc_elab_and_sim.

4.3.4 Running under application control using functions sc_main and sc_start

The application provides a function sc_main and calls the function sc_start, as defined below.

4.3.4.1 Function sc_main

An application shall provide a function sc_main with the following prototype. The order and types of the
arguments and the return type shall be as shown here:

int sc_main(int argc, char* argv[]);

This function shall be called once from the kernel, and is the only entry point into the application. The
arguments argc and argv[] are command-line arguments. An implementation shall pass the values of the
C++ command-line arguments (as passed to function main) unaltered through to function sc_main.

Elaboration consists of the execution of the sc_main function from the start of sc_main to the point
immediately before the first call to the function sc_start.

A return value of 0 from function sc_main shall indicate successful completion. An application may use
other return values to indicate other termination conditions.

NOTES

1—As a consequence of the rules defined in 4.1, before calling function sc_start for the first time, the function
sc_main may instantiate modules, instantiate primitive channels, bind the ports of module instances to channels, and
set the time resolution. More than one top-level module may exist.

2—Throughout this standard the term call is taken to mean call directly or indirectly. Hence function sc_start may be
called indirectly from function sc_main via another function or functions.
18 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
4.3.4.2 Function sc_start

The implementation shall provide a function sc_start, overloaded with the following prototypes:

void sc_start();
void sc_start(const sc_time&);
void sc_start(double, sc_time_unit);

The behavior of the latter prototype shall be equivalent to the following definition:

void sc_start(double d, sc_time_unit t) { sc_start(sc_time(d, t)); }

When called for the first time, function sc_start shall start the scheduler, which shall run up to the
simulation time passed as an argument (if an argument was passed), unless otherwise interrupted.

When called on the second and subsequent occasions, function sc_start shall resume the scheduler from the
time it had reached at the end of the previous call to sc_start. The scheduler shall run for the time passed as
an argument (if an argument was passed), relative to the current simulation time, unless otherwise
interrupted.

When a time is passed as an argument, the scheduler shall execute up to and including the timed notification
phase that advances simulation time to the end time (calculated by adding the time given as an argument to
the simulation time when function sc_start is called).

When function sc_start is called without any arguments, the scheduler shall run until it completes, unless
otherwise interrupted.

When function sc_start is called with a zero-valued time argument, the scheduler shall run for one delta
cycle.

Once started, the scheduler shall run until either it completes, or the application calls the function sc_stop, or
an exception occurs. Once the function sc_stop has been called, function sc_start shall not be called again.

Function sc_start may be called from function sc_main, and only from function sc_main.

On completion, function sc_start returns control to the function from which it was called.

NOTE—When the scheduler is paused between successive calls to function sc_start, the set of runnable processes need
not be empty.

4.3.5 Running under control of the kernel

Elaboration and simulation may be initiated under the direct control of the kernel, in which case the
implementation shall not call the function sc_main, and the implementation is not obliged to provide a
function sc_start.

An implementation may permit more than one top-level module, but is not obliged to do so.

NOTES

1—In this case the mechanisms used to initiate elaboration and simulation and to identify top-level modules are
implementation dependent.

2—In this case an implementation shall honor all obligations set out in this standard with the exception of those in 4.3.4.
.
Copyright © 2005 OSCI. All rights reserved. 19

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
4.4 Elaboration and simulation callbacks

There shall be four callback functions called by the kernel at various stages during elaboration and
simulation and having the following prototypes:

virtual void before_end_of_elaboration();
virtual void end_of_elaboration();
virtual void start_of_simulation();
virtual void end_of_simulation();

The implementation shall define each of these four callback functions as member functions of the classes
sc_module, sc_port, sc_export, and sc_prim_channel, and each of these definitions shall have empty
function bodies. The implementation also overrides various of these functions as member functions of
various predefined channels and having specific behaviors (see Clause 6). An application may override any
of these four functions in any class derived from any of the classes mentioned in this paragraph.

The implementation shall make callbacks to all such functions for every instance in the module hierarchy as
defined in the following subclauses.

The implementation shall provide the following two functions:

namespace sc_core {

bool sc_start_of_simulation_invoked();
bool sc_end_of_simulation_invoked();

}

Function sc_start_of_simulation_invoked shall return true after and only after all the callbacks to function
start_of_simulation have executed to completion. Function sc_end_of_simulation_invoked shall return
true after and only after all the callbacks to function end_of_simulation have executed to completion.

4.4.1 before_end_of_elaboration

The implementation shall make callbacks to member function before_end_of_elaboration after the
construction of the module hierarchy as defined in 4.3 is complete. Function before_end_of_elaboration
may extend the construction of the module hierarchy by instantiating further modules (and other objects)
within the module hierarchy.

The purpose of member function before_end_of_elaboration is to allow an application to perform actions
during elaboration that depend on global properties of the module hierarchy and which also need to modify
the module hierarchy. Examples include the instantiation of top-level modules to monitor events buried
within the hierarchy and the binding of ports that would otherwise be unbound.

The following actions may be performed directly or indirectly from the member function
before_end_of_elaboration.

1) The instantiation of objects of class sc_module, sc_port, sc_export, sc_prim_channel
2) The instantiation of objects of other classes derived from class sc_object
3) Port binding
4) Export binding
5) Calls to function sc_spawn to create dynamic processes
6) Calls to member function request_update of class sc_prim_channel to create update requests

(for example by calling member function initialize of class sc_inout)
20 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The following constructs shall not be used directly within member function before_end_of_elaboration,
but may be used where permitted within module instances nested within callbacks to
before_end_of_elaboration:

1) The macros SC_CTOR, SC_METHOD, SC_THREAD, SC_CTHREAD, SC_HAS_PROCESS
2) The member sensitive and member functions dont_initialize and set_stack_size of the class

sc_module
3) Calls to member function notify of the class sc_event

Any sc_object instances created directly from callback before_end_of_elaboration shall be placed at a
location in the module hierarchy as if those instances had been created from the constructor of the module to
which the callback belongs, or to the parent module if the callback belongs to a port, export, or primitive
channel. In other words, it shall be as if the instances were created from the constructor of the object whose
callback is called.

Note that objects instantiated from the member function before_end_of_elaboration may themselves
override any of the four callback functions including the member function before_end_of_elaboration
itself. The implementation shall make all such nested callbacks. An application can assume that every such
member function will be called back by the implementation, whatever the context in which the object is
instantiated.

4.4.2 end_of_elaboration

The implementation shall call member function end_of_elaboration at the very end of elaboration after all
callbacks to before_end_of_elaboration have completed and after the completion of any instantiation or
port binding associated with those callbacks and before starting simulation.

The purpose of member function end_of_elaboration is to allow an application to perform housekeeping
actions at the end of elaboration that do not need to modify the module hierarchy. Examples include design
rule checking, actions that depend on the number of times a port is bound, and printing diagnostic messages
concerning the module hierarchy.

The following actions may be performed directly or indirectly from the callback end_of_elaboration:
1) The instantiation of objects of classes derived from class sc_object but excluding classes

sc_module, sc_port, sc_export, and sc_prim_channel
2) Calls to function sc_spawn to create dynamic processes
3) Calls to member function request_update of class sc_prim_channel to create update requests

(for example by calling member function write of class sc_inout)

The following constructs shall not be used directly or indirectly within callback end_of_elaboration:
1) The instantiation of objects of class sc_module, sc_port, sc_export, sc_prim_channel
2) Port binding
3) Export binding
4) The macros SC_CTOR, SC_METHOD, SC_THREAD, SC_CTHREAD, SC_HAS_PROCESS
5) The member sensitive and member functions dont_initialize and set_stack_size of the class

sc_module
6) Calls to member function notify of the class sc_event

4.4.3 start_of_simulation

The implementation shall call member function start_of_simulation immediately the application calls
function sc_start for the first time, or at the very start of simulation if simulation is initiated under the direct
.
Copyright © 2005 OSCI. All rights reserved. 21

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
control of the kernel. If an application makes multiple calls to sc_start, the implementation shall only make
the callbacks to start_of_simulation on the first such call to sc_start. The implementation shall call
function start_of_simulation after the callbacks to end_of_elaboration and before invoking the
initialization phase of the scheduler.

The purpose of member function start_of_simulation is to allow an application to perform housekeeping
actions at the start of simulation. Examples include opening stimulus and response files and printing
diagnostic messages. The intention is that an implementation that initiates elaboration and simulation under
direct control of the kernel (in the absence of functions sc_main and sc_start) shall make the callbacks to
end_of_elaboration at the end of elaboration, and the callbacks to start_of_simulation at the start of
simulation.

The set of actions that may be or shall not be performed by member function start_of_simulation is
identical to that for callback end_of_elaboration as given in 4.4.2.

4.4.4 end_of_simulation

The implementation shall call member function end_of_simulation at the point when the scheduler halts
due to the function sc_stop having been called during simulation (see 4.5.2), or at the very end of simulation
if simulation is initiated under the direct control of the kernel.

The purpose of member function end_of_simulation is to allow an application to perform housekeeping
actions at the end of simulation. Examples include closing stimulus and response files, and printing
diagnostic messages. The intention is that an implementation that initiates elaboration and simulation under
direct control of the kernel (in the absence of functions sc_main and sc_start) shall make the callbacks to
end_of_simulation at the very end of simulation whether or not function sc_stop has been called.

As a consequence of the language mechanisms of C++, the destructors of any objects in the module
hierarchy will be called as these objects are deleted at the end of program execution. Any callbacks to
function end_of_simulation shall be made before the destruction of the module hierarchy. The function
sc_end_of_simulation_invoked may be called by the application within a destructor to determine whether
the callback has been made.

The implementation is not obliged to support any of the following actions when made directly or indirectly
from the member function end_of_simulation or from the destructors of any objects in the module
hierarchy. Whether any of these actions cause an error is implementation-defined.

1) The instantiation of objects of classes derived from class sc_object
2) Calls to function sc_spawn to create dynamic processes
3) Calls to member function request_update of class sc_prim_channel to create update requests

(for example by calling member function write of class sc_inout)
4) Calls to member function notify of the class sc_event

4.5 Other functions related to the scheduler

4.5.1 Function declarations

namespace sc_core {

enum sc_stop_mode
{
 SC_STOP_FINISH_DELTA ,
 SC_STOP_IMMEDIATE
22 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
};

extern void sc_set_stop_mode(sc_stop_mode mode);
extern sc_stop_mode sc_get_stop_mode();
void sc_stop();

const sc_time& sc_time_stamp();
const sc_dt::uint64 sc_delta_count();
bool sc_is_running();

}

4.5.2 Function sc_stop, sc_set_stop_mode, and sc_get_stop_mode

The implementation shall provide functions sc_set_stop_mode, sc_get_stop_mode, and sc_stop with the
following prototypes:

enum sc_stop_mode
{

SC_STOP_FINISH_DELTA ,
SC_STOP_IMMEDIATE

};

extern void sc_set_stop_mode(sc_stop_mode mode);
extern sc_stop_mode sc_get_stop_mode();

void sc_stop();

The function sc_set_stop_mode shall set the current stop mode to the value passed as an argument. The
function sc_get_stop_mode shall return the current stop mode.

The function sc_stop may be called by the application from an elaboration or simulation callback, from a
process, from the member function update of class sc_prim_channel, or from function sc_main. The
implementation may call the function sc_stop from member function report of class sc_report_handler.

A call to function sc_stop shall cause elaboration or simulation to halt as described below and control to
return to function sc_main or to the kernel. The implementation shall print out a message from function
sc_stop to standard output to indicate that simulation has been halted by this means.

If the function sc_stop is called from one of the callbacks before_end_of_elaboration,
end_of_elaboration, start_of_simulation, or end_of_simulation, elaboration or simulation shall halt after
the current callback phase is complete, that is after all callbacks of the given kind have been made.

If the function sc_stop is called during the evaluation phase or the update phase, the scheduler shall halt as
determined by the current stop mode but in any case before the delta notification phase of the current delta
cycle. If the current stop mode is SC_FINISH_DELTA, the scheduler shall complete both the current
evaluation phase and the current update phase before halting simulation. If the current stop mode is
SC_STOP_IMMEDIATE and function sc_stop is called during the evaluation phase, the scheduler shall
complete the execution of the current process and shall then halt without executing any further processes and
without executing the update phase. If function sc_stop is called during the update phase, the scheduler shall
complete the update phase before halting. Whatever the stop mode, simulation shall not halt until the
currently executing process has yielded control to the scheduler (such as by calling function wait or by
executing a return statement).

It shall be an error for the application to call function sc_start after function sc_stop has been called.
.
Copyright © 2005 OSCI. All rights reserved. 23

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
If function sc_stop is called a second time before or after elaboration or simulation has halted, the
implementation shall issue a warning. If function stop_after of class sc_report_handler has been used to
cause sc_stop to be called on the occurrence of a warning, the implementation shall override this report
handling mechanism and shall not make further calls to sc_stop, thereby preventing an infinite regression.

NOTES

1—A function sc_stop shall be provided by the implementation whether or not the implementors choose to provide a
function sc_start.
2—Throughout this standard the term call is taken to mean call directly or indirectly. Hence function sc_stop may be
called indirectly, for example, via an interface method call.

4.5.3 Function sc_time_stamp

The implementation shall provide a function sc_time_stamp with the following prototype:

const sc_time& sc_time_stamp();

The function sc_time_stamp shall return the current simulation time. During elaboration and initialization
the function shall return a value of zero.

NOTE—The simulation time can only be modified by the scheduler.

4.5.4 Function sc_delta_count

The implementation shall provide a function sc_delta_count with the following prototype:

const sc_dt::uint64 sc_delta_count();

The function sc_delta_count shall return an integer value that is incremented exactly once in each delta
cycle, and thus returns a count of the absolute number of delta cycles that have occurred during simulation,
starting from zero. However, modulo arithmetic shall be used such that arithmetic overflow cannot occur;
that is, when the maximum value of a sc_dt::uint64 is reached, the function shall return zero if called in the
next delta cycle.

NOTE—This function is intended for use in primitive channels to detect whether an event has occurred by comparing
the delta count with the delta count stored in a variable from an earlier delta cycle. The following code fragment will test
whether a process has been executed in two consecutive delta cycles:

if (sc_delta_count() == stored_delta_count + 1) { /* consecutive */ }
stored_delta_count = sc_delta_count();

4.5.5 Function sc_is_running

The implementation shall provide a function sc_is_running with the following prototype:

bool sc_is_running();

The function sc_is_running shall return the value true whilst the scheduler is running, including the
initialization phase, and shall return the value false during elaboration, during the callbacks
start_of_simulation and end_of_simulation and when called from the destructor of any object in the
module hierarchy.
24 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5. Core language class definitions

5.1 Class header files

To use the SystemC class library features, an application shall include either of the C++ header files
specified in this clause at appropriate positions in the source code as required by the scope and linkage rules
of C++.

5.1.1 "systemc"

The header file named "systemc" shall add the names sc_core and sc_dt to the declarative region in which
it is included, and these two names only. The header file "systemc" shall not introduce into the declarative
region in which it is included any other names from this standard or any names from the standard C or C++
libraries.

Applications are recommended to include the header file "systemc" in preference to the header file
"systemc.h".

Example:

#include "systemc"
using sc_core::sc_module;
using sc_core::sc_signal;
using sc_core::SC_NS;
using sc_core::sc_start;
using sc_dt::sc_logic;

#include <iostream>
using std::ofstream;
using std::cout;
using std::endl;

5.1.2 "systemc.h"

The header file named "systemc.h" shall add all of the names from the namespaces sc_core and sc_dt to the
declarative region in which it is included, together with selected names from the standard C or C++ libraries
as defined in this subclause. An implementation is recommended to keep to a minimum the number of
additional implementation-specific names introduced by this header file.

The header file "systemc.h" is provided for backward compatibility with earlier versions of SystemC, and
may be deprecated in future versions of this standard.

The header file "systemc.h" shall include at least the following:

#include "systemc"

// Using declarations for all the names in the sc_core namespace specified in this standard
using sc_core::sc_module;
...

// Using declarations for all the names in the sc_dt namespace specified in this standard
using sc_dt::sc_int;
...
.
Copyright © 2005 OSCI. All rights reserved. 25

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
// Using declarations for selected names in the standard libraries
using std::ios;
using std::streambuf;
using std::streampos;
using std::streamsize;
using std::iostream;
using std::istream;
using std::ostream;
using std::cin;
using std::cout;
using std::cerr;
using std::endl;
using std::flush;
using std::dec;
using std::hex;
using std::oct;
using std::fstream;
using std::ifstream;
using std::ofstream;
using std::size_t;
using std::memchr;
using std::memcmp;
using std::memcpy;
using std::memmove;
using std::memset;
using std::strcat;
using std::strncat;
using std::strchr;
using std::strrchr;
using std::strcmp;
using std::strncmp;
using std::strcpy;
using std::strncpy;
using std::strcspn;
using std::strspn;
using std::strlen;
using std::strpbrk;
using std::strstr;
using std::strtok;
26 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.2 sc_module

5.2.1 Description

Class sc_module is used as the base class when defining modules. Modules are the principle structural
building blocks of SystemC.

5.2.2 Class definition

namespace sc_core {

class sc_bind_proxy† { implementation-defined };
const sc_bind_proxy† SC_BIND_PROXY_NIL;

class sc_module
: public sc_object
{

public:
virtual ~sc_module();

virtual const char* kind() const;

void operator() (const sc_bind_proxy†& p001,
const sc_bind_proxy†& p002 = SC_BIND_PROXY_NIL,
const sc_bind_proxy†& p003 = SC_BIND_PROXY_NIL,
...
const sc_bind_proxy†& p063 = SC_BIND_PROXY_NIL,
const sc_bind_proxy†& p064 = SC_BIND_PROXY_NIL);

virtual const std::vector<sc_object*>& get_child_objects() const;

protected:
sc_module(const sc_module_name&);
sc_module();

void reset_signal_is(const sc_in<bool>& , bool);
void reset_signal_is(const sc_signal<bool>& , bool);

sc_sensitive† sensitive;

void dont_initialize();
void set_stack_size(size_t);

void next_trigger();
void next_trigger(const sc_event&);
void next_trigger(sc_event_or_list†&);
void next_trigger(sc_event_and_list†&);
void next_trigger(const sc_time&);
void next_trigger(double , sc_time_unit);
void next_trigger(const sc_time& , const sc_event&);
void next_trigger(double , sc_time_unit , const sc_event&);
void next_trigger(const sc_time& , sc_event_or_list†&);
void next_trigger(double , sc_time_unit , sc_event_or_list†&);
.
Copyright © 2005 OSCI. All rights reserved. 27

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
void next_trigger(const sc_time& , const sc_event_and_list†&);
void next_trigger(double , sc_time_unit , sc_event_and_list†&);

void wait();
void wait(int);
void wait(const sc_event&);
void wait(sc_event_or_list†&);
void wait(sc_event_and_list†&);
void wait(const sc_time&);
void wait(double , sc_time_unit);
void wait(const sc_time& , const sc_event&);
void wait(double , sc_time_unit , const sc_event&);
void wait(const sc_time& , sc_event_or_list†&);
void wait(double , sc_time_unit , sc_event_or_list†&);
void wait(const sc_time& , sc_event_and_list†&);
void wait(double , sc_time_unit , sc_event_and_list†&);
void wait(sc_process_handle&);

virtual void before_end_of_elaboration();
virtual void end_of_elaboration();
virtual void start_of_simulation();
virtual void end_of_simulation();

};

void next_trigger();
void next_trigger(const sc_event&);
void next_trigger(sc_event_or_list†&);
void next_trigger(sc_event_and_list†&);
void next_trigger(const sc_time&);
void next_trigger(double , sc_time_unit);
void next_trigger(const sc_time& , const sc_event&);
void next_trigger(double , sc_time_unit , const sc_event&);
void next_trigger(const sc_time& , sc_event_or_list†&);
void next_trigger(double , sc_time_unit , sc_event_or_list†&);
void next_trigger(const sc_time& , const sc_event_and_list†&);
void next_trigger(double , sc_time_unit , sc_event_and_list†&);

void wait();
void wait(int);
void wait(const sc_event&);
void wait(sc_event_or_list†&);
void wait(sc_event_and_list†&);
void wait(const sc_time&);
void wait(double , sc_time_unit);
void wait(const sc_time& , const sc_event&);
void wait(double , sc_time_unit , const sc_event&);
void wait(const sc_time& , sc_event_or_list†&);
void wait(double , sc_time_unit , sc_event_or_list†&);
void wait(const sc_time& , sc_event_and_list†&);
void wait(double , sc_time_unit , sc_event_and_list†&);
void wait(sc_process_handle&);

#define SC_MODULE(name) struct name : sc_module
#define SC_CTOR(name) implementation-defined; name(sc_module_name)
28 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
#define SC_HAS_PROCESS(name) implementation-defined
#define SC_METHOD(name) implementation-defined
#define SC_THREAD(name) implementation-defined
#define SC_CTHREAD(name,clk) implementation-defined

const char* sc_gen_unique_name(const char*);

typedef sc_module sc_behavior;
typedef sc_module sc_channel;

} // namespace sc_core

5.2.3 Constraints on usage

Objects of class sc_module can only be constructed during elaboration. It shall be an error to instantiate a
module during simulation.

Every class derived (directly or indirectly) from class sc_module shall have at least one constructor. Every
such constructor shall have one and only one parameter of class sc_module_name but may have further
parameters of classes other than sc_module_name. That parameter is not required to be the first parameter
of the constructor.

A string-valued argument shall be passed to the constructor of every module instance. It is good practice to
make this string name the same as the C++ variable name through which the module is referenced, if such
variable exists.

Inter-module communication should typically be accomplished via interface method calls; that is, a module
should communicate with its environment via its ports. Other communication mechanisms are permissible,
for example for debugging or diagnostic purposes.

NOTES

1—Because the constructors are protected, class sc_module cannot be instantiated directly, but may be used as a base
class.

2—A module should be publicly derived from class sc_module.

3—It is permissible to use class sc_module as an indirect base class. In other words, a module can be derived from
another module. This can be a useful coding idiom.

5.2.4 kind

Member function kind shall return the string “sc_module”.

5.2.5 SC_MODULE

The macro SC_MODULE may be used to prefix the definition of a module, but the use of this macro is not
obligatory.

Example:

// The following two class definitions are equally acceptable.

SC_MODULE(M)
{

.
Copyright © 2005 OSCI. All rights reserved. 29

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
M(sc_module_name) {}
...

};

class M: public sc_module
{

M(sc_module_name) {}
...

};

5.2.6 Constructors

sc_module(const sc_module_name&);
sc_module();

Module names are managed by class sc_module_name, not by class sc_module. The string name of the
module instance is initialized using the value of the string name passed as an argument to the constructor of
the class sc_module_name. (See 5.3).

5.2.7 SC_CTOR

This macro is provided for convenience when declaring or defining a constructor of a module. Macro
SC_CTOR shall only be used at a place where the rules of C++ permit a constructor to be declared, and can
be used as the declarator of a constructor declaration or a constructor definition. The name of the module
class being constructed shall be passed as the argument to the macro.

Example:

SC_MODULE(M1)
{

SC_CTOR(M1) // Constructor definition
: i(0)
{}
int i;
...

};

SC_MODULE(M2)
{

SC_CTOR(M2); // Constructor declaration
int i;
...

};

M2::M2(sc_module_name) : i(0) {}

The use of macro SC_CTOR is not obligatory. Using SC_CTOR, it is not possible to add user-defined
arguments to the constructor. If an application needs to pass additional arguments, the constructor shall be
provided explicitly. This is a useful coding idiom.

NOTES

1—The macros SC_CTOR and SC_MODULE may be used in conjunction or may be used separately.
30 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
2—Since macro SC_CTOR is equivalent to declaring a constructor for a module, an implementation shall ensure that a
constructor is defined that accepts a parameter of type sc_module_name.

3—If static processes are created but macro SC_CTOR is not used, macro SC_HAS_PROCESS shall be used instead.
(See 5.2.8).

Example:

SC_MODULE(M)
{

M(sc_module_name n, int a, int b)
: sc_module(n)
{}
...

};

5.2.8 SC_HAS_PROCESS

Macro SC_CTOR includes definitions used by the macros SC_METHOD, SC_THREAD and
SC_CTHREAD. These same definitions are introduced by the macro SC_HAS_PROCESS. If a static
process instance is created from the constructor body of a module but macro SC_CTOR is not used within
the module class definition, macro SC_HAS_PROCESS shall be included within the class definition of the
module.

Macro SC_HAS_PROCESS shall only be used within the class definition of a module. The name of the
module class being constructed shall be passed as the argument to the macro.

NOTE—The use of the macros SC_CTOR and SC_HAS_PROCESS is not required in order to call the
function sc_spawn.

5.2.9 SC_METHOD, SC_THREAD, SC_CTHREAD

The argument passed to the macro SC_METHOD or SC_THREAD or the first argument passed to
SC_CTHREAD shall be the name of a member function. The macro shall associate that function with a
method process instance, a thread process instance, or a clocked thread process instance, respectively. This
shall be the only way in which a static process instance can be created. (See 4.1.2).

The second argument passed to the macro SC_CTHREAD shall be an expression of the type
sc_event_finder.

These three macros shall only be used in the body of the constructor of a module, or in a member function
called from the body of the constructor. The first argument shall be the name of a member function of that
same module.

A member function associated with a static process instance shall have a return type of void, and shall have
no arguments. (Note that a function associated with a dynamic process instance may have a return type and
may have arguments.)

A single member function can be associated with multiple process instances within the same module. Each
process instance is a distinct object of a class derived from class sc_object, and each macro shall use the
member function name (in quotation marks) as the string name ultimately passed as an argument to the
constructor of the base class sub-object of class sc_object. Each process instance can have its own static
sensitivity, and shall be triggered or resumed independently of other process instances.
.
Copyright © 2005 OSCI. All rights reserved. 31

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Associating a member function with a process instance does not impose any explicit restrictions on how that
member function may be used by the application. For example, such a function may be called directly by the
application as well as being called by the kernel.

Example:

SC_MODULE(M)
{

sc_in<bool> clk;

SC_CTOR(M)
{

SC_METHOD(a_method);
SC_THREAD(a_thread);
SC_CTHREAD(a_cthread, clk.pos())

}
void a_method();
void a_thread();
void a_cthread();
...

};

5.2.10 Method process

This subclause shall apply to both static and dynamic process instances.

A method process is said to be triggered when the kernel calls the function associated with the process
instance. When a method process is triggered, the associated function executes from beginning to end, then
returns control to the kernel. A method process cannot be terminated.

A method process instance may have static sensitivity. A method process, and only a method process, may
call the function next_trigger to create dynamic sensitivity. Function next_trigger is a member function of
class sc_module, a member function of class sc_prim_channel, and a non-member function.

An implementation is not obliged to run a method process in a separate software thread. A method process
may run in the same execution context as the simulation kernel.

NOTES

1—Any local variables declared within the process will be destroyed on return from the process. Data members of the
module should be used to store persistent state associated with the method process.

2—Function next_trigger can be called from a member function of the module itself, from a member function of a
channel, or from any function subject only to the rules of C++, provided that the function is ultimately called from a
method process.

5.2.11 Thread and clocked thread processes

This subclause shall apply to both static and dynamic process instances.

A function associated with a thread or clocked thread process instance is called once and only once by the
kernel, except when a clocked thread process is reset, in which case the associated function may be called
again. (See 5.2.12.)
32 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
A thread or clocked thread process, and only such a process, may call the function wait. Such a call causes
the calling process to suspend execution. Function wait is a member function of class sc_module, a member
function of class sc_prim_channel, and a non-member function.

A thread or clocked thread process instance is said to be resumed when the kernel causes the process to
continue execution starting with the statement immediately following the most recent call to function wait.
When a thread or clocked thread process is resumed, the process executes until it reaches the next call to
function wait. Then, the process is suspended once again.

A thread process instance may have static sensitivity, or may call function wait to create dynamic
sensitivity. A clocked thread process instance is statically sensitive only to a single clock.

Each thread process requires its own execution stack. As a result, context switching between thread
processes may impose a simulation overhead when compared with method processes.

If the thread or clocked thread process executes the entire function body or executes a return statement and
thus returns control to the kernel, the associated function shall not be called again for that process instance.
The process instance is then said to be terminated.

NOTES

1—It is a common coding idiom to include an infinite loop containing a call to function wait within a thread or clocked
thread process in order to prevent the process from terminating prematurely.

2—When a process instance is resumed, any local variables defined within the process will retain the values they had
when the process was suspended.

3—If a thread or clocked thread process executes an infinite loop that does not call function wait, the process will never
suspend. Since the scheduler is not preemptive, no other process will be able to execute.

4—Function wait can be called from a member function of the module itself, from a member function of a channel, or
from any function subject only to the rules of C++, provided that the function is ultimately called from a thread or
clocked thread process.

Example:

SC_MODULE(synchronous_module)
{

sc_in<bool> clock;

SC_CTOR(synchronous_module)
{

SC_THREAD(thread);
sensitive << clock.pos();

}
void thread() // Member function called once only
{

for (;;)
{

wait(); // Resume on positive edge of clock
...

}
}
...

};
.
Copyright © 2005 OSCI. All rights reserved. 33

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.2.12 Clocked thread processes and reset_signal_is

A clocked thread process shall be a static process; clocked threads cannot be dynamic processes.

A clocked thread process shall be statically sensitive to a single clock as determined by the event finder
passed as the second argument to macro SC_CTHREAD. The clocked thread process shall be statically
sensitive to the event returned from the given event finder.

A clocked thread process may call either of the following functions:

void wait();
void wait(int);

It shall be an error for a clocked thread process to call any other overloaded form of the function wait.

void reset_signal_is(const sc_in<bool>& , bool);
void reset_signal_is(const sc_signal<bool>& , bool);

Member function reset_signal_is of class sc_module shall determine the reset signal of a clocked thread
process.

reset_signal_is shall only be called from the body of the constructor of a module, or from a member
function called from the body of the constructor, and only after having created a clocked thread process
instance within that module.

The order of execution of the statements within the body of the constructor is used to associate the call to
reset_signal_is with a particular process instance; it is associated with the most recently created process
instance. If a module is instantiated within the constructor between the process being created and function
reset_signal_is being called, the effect of calling reset_signal_is shall be undefined. It shall be an error to
associate function reset_signal_is with a process instance that is not a clocked thread process.

The first argument passed to function reset_signal_is shall be the signal instance to be used as the reset (the
signal may be identified indirectly by passing a port instance). The second argument shall be the active level
of the reset, meaning that the clocked thread process shall be reset only when the value of the reset signal is
equal to the value of this second argument.

A clocked thread process instance shall be reset when and only when the clock event to which the process
instance is statically sensitive is notified and the reset signal is active. Resetting a clocked thread process
instance shall consist of abandoning the current execution of the process instance, which shall have been
suspended at a call to function wait, and calling the associated function again from the start of the function.
A process instance being reset shall become runnable in the evaluation phase immediately following the
delta notification phase or timed notification phase in which the clock event notification occurs. An active
reset signal shall not cause the process to be reset in the absence of a clock event notification; in other words,
the reset is synchronous with respect to the clock.

The very first time the clock event is notified, the function associated with a clocked thread process shall be
called whether or not the reset signal is active. If a clocked thread process instance has been terminated, the
clock event shall be ignored for that process instance. A terminated process cannot be reset.

Example:

sc_in<bool> clock;
34 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_in<bool> reset;

SC_CTOR(M)
{

SC_CTHREAD(CT, clock.pos());
reset_signal_is(reset, true);

}

void CT()
{

if (reset)
{

... // reset actions
}
while(true)
{

wait(1); // Wait for 1 clock cycle
... // clocked actions

}
}

5.2.13 sensitive

sc_sensitive† sensitive;

This subclause describes the static sensitivity of a static process. Static sensitivity for a dynamic process is
created using member function set_sensitivity of class sc_spawn_options. (See 5.5).

Data member sensitive of class sc_module can be used to create the static sensitivity of a static process
instance using operator<< of class sc_sensitive†. This shall be the only way to create static sensitivity for a
static process instance. Note, however, that static sensitivity may be enabled or disabled by calling function
next_trigger or function wait. (See sc_sensitive† in 5.4, next_trigger in 5.2.16, wait in 5.2.17).

Static sensitivity shall only be created in the body of the constructor of a module, or in a member function
called from the body of the constructor, and only after having created a static process instance within that
module. It shall be an error to modify the static sensitivity of a static process during simulation.

The order of execution of the statements within the body of the constructor is used to associate static
sensitivity with a particular static process instance; sensitivity is associated with the process instance most
recently created within the body of the current constructor.

A clocked thread processes cannot have static sensitivity other than to the clock itself. Using data member
sensitive to create static sensitivity for a clocked thread process shall have no effect.

NOTES

1—Unrelated statements may be executed between creating a static process instance and creating the static sensitivity
for that same process instance. Static sensitivity may be created in a different function body from the one in which the
process instance was created.

2—Data member sensitive can be used more than once to add to the static sensitivity of any particular static process
instance; each call to operator<< adds further events to the static sensitivity of the most recently created process
instance.
.
Copyright © 2005 OSCI. All rights reserved. 35

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.2.14 dont_initialize

void dont_initialize();

This subclause describes member function dont_initialize of class sc_module, which determines the
behavior of a static process instance during initialization. The initialization behavior of a dynamic process is
determined by the member function dont_initialize of class sc_spawn_options. (See 5.5.)

Member function dont_initialize of class sc_module shall prevent a particular static process instance from
being made runnable during the initialization phase of the scheduler. In other words, the member function
associated with the given process instance shall not be called by the scheduler until the process instance is
triggered or resumed due to the occurrence of an event.

dont_initialize shall only be called from the body of the constructor of a module, or from a member
function called from the body of the constructor, and only after having created a static process instance
within that module.

The order of execution of the statements within the body of the constructor is used to associate the call to
dont_initialize with a particular static process instance; it is associated with the most recently created
process instance. If a module is instantiated within the constructor between the process being created and
function dont_initialize being called, the effect of calling dont_initialize shall be undefined.

dont_initialize shall have no effect if called for a clocked thread process, which is not made runnable during
the initialization phase in any case. An implementation may generate a warning, but is not obliged to do so.

Example:

SC_MODULE(Mod)
{

sc_signal<bool> A, B, C, D, E;

SC_CTOR(Mod)
{

sensitive << A; // Has no effect. Poor coding style

SC_THREAD(T);
sensitive << B << C; // Thread process T is made sensitive to B and C.

SC_METHOD(M);
f(); // Method process M is made sensitive to D.
sensitive << E; // Method process M is made sensitive to E as well as D.
dont_initialize(); // Method process M is not made runnable during initialization.

}

void f() { sensitive << D; }// An unusual coding style

void T();
void M();
...

};
36 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.2.15 set_stack_size

void set_stack_size(size_t);

This subclause describes member function set_stack_size of class sc_module, which sets the stack size of a
static process instance during initialization. The stack size of a dynamic process is set by the member
function set_stack_size of class sc_spawn_options. (See 5.5.)

An application may call member function set_stack_size to request a change to the size of the execution
stack for the static thread or clocked thread process instance for which the function is called. The effect of
this function is implementation-defined.

set_stack_size shall only be called from the body of the constructor of a module, or from a member function
called from the body of the constructor, and only after having created a static process instance within that
module. It shall be an error to call set_stack_size at other times, or to call set_stack_size for a method
process instance.

The order of execution of the statements within the body of the constructor is used to associate the call to
set_stack_size with a particular static process instance; it is associated with the most recently created port
instance.

5.2.16 next_trigger

This subclause shall apply to both static and dynamic process instances.

This subclause shall apply to member function next_trigger of class sc_module, member function
next_trigger of class sc_prim_channel, and non-member function next_trigger.

The function next_trigger shall set the dynamic sensitivity of the method process instance from which it is
called for the very next occasion on which that process instance is triggered, and for that occasion only. The
dynamic sensitivity is determined by the arguments passed to function next_trigger.

If function next_trigger is called more than once during a single execution of a particular method process
instance, the last call to be executed shall prevail. The effects of earlier calls to function next_trigger for
that particular process instance shall be cancelled.

If function next_trigger is not called during a particular execution of a method process instance, the method
process instance shall next be triggered according to its static sensitivity.

A call to the function next_trigger with one or more arguments shall override the static sensitivity of the
process instance.

It shall be an error to call function next_trigger from a thread or clocked thread process.

NOTE—The function next_trigger does not suspend the method process instance; a method process cannot be
suspended, but always executes to completion before returning control to the kernel.

void next_trigger();
The process shall be triggered on the static sensitivity. In the absence of static sensitivity for this
particular process instance, the process shall not be triggered again during the current simulation.

void next_trigger(const sc_event&);
The process shall be triggered when the event passed as an argument is notified.
.
Copyright © 2005 OSCI. All rights reserved. 37

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
void next_trigger(sc_event_or_list†&);
The argument shall take the form of a list of events separated by the operator| of classes sc_event
and sc_event_or_list†. The process shall be triggered when any one of the given events is notified.
The occurrence or non-occurrence of the other events in the list shall have no effect on that
particular triggering of the process.

void next_trigger(sc_event_and_list†&);
The argument shall take the form of a list of events separated by the operator& of classes sc_event
and sc_event_and_list†. In order for the process to be triggered, every single one of the given events
shall be notified, with no explicit constraints on the time or order of those notifications. The process
is triggered when the last such event is notified, last in the sense of being at the latest point in
simulation time, not last in the list. An event in the list may be notified more than once before the
last event is notified.

void next_trigger(const sc_time&);
The process shall be triggered after the time given as an argument has elapsed. The time shall be
taken to be relative to the time at which function next_trigger is called. When a process is triggered
in this way, a time-out is said to have occurred.

void next_trigger(double v , sc_time_unit tu);
is equivalent to the following:
void next_trigger(sc_time(v , tu));

void next_trigger(const sc_time& , const sc_event&);
The process shall be triggered after the given time or when the given event is notified, whichever
occurs first.

void next_trigger(double , sc_time_unit , const sc_event&);
void next_trigger(const sc_time& , sc_event_or_list†&);
void next_trigger(double , sc_time_unit , sc_event_or_list†&);
void next_trigger(const sc_time& , const sc_event_and_list†&);
void next_trigger(double , sc_time_unit , sc_event_and_list†&);

Each of these compound forms combines a time with an event or event list. The semantics of these
compound forms shall be deduced from the rules given for the simple forms. In each case, the
process shall be triggered after the given time-out or in response to the given event or event list,
whichever is satisfied first.

Example:

SC_MODULE(M)
{

SC_CTOR(M)
{

SC_METHOD(entry);
sensitive << sig;

}
void entry() // Run first at initialization.
38 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
{
if (sig == 0) next_trigger(e1 | e2); // Trigger on event e1 or event e2 next time
else if (sig == 1) next_trigger(1, SC_NS); // Time-out after 1 nanosecond.
else next_trigger(); // Trigger on signal sig next time.

}
sc_signal<int> sig;
sc_event e1, e2;
...

};

5.2.17 wait

This subclause shall apply to both static and dynamic process instances.

In addition to causing the process instance to suspend, the function wait may set the dynamic sensitivity of
the thread or clocked thread process instance from which it is called for the very next occasion on which that
process instance is resumed, and for that occasion only. The dynamic sensitivity is determined by the
arguments passed to function wait.

A call to the function wait with an empty argument list or with a single integer argument shall use the static
sensitivity of the process instance. This is the only form of wait permitted within a clocked thread process.

A call to the function wait with one or more non-integer arguments shall override the static sensitivity of the
process instance.

When calling function wait with a passed-by-reference parameter, the application shall be obliged to ensure
that the lifetimes of any actual arguments passed-by-reference extend from the time the function is called to
the time the function call completes, and moreover in the case of a parameter of type sc_time, the
application shall not modify the value of the actual argument during that period.

It shall be an error to call function wait from a method process.

void wait();
The process shall be resumed on the static sensitivity. In the absence of static sensitivity for this
particular process, the process shall not be resumed again during the current simulation.

void wait(int);
A call to this function shall be equivalent to calling the function wait with an empty argument list
for a number of times in immediate succession, the number of times being passed as the value of the
argument. It shall be an error to pass an argument value less than or equal to zero. The
implementation is expected to optimize the execution speed of this function for clocked thread
processes.

void wait(const sc_event&);
The process shall be resumed when the event passed as an argument is notified.

void wait(sc_event_or_list†&);
The argument shall take the form of a list of events separated by the operator| of classes sc_event
and sc_event_or_list†. The process shall be resumed when any one of the given events is notified.
The occurrence or non-occurrence of the other events in the list shall have no effect on the
.
Copyright © 2005 OSCI. All rights reserved. 39

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
resumption of that particular process. If a particular event appears more than once in the list, the
behavior shall be the same as if it appeared only once. (See 5.8.)

void wait(sc_event_and_list†&);
The argument shall take the form of a list of events separated by the operator& of classes sc_event
and sc_event_and_list†. In order for the process to be resumed, every single one of the given events
shall be notified, with no explicit constraints on the time or order of those notifications. The process
is resumed when the last such event is notified, last in the sense of being at the latest point in
simulation time, not last in the list. An event in the list may be notified more than once before the
last event is notified. If a particular event appears more than once in the list, the behavior shall be the
same as if it appeared only once. (See 5.8.)

void wait(const sc_time&);
The process shall be resumed after the time given as an argument has elapsed. The time shall be
taken to be relative to the time at which function wait is called. When a process is resumed in this
way, a time-out is said to have occurred.

void wait(double v , sc_time_unit tu);
is equivalent to the following:
void wait(sc_time(v, tu));

void wait(const sc_time& , const sc_event&);
The process shall be resumed after the given time or when the given event is notified, whichever
occurs first.

void wait(double , sc_time_unit , const sc_event&);
void wait(const sc_time& , sc_event_or_list†&);
void wait(double , sc_time_unit , sc_event_or_list†&);
void wait(const sc_time& , const sc_event_and_list†&);
void wait(double , sc_time_unit , sc_event_and_list†&);

Each of these compound forms combines a time with an event or event list. The semantics of these
compound forms shall be deduced from the rules given for the simple forms. In each case, the
process shall be resumed after the given time-out or in response to the given event or event list,
whichever is satisfied first.

void wait(sc_process_handle&);
The process shall be resumed when the process instance associated with the process handle passed
as an argument terminates. If the given process handle is invalid or if the associated process instance
is already terminated or if the given process handle is associated with the calling process itself then
the function wait shall return immediately and the calling process shall not be suspended.

Example:

sc_process_handle self = sc_get_current_process_handle();
wait(self); // Function call returns immediately without suspending
40 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.2.18 Positional port binding

Ports can be bound using either positional binding or named binding. Positional binding is performed using
the operator() defined in the current clause. Named binding is performed using the operator() or the
function bind of the class sc_port. (See 5.11.)

void operator() (
const sc_bind_proxy†& p001,
const sc_bind_proxy†& p002 = SC_BIND_PROXY_NIL,
...
const sc_bind_proxy†& p063 = SC_BIND_PROXY_NIL,
const sc_bind_proxy†& p064 = SC_BIND_PROXY_NIL);

This operator shall bind the port instances within the module instance for which the operator is called to the
channel instances and port instances passed as actual arguments to the operator, the port order being
determined by the order in which the ports were constructed. The first port to be constructed shall be bound
to the first argument, the second port to the second argument, and so forth. It shall be an error if the number
of actual arguments is greater than the number of ports to be bound.

This operator shall only bind ports, not exports. Any export instances contained within the module instance
shall be ignored by this operator.

An implementation may permit more than 64 ports to be bound in a single call to operator(), but is not
obliged to do so. operator() shall not be called more than once for a given module instance.

The following objects, and these alone, can be used as actual arguments to operator():
a) A channel, which is an object of a class derived from class sc_interface
b) A port, which is an object of a class derived from class sc_port

The type of a port is the name of the interface passed as a template argument to class sc_port when the port
is instantiated. The interface implemented by the channel in case a) or the type of the port in case b) shall be
the same as or derived from the type of the port being bound.

An implementation may defer the completion of port binding until a later time during elaboration because
the port to which a port is bound may not yet itself have been bound.

NOTES

1—To bind more than 64 ports of a single module instance, named binding should be used.

2—Class sc_bind_proxy†, the parameter type of operator(), may provide user-defined conversions in the form of two
constructors, one having a parameter type of sc_interface, and the other a parameter type of sc_port_base.

3—The actual argument cannot be an export, because this would require the C++ compiler to perform two implicit
conversions. However, it is possible to pass an export as an actual argument by explicitly calling the user-defined
conversion sc_export::operator IF&. It is also possible to bind a port to an export using named port binding.

Example:

SC_MODULE(M1)
{

sc_inout<int> P, Q, R; // Ports
...

};
.
Copyright © 2005 OSCI. All rights reserved. 41

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
SC_MODULE(Top1)
{

sc_inout <int> A, B;
sc_signal<int> C;
M1 m1; // Module instance
SC_CTOR(Top1)
: m1("m1")
{

m1(A, B, C); // Binds A-to-P, B-to-Q, C-to-R
}
...

};

SC_MODULE(M2)
{

sc_inout<int> S;
sc_inout<int> *T; // Pointer-to-port (an unusual coding style)
sc_inout<int> U;
SC_CTOR(M2) { T = new sc_inout<int>; }
...

};

SC_MODULE(Top2)
{

sc_inout <int> D, E;
sc_signal<int> F;
M2 m2; // Module instance
SC_CTOR(Top2)
: m2("m2")
{
m2(D, E, F); // Binds D-to-S, E-to-U, F-to-(*T)

// Note that binding order depends on the order of port construction
}
...

};

5.2.19 before_end_of_elaboration, end_of_elaboration, start_of_simulation,
end_of_simulation

See 4.4.

5.2.20 get_child_objects

virtual const std::vector<sc_object*>& get_child_objects() const;

Member function get_child_objects shall return a std::vector containing a pointer to every instance of class
sc_object that lies within the module in the object hierarchy. This shall include pointers to all module, port,
primitive channel, static process, and dynamic process instances within the module, and any other
application-defined objects derived from class sc_object within the module.

NOTES
42 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
1—The phrase within a module does not include instances nested within modules instances, but only includes the
immediate children of the given module.

2—An application can identify the instances by calling the member functions name and kind of class sc_object or
can determine their types using a dynamic cast.

Example:

int sc_main (int argc, char* argv[])
{

Top_level_module top("top");

std::vector<sc_object*> children = top.get_child_objects();

// Print out names and kinds of top-level objects
for (unsigned i = 0; i < children.size(); i++)

std::cout << children[i]->name() << " " << children[i]->kind() << std::endl;

sc_start();
return 0;

}

5.2.21 sc_gen_unique_name

const char* sc_gen_unique_name(const char*);

The function sc_gen_unique_name shall return a unique character string that depends on the context from
which the function is called. For this purpose, each module shall have a separate space of unique string
names, and there shall be a single global space of unique string names for calls to sc_gen_unique_name not
made from within any module. These spaces of unique string names shall be maintained by function
sc_gen_unique_name and are only visible outside this function in so far as they affect the value of the
strings returned from this function. Function sc_gen_unique_name shall only guarantee the uniqueness of
strings within each space of unique string names. There shall be no guarantee that the generated name does
not clash with a string that was not generated by function sc_gen_unique_name.

The unique string shall be constructed by appending a string of two or more characters as a suffix to the
character string passed as argument seed, subject to the rules given in the remainder of this clause. The
appended suffix shall take the form of a single underscore character followed by a series of one of more
decimal digits from the character set 0-9. The number and choice of digits shall be implementation-defined.

There shall be no restrictions on the character set of the seed argument to function sc_gen_unique_name.
The seed argument may be the empty string.

String names are case sensitive, and every character in a string name is significant. Hence, for example, “a”,
“A”, “a_”, and “A_” are each unique string names with respect to one another.

NOTE—The intended use of sc_gen_unique_name is to generate unique string names for objects of class
sc_object. Class sc_object does impose restrictions on the character set of string names passed as
constructor arguments. The value returned from function sc_gen_unique_name may be used for other
unrelated purposes.

5.2.22 sc_behavior and sc_channel

typedef sc_module sc_behavior;
typedef sc_module sc_channel;
.
Copyright © 2005 OSCI. All rights reserved. 43

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The typedefs sc_behavior and sc_channel are provided for users to express their intent.

NOTE—There is no distinction between a behavior and a hierarchical channel other than a difference of intent. Either
may include both ports and public member functions.

Example:

class bus_interface
: virtual public sc_interface
{

public:
virtual void write(int addr, int data) = 0;
virtual void read (int addr, int& data) = 0;

};

class bus_adapter
: public bus_interface, public sc_channel
{

public:
virtual void write(int addr, int data); // Interface methods implemented in channel
virtual void read (int addr, int& data);

sc_in<bool> clock; // Ports
sc_out<bool> wr, rd;
sc_out<int> addr_bus;
sc_out<int> data_out;
sc_in <int> data_in;

SC_CTOR(bus_adapter) { ... } // Module constructor

private:
...

};
44 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.3 sc_module_name

5.3.1 Description

Class sc_module_name acts as a container for the string name of a module and provides the mechanism for
building the hierarchical names of instances in the module hierarchy during elaboration.

When an application creates an object of a class derived directly or indirectly from class sc_module, the
application typically passes an argument of type char* to the module constructor, which itself has a single
parameter of class sc_module_name and thus the constructor sc_module_name(const char*) is called as
an implicit conversion. On the other hand, when an application derives a new class directly or indirectly
from class sc_module, the derived class constructor calls the base class constructor with an argument of
class sc_module_name and thus the copy constructor sc_module_name(const sc_module_name&) is
called.

5.3.2 Class definition

namespace sc_core {

class sc_module_name
{

public:
sc_module_name(const char*);
sc_module_name(const sc_module_name&);

~sc_module_name();

operator const char*() const;

private:
// Disabled
sc_module_name();
sc_module_name& operator= (const sc_module_name&);

};

} // namespace sc_core

5.3.3 Constraints on usage

Class sc_module_name shall only be used as the type of a parameter of a constructor of a class derived from
class sc_module. Moreover, every such constructor shall have exactly one parameter of type
sc_module_name, which need not be the first parameter of the constructor.

In the case that the constructor of a class C derived directly or indirectly from class sc_module is called
from the constructor of a class D derived directly from class C, the parameter of type sc_module_name of
the constructor of class D shall be passed directly through as an argument to the constructor of class C. In
other words, the derived class constructor shall pass the sc_module_name through to the base class
constructor as a constructor argument.

NOTES

1—The macro SC_CTOR defines such a constructor.
.
Copyright © 2005 OSCI. All rights reserved. 45

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
2—In the case of a class C derived directly from class sc_module, the constructor for class C is not obliged to pass the
sc_module_name through to the constructor for class sc_module. The default constructor for class sc_module may
be called explicitly or implicitly from the constructor for class C.

5.3.4 Module hierarchy

To keep track of the module hierarchy during elaboration, the implementation may maintain an internal
stack of pointers to objects of class sc_module_name, referred to below as the stack. For the purpose of
building hierarchical names, when objects of class sc_module, sc_port, or sc_prim_channel are
constructed or when static or dynamic processes instances are created, they are assumed to exist within the
module identified by the sc_module_name object on the top of the stack. In other words, each instance in
the module hierarchy is named as if it were a child of the module identified by the item on the top of the
stack at the point when the instance is created.

NOTES

1—The hierarchical name of an instance in the object hierarchy is returned from member function name of class
sc_object, which is the base class of all such instances.

2—The implementation is not obliged to use these particular mechanisms, but if not, the implementation shall substitute
an alternative mechanism that is semantically equivalent.

5.3.5 Member functions

sc_module_name(const char*);
This constructor shall push a pointer to the object being constructed onto the top of the stack. The
constructor argument shall be used as the string name of the module being instantiated within the
module hierarchy by ultimately being passed as an argument to the constructor of class sc_object.

sc_module_name(const sc_module_name&);
This constructor shall copy the constructor argument, but shall not modify the stack.

~sc_module_name();
If and only if the object being destroyed was constructed by sc_module_name(const char*), the
destructor shall pop the sc_module_name pointer off the top of the stack.

operator const char*() const;
A conversion function that returns the string name (not the hierarchical name) associated with the
sc_module_name.

NOTES

1—When a complete object of a class derived from sc_module is constructed, the constructor for that derived
class shall be passed an argument of type char*. The first constructor above will be called to perform an
implicit conversion from type char* to type sc_module_name, thus pushing the newly created module name
onto the stack and signifying the entry into a new level in the module hierarchy. On return from the constructor
for the class of the complete object, the destructor for class sc_module_name will be called and will pop the
module name off the stack.

2—When an sc_module_name is passed as an argument to the constructor of a base class, the above copy
constructor is called. The sc_module_name parameter of the base class may be unused. The reason for
mandating that every such constructor has a parameter of class sc_module_name (even if the parameter is
unused) is to ensure that every such derived class can be instantiated as a module in its own right.
46 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Example:

struct A: sc_module
{

A(sc_module_name) {} // Calls sc_module()
};

struct B: sc_module
{

B(sc_module_name n)
: sc_module(n) {} // Calls sc_module(sc_module_name&)

};

struct C: B // One module derived from another
{

C(sc_module_name n)
: B(n) {} // Calls sc_module_name(sc_module_name&) then

// B(sc_module_name)
};

struct Top: sc_module
{

A a;
C c;

Top(sc_module_name n)
: sc_module(n), // Calls sc_module(sc_module_name&)
a("a"), // Calls sc_module_name(char*) then calls A(sc_module_name)
c("c") {} // Calls sc_module_name(char*) then calls C(sc_module_name)

};
.
Copyright © 2005 OSCI. All rights reserved. 47

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.4 sc_sensitive†

5.4.1 Description

Class sc_sensitive† provides the operators used to build the static sensitivity of a static process instance. To
create static sensitivity for a dynamic process, use the member function set_sensitivity of the class
sc_spawn_options. (See 5.5.)

5.4.2 Class definition

namespace sc_core {

class sc_sensitive†

{
public:

sc_sensitive†& operator<< (const sc_event&);
sc_sensitive†& operator<< (const sc_interface&);
sc_sensitive†& operator<< (const sc_port_base&);
sc_sensitive†& operator<< (sc_event_finder&);

// Other members
implementation-defined

};

} // namespace sc_core

5.4.3 Constraints on usage

An application shall not explicitly create an object of class sc_sensitive†.

Class sc_module shall have a data member named sensitive of type sc_sensitive†. The use of sensitive to
create static sensitivity is described in 5.2.13.

5.4.4 operator<<

sc_sensitive†& operator<< (const sc_event&);
The event passed as an argument shall be added to the static sensitivity of the process instance.

sc_sensitive†& operator<< (const sc_interface&);
The event returned by member function default_event of the channel instance passed as an
argument to operator<< shall be added to the static sensitivity of the process instance.
NOTES

1—If the channel passed as an argument does not override function default_event, the member function
default_event of class sc_interface is called via inheritance.

2—An export can be passed as an actual argument to this operator because of the existence of the user-defined
conversion sc_export::operator IF&.

sc_sensitive†& operator<< (const sc_port_base&);
The event returned by member function default_event of the channel instance to which the port
instance passed as an argument to operator<< is bound shall be added to the static sensitivity of the
48 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
process instance. In other words, the process is made sensitive to the given port, calling function
default_event to determine to which particular event it should be made sensitive.

sc_sensitive†& operator<< (sc_event_finder&);
The event found by the event finder passed as an argument to operator<< shall be added to the
static sensitivity of the process instance. (See 5.7.)
NOTE—An event finder is necessary to create static sensitivity when the application needs to select between
multiple events defined in the channel. In a such a case the default_event mechanism is inadequate.
.
Copyright © 2005 OSCI. All rights reserved. 49

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.5 sc_spawn_options and sc_spawn

5.5.1 Description

Function sc_spawn is used to create a dynamic process instance.

Class sc_spawn_options is used to create an object that is passed as an argument to function sc_spawn
when creating a dynamic process instance. The spawn options determine certain properties of the spawned
process instance when used in this way. Calling the member functions of an sc_spawn_options object shall
have no effect on any process instance unless the object is passed as an argument to sc_spawn.

5.5.2 Class definition

namespace sc_core {

class sc_spawn_options
{

public:
sc_spawn_options();

void spawn_method();
void dont_initialize();
void set_stack_size(int);

void set_sensitivity(const sc_event*);
void set_sensitivity(sc_port_base*);
void set_sensitivity(sc_interface*);
void set_sensitivity(sc_event_finder*);

private:
// Disabled
sc_spawn_options(const sc_spawn_options&);
sc_spawn_options& operator= (const sc_spawn_options&);

};

template <typename T>
sc_process_handle sc_spawn(

T object ,
const char* name_p = 0 ,
const sc_spawn_options* opt_p = 0);

template <typename T>
sc_process_handle sc_spawn(

typename T::result_type* r_p ,
T object ,
const char* name_p = 0 ,
const sc_spawn_options* opt_p = 0);

#define sc_bind boost::bind
#define sc_ref(r) boost::ref(r)
#define sc_cref(r) boost::cref(r)

#define SC_FORK implementation-defined
#define SC_JOIN implementation-defined
50 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
} // namespace sc_core

5.5.3 Constraints on usage

Function sc_spawn may be called during elaboration or from a static or dynamic process during simulation.

5.5.4 Constructors

sc_spawn_options ();

The default constructor shall create an object having the default values for the properties set by the functions
spawn_method, dont_initialize, set_stack_size, and set_sensitivity.

5.5.5 Member functions

void spawn_method();
Member function spawn_method shall set a property of the spawn options to indicate that the
spawned process shall be a method process. The default is a thread process.

void dont_initialize();
Member function dont_initialize shall set a property of the spawn options to indicate that the
spawned process instance shall not be made runnable during the initialization phase or when it is
created. By default this property is not set, and thus by default the spawned process instance shall be
made runnable during the initialization phase of the scheduler if spawned during elaboration, or
shall be made runnable in the current or next evaluation phase if spawned during simulation
irrespective of the static sensitivity of the spawned process instance. If the process is spawned
during elaboration, member function dont_initialize of class sc_spawn_options shall provide the
same behavior for dynamic processes as the member function dont_initialize of class sc_module
provides for static processes.

void set_stack_size(int);
Member function set_stack_size shall set a property of the spawn options to set the stack size of the
spawned process. This member function shall provide the same behavior for dynamic processes as
the member function set_stack_size of class sc_module provides for static processes. The effect of
calling this function is implementation-defined.
It shall be an error to call set_stack_size for a method process.

void set_sensitivity(const sc_event*);
void set_sensitivity(sc_port_base*);
void set_sensitivity(sc_interface*);
void set_sensitivity(sc_event_finder*);

Member function set_sensitivity shall set a property of the spawn options to add the object passed
as an argument to set_sensitivity to the static sensitivity of the spawned process. By default, the
static sensitivity is empty. Calls to set_sensitivity are cumulative: each call to set_sensitivity
extends the static sensitivity as set in the spawn options. Calls to the four different overloaded
member functions can be mixed.

NOTES
.
Copyright © 2005 OSCI. All rights reserved. 51

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
1—There are no member functions to set the spawn options to spawn a thread process or to make a process runnable
during initialization. This functionality is reliant on the default values of the sc_spawn_options object.

2—It is not possible to spawn a dynamic clocked thread process.

3—The actual argument to function set_sensitivity cannot be an export, because this would require the C++ compiler to
perform two implicit conversions. However, it is possible to pass an export as an actual argument by explicitly calling
the user-defined conversion sc_export::operator IF&.

5.5.6 sc_spawn

template <typename T>
sc_process_handle sc_spawn(

T object ,
const char* name_p = 0 ,
const sc_spawn_options* opt_p = 0);

template <typename T>
sc_process_handle sc_spawn(

typename T::result_type* r_p ,
T object ,
const char* name_p = 0 ,
const sc_spawn_options* opt_p = 0);

#define sc_bind boost::bind
#define sc_ref(r) boost::ref(r)
#define sc_cref(r) boost::cref(r)

Function sc_spawn shall create a dynamic process instance.

Function sc_spawn may be called during elaboration, in which case the spawned process is a child of the
module instance within which function sc_spawn is called, or is a top-level object if function sc_spawn is
called from function sc_main.

Function sc_spawn may be called during simulation, in which case the spawned process is a child of the
process that called function sc_spawn. Function sc_spawn may be called from a method process, a thread
process, or a clocked thread process.

The process or module from which sc_spawn is called is the parent of the spawned process. Thus a set of
dynamic process instances may have a hierarchical relationship, similar to the module hierarchy, which will
be reflected in the hierarchical names of the process instances.

If function sc_spawn is called during the evaluation phase, the spawned process shall be made runnable in
the current evaluation phase (unless dont_initialize has been called for this process instance). If function
sc_spawn is called during the update phase, the spawned process shall be made runnable in the very next
evaluation phase (unless dont_initialize has been called for this process instance).

The argument of type T shall be either a function pointer or a function object, that is an object of a class that
overloads operator() as a member function, and shall specify the function associated with the spawned
process instance, that is the function to be spawned. This shall be the only mandatory argument to function
sc_spawn.

If present, the argument of type T::result_type* shall pass a pointer to a memory location that shall receive
the value returned from the function associated with the process instance. In this case, the argument of type
T shall be a function object of a class that exposes a nested type named result_type. Furthermore,
operator() of the function object shall have the return type result_type.
52 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The macros sc_bind, sc_ref, and sc_cref are provided for convenience when using the free Boost C++
libraries to bind arguments to spawned functions. Passing arguments to spawned processes is a powerful
mechanism which allows processes to be parameterized when they are spawned and permits processes to
update variables over time through reference arguments. boost::bind provides a convenient way to pass
value arguments, reference arguments, and const reference arguments to spawned functions, but its use is
not mandatory. See the examples below and the Boost documentation.

The argument of type const char* shall give the string name of the spawned process instance, and hence
shall be passed by the implementation to the constructor for the sc_object that forms the base class sub-
object of the spawned process instance. If no such argument is given or if the argument is an empty string,
the implementation shall create a string name for the process instance by calling function
sc_gen_unique_name with the seed string "thread_p" in the case of a thread process, or "method_p" in
the case of a method process.

The argument of type sc_spawn_options* shall set the spawn options for the spawned process instance. If
no such argument is provided, the spawned process instance shall take the default values as defined for the
member functions of class sc_spawn_options. The application is not obliged to keep the sc_spawn_options
object valid after the return from function sc_spawn.

Function sc_spawn shall return a process handle to the spawned process instance.

NOTES

1—Function sc_spawn provides a superset of the functionality of the macros SC_THREAD and SC_METHOD. In
addition to the functionality provided by these macros, function sc_spawn provides the passing of arguments and return
values to and from processes and dynamic processes spawned during simulation. The macros are retained for
compatibility with earlier versions of SystemC.

2—If a spawn options argument is given, a process string name argument shall also be given, although that string name
argument may be an empty string.

Example:

int f();

struct Functor
{

typedef int result_type;
result_type operator() ();

};

Functor::result_type Functor::operator() () { return f(); }

int h(int a, int& b, const int& c);

struct MyMod: sc_module
{

sc_signal<int> sig;
void g();

SC_CTOR(MyMod)
{

SC_THREAD(T);
}
void T()
.
Copyright © 2005 OSCI. All rights reserved. 53

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
{
sc_spawn(&f); // Spawn a function without arguments and discard any return value.

// Spawn a similar process and create a process handle.
sc_process_handle handle = sc_spawn(&f);

Functor fr;
int ret;
sc_spawn(&ret, fr); // Spawn a function object and catch the return value.

sc_spawn_options opt;
opt.spawn_method();
opt.set_sensitivity(&sig);
opt.dont_initialize();

sc_spawn(f, "f1", &opt); // Spawn a method process named "f1", sensitive to sig, not initialized.
// Spawn a similar process named "f2" and catch the return value.

sc_spawn(&ret, fr, "f2", &opt);

// Spawn a member function using Boost bind.
sc_spawn(sc_bind(&MyMod::g, this));

int A = 0, B, C;
// Spawn a function using Boost bind, pass arguments
// and catch the return value.

sc_spawn(&ret, sc_bind(&h, A, sc_ref(B), sc_cref(C)));
}

};

5.5.7 SC_FORK and SC_JOIN

#define SC_FORK implementation-defined
#define SC_JOIN implementation-defined

The macros SC_FORK and SC_JOIN can only be used as a pair to bracket a set of calls to function
sc_spawn from within a thread or clocked thread process. It is an error to use the fork-join construct in a
method process. The implementation shall make each call to sc_spawn immediately control enters the fork-
join construct and shall spawn a separate process instance for each such call. In other words, the child
processes shall be spawned without delay and may potentially all become runnable in the current evaluation
phase (depending on their spawn options). The spawned process instances shall be thread processes. It is an
error to spawn a method process within a fork-join construct. Control leaves the fork-join construct when all
the spawned process instances have terminated.

The text between SC_FORK and SC_JOIN shall consist of a series of one or more calls to function
sc_spawn separated by commas. The comma after the final call to sc_spawn and immediately before
SC_JOIN shall be optional. There shall be no other characters separating SC_FORK, the function calls, the
commas, and SC_JOIN. If an application violates these rules, the effect shall be undefined.

Example:

SC_FORK
sc_spawn(arguments) ,
sc_spawn(arguments) ,
sc_spawn(arguments)

SC_JOIN
54 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.6 sc_process_handle

5.6.1 Description

Class sc_process_handle provides a process handle to an underlying static or dynamic process instance. A
process handle can be in one of two states: valid or invalid. A valid process handle shall be associated with a
single underlying process instance, which may or may not be in the terminated state. An invalid process
handle shall not be associated with any underlying process instance. A process instance may be associated
with zero, one or many process handles, and the number and identity of such process handles may change
over time.

Since dynamic process instances can be created and destroyed dynamically during simulation, it is in
general unsafe to manipulate a process instance through a raw pointer to the process instance (or to the base
class sub-object of class sc_object). The purpose of class sc_process_handle is to provide a safe and
uniform mechanism for manipulating both static and dynamic process instances without reliance on raw
pointers. If control returns from the function associated with a thread process instance (that is, the process
terminates), the underlying process instance may be deleted but the process handle will continue to exist.

5.6.2 Class definition

namespace sc_core {

enum sc_curr_proc_kind
{
 SC_NO_PROC_ ,
 SC_METHOD_PROC_ ,
 SC_THREAD_PROC_ ,
 SC_CTHREAD_PROC_
};

class sc_process_handle
{

public:
sc_process_handle();
sc_process_handle(const sc_process_handle&);
explicit sc_process_handle(sc_object*);
~sc_process_handle();

bool valid() const;

sc_process_handle& operator= (const sc_process_handle&);
bool operator== (const sc_process_handle&) const;
bool operator!= (const sc_process_handle&) const;

const char* name() const;
sc_curr_proc_kind proc_kind() const;
const std::vector<sc_object*>& get_child_objects() const;
sc_object* get_parent_object() const;
bool dynamic() const;
bool terminated() const;

};

sc_process_handle sc_get_current_process_handle();
.
Copyright © 2005 OSCI. All rights reserved. 55

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
} // namespace sc_core

5.6.3 Constraints on usage

None. A process handle may be created, copied or deleted at any time during elaboration or simulation. The
handle may be valid or invalid.

5.6.4 Constructors

sc_process_handle();
The default constructor shall create an invalid process handle.

sc_process_handle(const sc_process_handle&);
The copy constructor shall duplicate the process handle passed as an argument. The result will be
two handles to the same underlying process instance, or two invalid handles.

explicit sc_process_handle(sc_object*);
If the argument is a pointer to a process instance, this constructor shall create a valid process handle
to the given process instance. Otherwise, this constructor shall create an invalid process handle.

5.6.5 Member functions

bool valid() const;
Member function valid shall return true if and only if the process handle is valid.

sc_process_handle& operator= (const sc_process_handle&);
The assignment operator shall duplicate the process handle passed as an argument. The result will be
two handles to the same underlying process instance, or two invalid handles.

bool operator== (const sc_process_handle&) const;
The equality operator shall return true if and only if the two process handles are both valid and share
the same underlying process instance.

bool operator!= (const sc_process_handle&) const;
The equality operator shall return false if and only if the handles are both valid and share the same
underlying process instance.

const char* name() const;
Member function name shall return the hierarchical name of the underlying process instance. If the
process handle is invalid, member function name shall return an empty string.

sc_curr_proc_kind proc_kind() const;
For a valid process handle, member function proc_kind shall return one of the three values
SC_METHOD_PROC_, SC_THREAD_PROC_, or SC_CTHREAD_PROC_ depending on the
kind of the underlying process instance, that is method process, thread process, or clocked thread
process respectively. For an invalid process handle, member function proc_kind shall return the
value SC_NO_PROC_.
56 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
const std::vector<sc_object*>& get_child_objects() const;
Member function get_child_objects shall return a std::vector containing a pointer to every instance
of class sc_object that is a child of the underlying process instance. This shall include every
dynamic process instance that was spawned from the underlying process instance and any other
application-defined objects derived from class sc_object created from the underlying process
instance. Processes that are spawned from child processes are not included (grandchildren, as it
were). If the process handle is invalid, member function get_child_objects shall return an empty
std::vector.
This same function shall be overridden in any implementation-defined classes derived from
sc_object and associated with static and dynamic process instances. The functions shall have
identical behavior provided that the process handle is valid.

const sc_object* get_parent_object() const;
Member function get_parent_object shall return a pointer to the module instance or process
instance from which the underlying process instance was spawned. If the process handle is invalid,
member function get_parent_object shall return the null pointer.

bool dynamic() const;
Member function dynamic shall return true if the underlying process instance is a dynamic process,
and false if the underlying process instance is a static process. If the process handle is invalid,
member function dynamic shall return the value false.

bool terminated() const;
Member function terminated shall return true if and only if the underlying process instance has
terminated. A thread or clocked thread process is terminated after the point when control is returned
from the associated function. A method process is never terminated, so member function
terminated shall always return false for a method process. If the process handle is invalid, member
function terminated shall return the value false.
When the underlying process instance terminates, an implementation may choose to invalidate any
associated process handles, but is not obliged to do so. In other words, when a process terminates, an
implementation is neither obliged to keep the handle valid nor to invalidate the handle. If the process
handle is valid, function terminated will return true, or if invalid, terminated will return false.

5.6.6 sc_get_current_process_handle

sc_process_handle sc_get_current_process_handle();

The value returned from function sc_get_current_process_handle shall be dependent upon the context in
which it is called. When called during elaboration from the body of a module constructor or from a function
called from the body of a module constructor, sc_get_current_process_handle shall return a handle to the
static or dynamic process instance most recently created within that module, if any. If the most recently
created process instance was not within the current module, or if function sc_get_current_process_handle
is called from one of the callbacks before_end_of_elaboration or end_of_elaboration, an implementation
may return either a handle to the most recently created process instance or an invalid handle. When called
during simulation, sc_get_current_process_handle shall return a handle to the currently executing static or
dynamic process instance, if any. If there is no such process instance, sc_get_current_process_handle shall
return an invalid handle.

Example:
.
Copyright © 2005 OSCI. All rights reserved. 57

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
SC_MODULE(Mod)
{

...
SC_CTOR(Mod)
{

SC_METHOD(Run);
sensitive << in;
sc_process_handle h1 = sc_get_current_process_handle(); // Returns a handle to process Run

}
void Run()
{

sc_process_handle h2 = sc_get_current_process_handle(); // Returns a handle to process Run
if (h2.proc_kind() == SC_METHOD_PROC_)

... // Running a method process
sc_object* parent = h2->get_parent_object(); // Returns a pointer to the

// module instance
if (parent)
{

handle = sc_process_handle(parent); // Invalid handle - parent is not a process
if (handle.valid())

... // Executed if parent were a
// valid process

}
}
...

};
58 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.7 sc_event_finder and sc_event_finder_t

5.7.1 Description

An event finder is a member function of a port with a return type of sc_event_finder&. When a port
instance is bound to a channel instance containing multiple events, an event finder permits a specific event
from the channel to be retrieved via the port instance and added to the static sensitivity of a process instance.
sc_event_finder_t is a templated wrapper for class sc_event_finder, where the template parameter is the
interface type of the port.

5.7.2 Class definition

namespace sc_core {

class sc_event_finder implementation-defined ;
template <class IF>
class sc_event_finder_t
: public sc_event_finder
{

public:
sc_event_finder_t(const sc_port_base& port_, const sc_event& (IF::*event_method_) () const);

// Other members
implementation-defined

};

} // namespace sc_core

5.7.3 Constraints on usage

An application shall only use class sc_event_finder as the return type (passed by reference) of a member
function of a port class.

An application shall only use class sc_event_finder_t in constructing the object returned from an event
finder.

An event finder shall have a return type of sc_event_finder& and shall return an object of class
sc_event_finder_t<interface>, where:

a) interface shall be the name of an interface to which said port can be bound, and
b) the first argument passed to the constructor for said object shall be the port object itself, and
c) the second argument shall be the address of a member function of said interface. The event found by

the event finder is the event returned by this function.

Example:

#include <systemc.h>

class if_class
: virtual public sc_interface
{

public:
virtual const sc_event& ev_func() const = 0;
...
.
Copyright © 2005 OSCI. All rights reserved. 59

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
};

class chan_class
: public if_class, public sc_prim_channel
{

public:
virtual const sc_event& ev_func() const { return an_event; }
...

private:
sc_event an_event;

};

class port_class
: public sc_port<if_class>
{

public:
sc_event_finder& event_finder() const
{

return *new sc_event_finder_t<if_class>(*this , &if_class::ev_func);
}
...

};

SC_MODULE(mod_class)
{

port_class port_var;

SC_CTOR(mod_class)
{

SC_METHOD(method);
sensitive << port_var.event_finder(); // Sensitive to chan_class::an_event

}
void method();
...

};

NOTES

1—The only context in which an event finder may be called is as an argument to operator<< of class sc_sensitive†.

2—For particular examples of event finders, refer to the functions pos and neg of class sc_in<bool>.
60 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.8 sc_event_and_list† and sc_event_or_list†

5.8.1 Description

The classes sc_event_and_list† and sc_event_or_list† provide the & and | operators used to construct the
event lists passed as arguments to the functions wait and next_trigger. (See 5.2.16 and 5.2.17).

5.8.2 Class definition

namespace sc_core {

class sc_event_and_list†
{

public:
sc_event_and_list†& operator& (const sc_event&);

// Other members
implementation-defined

};

class sc_event_or_list†
{

public:
sc_event_or_list†& operator| (const sc_event&);

// Other members
implementation-defined

};

} // namespace sc_core

5.8.3 Constraints on usage

An application shall not explicitly create an object of class sc_event_and_list† or sc_event_or_list†.

Classes sc_event_and_list† and sc_event_or_list† are the return types of operator& and operator|
respectively of class sc_event, and are parameter types of the functions wait and next_trigger.

5.8.4 Event lists

sc_event_and_list†& operator& (const sc_event&);
sc_event_or_list†& operator| (const sc_event&);

A call to either operator shall add the event passed as an argument to the event list from which the
operator is called.
.
Copyright © 2005 OSCI. All rights reserved. 61

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.9 sc_event

5.9.1 Description

An event is an object of class sc_event, used for process synchronization. A process instance may be
triggered or resumed on the occurrence of an event, that is, when the event is notified. Any given event may
be notified on many separate occasions.

5.9.2 Class definition

namespace sc_core {

class sc_event
{

public:
sc_event();
~sc_event();

void notify();
void notify(const sc_time&);
void notify(double , sc_time_unit);
void cancel();

sc_event_or_list†& operator| (const sc_event&) const;
sc_event_and_list†& operator& (const sc_event&) const;

private:
// Disabled
sc_event(const sc_event&);
sc_event& operator= (const sc_event&);

};

} // namespace sc_core

5.9.3 Constraints on usage

Objects of class sc_event may be constructed during elaboration or simulation, but events shall only be
notified during simulation.

5.9.4 notify and cancel

void notify();
A call to member function notify shall create an immediate notification. Any and all process
instances sensitive to the event shall be made runnable before control is returned from function
notify.
NOTES

1—Process instances sensitive to the event will not be resumed or triggered until the process that called notify
has suspended or completed.

2—All process instances sensitive to the event will be run in the current evaluation phase, and in an order that is
implementation-defined. Be aware that the presence of immediate notification can introduce non-deterministic
behavior.

3—Member function update of class sc_prim_channel shall not call notify to create an immediate
notification.
62 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
void notify(const sc_time&);
void notify(double , sc_time_unit);

A call to member function notify with an argument that represents a zero time shall create a delta
notification.
A call to function notify with an argument that represents a non-zero time shall create a timed
notification at the given time, expressed relative to the simulation time when function notify is
called. In other words, the value of the time argument is added to the current simulation time to
determine the time at which the event will be notified.
NOTE—In the case of a delta notification, all processes that are sensitive to the event in the delta notification
phase will be made runnable in the subsequent evaluation phase. In the case of a timed notification, all
processes sensitive to the event at the time the event occurs will be made runnable at the time, which will be a
future simulation time.

void cancel();
Member function cancel shall delete any pending notification for this event.
NOTES

1—At most one pending notification for any given event can exist.

2—Immediate notification cannot be cancelled.

5.9.5 Event lists

sc_event_or_list†& operator| (const sc_event&) const;
sc_event_and_list†& operator& (const sc_event&) const;

A call to either operator shall add the event passed as an argument to the event list from which the
operator is called.
NOTE—Event lists are used as arguments to functions wait (see 5.2.17) and next_trigger (see 5.2.16).

5.9.6 Multiple event notifications

A given event shall have no more than one pending notification.

If function notify is called for an event that already has a notification pending, then only the notification
scheduled to occur at the earliest time shall survive. The notification scheduled to occur at the later time
shall be cancelled (or never be scheduled in the first place). An immediate notification is taken to occur
earlier than a delta notification, and a delta notification earlier than a timed notification. This is irrespective
of the order in which function notify is called.

Example:

sc_event e;
e.notify(SC_ZERO_TIME); // Delta notification
e.notify(1, SC_NS); // Timed notification ignored due to pending delta notification
e.notify(); // Immediate notification cancels pending delta notification. e is notified

e.notify(2, SC_NS); // Timed notification
e.notify(3, SC_NS); // Timed notification ignored due to earlier pending timed notification
e.notify(1, SC_NS); // Timed notification cancels pending timed notification
e.notify(SC_ZERO_TIME); // Delta notification cancels pending timed notification

// e is notified in the next delta cycle
.
Copyright © 2005 OSCI. All rights reserved. 63

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.10 sc_time

5.10.1 Description

Class sc_time is used to represent simulation time and time intervals, including delays and time-outs. An
object of class sc_time is constructed from a double and an sc_time_unit. Time shall be represented
internally as an unsigned integer of at least 64 bits. An implementation using more than 64 bits may
substitute an alternative type in place of sc_dt::uint64 below.

5.10.2 Class definition

namespace sc_core {

enum sc_time_unit {SC_FS = 0, SC_PS, SC_NS, SC_US, SC_MS, SC_SEC};
class sc_time
{

public:
sc_time();
sc_time(double , sc_time_unit);
sc_time(const sc_time&);

sc_time& operator= (const sc_time&);

sc_dt::uint64 value() const;
double to_double() const;
double to_seconds() const;
const std::string to_string() const;

bool operator== (const sc_time&) const;
bool operator!= (const sc_time&) const;
bool operator< (const sc_time&) const;
bool operator<= (const sc_time&) const;
bool operator> (const sc_time&) const;
bool operator>= (const sc_time&) const;

sc_time& operator+= (const sc_time&);
sc_time& operator-= (const sc_time&);
sc_time& operator*= (double);
sc_time& operator/= (double);

void print(std::ostream& = std::cout) const;
};

const sc_time operator+ (const sc_time&, const sc_time&);
const sc_time operator- (const sc_time&, const sc_time&);

const sc_time operator* (const sc_time&, double);
const sc_time operator* (double, const sc_time&);
const sc_time operator/ (const sc_time&, double);
double operator/ (const sc_time&, const sc_time&);

std::ostream& operator<< (std::ostream&, const sc_time&);

const sc_time SC_ZERO_TIME;
64 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
void sc_set_time_resolution(double, sc_time_unit);
sc_time sc_get_time_resolution();

} // namespace sc_core

5.10.3 Time resolution

Time shall be represented internally as an integer multiple of the time resolution. The default time resolution
is 1 picosecond. Every object of class sc_time shall share a single common global time resolution.

The time resolution can only be changed by calling the function sc_set_time_resolution. This function shall
only be called during elaboration, shall not be called more than once, and shall not be called after
constructing an object of type sc_time with a non-zero time value. The value of the double argument shall
be positive and shall be a power of 10. It shall be an error for an application to break the rules given in this
paragraph.

The constructor for sc_time shall scale and round the given time value to the nearest multiple of the time
resolution. The default constructor shall create an object having a time value of zero.

The values of enum sc_time_unit shall be taken to have their standard physical meanings, for example,
SC_FS = femtosecond = 10.E-15 seconds.

The function sc_get_time_resolution shall return the time resolution.

5.10.4 Functions and operators

All arithmetic, relational, equality, and assignment operators declared above shall be taken to have their
natural meanings when performing integer arithmetic on the underlying representation of time. The results
of integer underflow and divide-by-zero shall be implementation-defined.

sc_dt::uint64 value() const;
double to_double() const;
double to_seconds() const;

These functions shall return the underlying representation of the time value, first converting the
value to a double in each of the two cases to_double and to_seconds, and then also scaling the
resultant value to units of 1 second in the case of to_seconds.

const std::string to_string() const;
void print(std::ostream& = std::cout) const;
std::ostream& operator<< (std::ostream& , const sc_time&);

These functions shall return the time value converted to a string, or print that string to the given
stream. The format of the string is implementation-defined.

5.10.5 SC_ZERO_TIME

Constant SC_ZERO_TIME represents a time value of zero. It is good practice to use this constant whenever
writing a time value of zero, for example, when creating a delta notification or a delta time-out.

Example:
.
Copyright © 2005 OSCI. All rights reserved. 65

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_event e;
e.notify(SC_ZERO_TIME; // Delta notification
wait(SC_ZERO_TIME); // Delta time-out
66 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.11 sc_port

5.11.1 Description

A port is the means by which a module can be written such that it is independent of the context in which it is
instantiated. A port forwards interface method calls to the channel to which the port is bound. A port defines
a set of services (as identified by the type of the port) that are required by the module containing the port.

If a module is to call a member function belonging to a channel that is outside the module itself, that call
should be made using an interface method call via a port of the module. To do otherwise is considered bad
coding style. However, a call to a member function belonging to a channel instantiated within the current
module may be made directly. This is known as portless channel access. If a module is to call a member
function belonging to a channel instance within a child module, that call should be made via an export of the
child module. (See 5.12.)

5.11.2 Class definition

namespace sc_core {

class sc_port_base
: public sc_object { implementation-defined };

template <class IF, int N = 1>
class sc_port
: public sc_port_base
{

public:
sc_port();
explicit sc_port(const char*);
virtual ~sc_port();

virtual const char* kind() const;

void operator() (IF&);
void operator() (sc_port<IF,N>&);

void bind(IF&);
void bind(sc_port<IF,N>&);

int size() const;

IF* operator-> ();
const IF* operator-> () const;

 IF* operator[] (int);
const IF* operator[] (int) const;

virtual sc_interface* get_interface();
virtual const sc_interface* get_interface() const;

protected:
virtual void before_end_of_elaboration();
virtual void end_of_elaboration();
virtual void start_of_simulation();
.
Copyright © 2005 OSCI. All rights reserved. 67

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
virtual void end_of_simulation();

private:
// Disabled
sc_port(const sc_port<IF,N>&);
sc_port<IF,N>& operator= (const sc_port<IF,N>&);

};

} // namespace sc_core

5.11.3 Template parameters

The first argument to template sc_port shall be the name of an interface proper. This interface is said to be
the type of a port. A port can only be bound to a channel derived from the type of the port or to another port
or export with a type derived from the type of the port.

The second argument to template sc_port is an optional integer value. If present, this argument shall specify
the maximum number of channels to which any one instance of the port belonging to any specific module
instance may be bound. If the value of this argument is zero, the port may be bound to an arbitrary number of
channels. Each port shall be bound to at least one channel, whatever the value of the second argument.

The default value of the second argument is 1. If the value of the second argument is not 1, the port is said to
be a multiport.

NOTE—A port may be bound indirectly to a channel by being bound to another port or export. (See 4.1.3.)

5.11.4 Constraints on usage

An implementation shall derive class sc_port_base from class sc_object.

Ports shall only be instantiated during elaboration and only from within a module. It shall be an error to
instantiate a port other than within a module. It shall be an error to instantiate a port during simulation.

Every port of every module instance shall be bound at least once during elaboration. It shall be an error to
have a port remaining unbound at the end of elaboration. It shall be an error to bind a port to more channels
than the number permitted by the second template argument.

The member functions size and get_interface can be called during elaboration or simulation, whereas
operator-> and operator[] should only be called during simulation.

It is strongly recommended that a port within a given module should be bound at the point where the given
module is instantiated, that is, within the constructor from which the module is instantiated. Furthermore, it
is strongly recommended that the port should be bound to a channel or another port that is itself instantiated
within the module containing the instance of the given module, or to an export that is instantiated within a
child module. This recommendation may be violated on occasion. For example, it is convenient to bind an
otherwise unbound port from the before_end_of_elaboration callback of the port instance itself.

The constraint that a port be instantiated within a module allows for considerable flexibility. However, it is
strongly recommended that a port instance should be a data member of a module wherever practical;
otherwise, the syntax necessary for named port binding becomes somewhat arcane in that it requires more
than simple class member access using the dot operator.

Suppose a particular port is instantiated within module C, and module C is itself instantiated within module
P. It is permissible for a port to be bound at some point in the code remote from the point at which module C
68 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
is instantiated, it is permissible for a port to be bound to a channel (or another port) that is itself instantiated
in a module other than the module P, and it is permissible for a port to be bound to an export that is
instantiated somewhere other than in a child module of module P. However, all such cases would result in a
breakdown of the normal discipline of the module hierarchy, and are strongly discouraged in typical usage.

5.11.5 Constructors

sc_port();
explicit sc_port(const char*);

The constructor for class sc_port shall pass the character string argument (if such argument exists) through
to the constructor belonging to the base class sc_object to set the string name of the instance in the module
hierarchy.

The default constructor shall call function sc_gen_unique_name(“port”) to generate a unique string name
that it shall then pass through to the constructor for the base class sc_object.

NOTE—A port instance need not be given an explicit string name within the application when it is constructed.

5.11.6 kind

Member function kind shall return the string “sc_port”.

5.11.7 Named port binding

Ports can be bound either using the functions listed in this subclause for named binding, or using the
operator() from class sc_module for positional binding. An implementation may defer the completion of
port binding until a later time during elaboration because the port to which a port is bound may not yet itself
have been bound.

void operator() (IF&);
void bind(IF&);

Each of these two functions shall bind the port instance for which the function is called to the
channel instance passed as an argument to the function. The actual argument can be an export, in
which case the C++ compiler will call the implicit conversion sc_export::operator IF&.

void operator() (sc_port<IF,N>&);
void bind(sc_port<IF,N>&);

Each of these two functions shall bind the port instance for which the function is called to the port
instance passed as an argument to the function.

Example:

SC_MODULE(M)
{

sc_inout<int> P, Q, R, S; // Ports
sc_inout<int> *T; // Pointer-to-port (not a recommended coding style)

SC_CTOR(M) { T = new sc_inout<int>; }
...

};
.
Copyright © 2005 OSCI. All rights reserved. 69

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
SC_MODULE(Top)
{

sc_inout <int> A, B;
sc_signal<int> C, D;
M m; // Module instance
SC_CTOR(Top)
: m("m")
{

m.P(A); // Binds P-to-A
m.Q.bind(B); // Binds Q-to-B
m.R(C); // Binds R-to-C
m.S.bind(D); // Binds S-to-D
m.T->bind(E); // Binds T-to-E

}
...

};

5.11.8 Member functions for bound ports and port-to-port binding

The member functions described in this subclause return information about ports that have been bound
during elaboration. Hence, these member functions should only be called at the end of elaboration or during
simulation. These functions return information concerning the ordered set of channel instances to which a
particular port instance (which may or may not be a multiport) is bound.

The ordered set S of channel instances to which a given port is bound (for the purpose of defining the
semantics of the functions given in this subclause) is determined as follows.

a) When the port or export is bound to a channel instance, that channel instance shall be added to the
end of the ordered set S.

b) When the port or export is bound to an export, rules a) and b) shall be applied recursively to the
export.

c) When the port is bound to another port, rules a), b), and c) shall be applied recursively to the other
port.

NOTE—As a consequence of the above rules, a given channel instance may appear to lie at a different position in the
ordered set of channel instances when viewed from ports at different positions in the module hierarchy. For example, a
given channel instance may be the first channel instance to which a port of a parent module is bound, but the third
channel instance to which a port of a child module is bound.

5.11.8.1 size

Member function size shall return the number of channel instances to which the port instance for which it is
called has been bound.

NOTE—The value returned by size will only be different from 1 in the case of a multiport.

5.11.8.2 operator->

IF* operator-> ();
const IF* operator-> () const;

operator-> shall return a pointer to the first channel instance to which the port was bound during
elaboration.
70 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
This operator shall not be called by an application if the port is unbound. If the port is unbound, the behavior
of the implementation shall be undefined; an implementation may report an error but is not obliged to do so.

NOTE—operator-> is key to the interface method call paradigm in that it permits a process to call a member function,
defined in a channel, via a port bound to that channel.

Example:

struct iface
: virtual sc_interface
{

virtual int read() const = 0;
};

struct chan
: iface, sc_prim_channel
{

virtual int read() const;
};

int chan::read() const { ... }

SC_MODULE(modu)
{

sc_port<iface> P;

SC_CTOR(modu)
{

SC_THREAD(thread);
}
void thread()
{

int i = P->read(); // Interface method call
}

};

SC_MODULE(top)
{

modu *mo;
chan *ch;

SC_CTOR(top)
{

ch = new chan;
mo = new modu("mo");
mo->P(*ch); // Port P bound to channel *ch

}
};

5.11.8.3 operator[]

IF* operator[] (int);
.
Copyright © 2005 OSCI. All rights reserved. 71

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
const IF* operator[] (int) const;

operator[] shall return a pointer to a channel instance to which a multiport is bound. The argument
identifies which channel instance shall be returned. The instances are numbered starting from zero in the
order in which the port was bound, the first instance to which the port was bound being numbered zero.

The value of the argument shall lie in the range 0 to N-1, where N is the number of instances to which the
multiport is bound. If the value of the argument lies outside this range, the behavior of the implementation
shall be undefined; an implementation may report an error but is not obliged to do so.

Example:

class bus_interface;

class slave_interface
: virtual public sc_interface
{

public:
virtual void slave_write(int addr, int data) = 0;
virtual void slave_read (int addr, int& data) = 0;

};

class bus_channel
: public bus_interface, public sc_module
{

public:
...
sc_port<slave_interface, 0> slave_port; // Multiport for attaching slaves to bus

SC_CTOR(bus_channel)
{

SC_THREAD(action);
}

private:
void action()
{

for (int i = 0; i < slave_port.size(); i++) // Function size() returns number of slaves
slave_port[i]->slave_write(0,0); // Operator[] indexes slave port

 }
};

class memory
: public slave_interface, public sc_module
{

public:
virtual void slave_write(int addr, int data);
virtual void slave_read (int addr, int& data);
...

};

SC_MODULE(top_level)
{

bus_channel bus;
72 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
memory ram0, ram1, ram2, ram3;

SC_CTOR(top_level)
: bus("bus"), ram0("ram0"), ram1("ram1"), ram2("ram2"), ram3("ram3")
{

bus.slave_port(ram0);
bus.slave_port(ram1);
bus.slave_port(ram2);
bus.slave_port(ram3); // 1 multiport bound to 4 memory channels

}
};

5.11.8.4 get_interface

virtual sc_interface* get_interface();
virtual const sc_interface* get_interface() const;

Member function get_interface shall return a pointer to the first channel instance to which the port is bound.
If the port is unbound, a null pointer shall be returned. This member function may be called during
elaboration to test whether a port has yet been bound.

get_interface is intended for use in implementing specialized port classes derived from sc_port. In general,
an application should call operator-> instead. However, note that get_interface permits an application to
call a member function of the class of the channel to which the port is bound, even if such a function is not a
member of the interface type of the port.

Example:

SC_MODULE(Top)
{

sc_in<bool> clock;

void before_end_of_elaboration()
{

sc_interface* i_f = clock.get_interface();
sc_clock* clk = dynamic_cast<sc_clock*>(i_f);
sc_time t = clk->period(); // Call method of clock object to which port is bound
...

5.11.9 before_end_of_elaboration, end_of_elaboration, start_of_simulation,
end_of_simulation

See 4.4.
.
Copyright © 2005 OSCI. All rights reserved. 73

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.12 sc_export

5.12.1 Description

Class sc_export allows a module to provide an interface to its parent module. An export forwards interface
method calls to the channel to which the export is bound. An export defines a set of services (as identified by
the type of the export) that are provided by the module containing the export.

Providing an interface via an export is an alternative to a module simply implementing the interface. The use
of an explicit export allows a single module instance to provide multiple interfaces in a structured manner.

If a module is to call a member function belonging to a channel instance within a child module, that call
should be made via an export of the child module (see 5.12).

5.12.2 Class definition

class sc_export_base
: public sc_object { implementation-defined };

namespace sc_core {

template<class IF>
class sc_export
: public sc_export_base
{

public:
sc_export();
explicit sc_export(const char*);
virtual ~sc_export();

virtual const char* kind() const;

void operator() (IF&);
void bind(IF&);
operator IF& ();

IF* operator-> ();
const IF* operator-> () const;

virtual sc_interface* get_interface();
virtual const sc_interface* get_interface() const;

protected:
virtual void before_end_of_elaboration();
virtual void end_of_elaboration();
virtual void start_of_simulation();
virtual void end_of_simulation();

private
// Disabled
sc_export(const sc_export<IF>&);
sc_export<IF>& operator= (const sc_export<IF>&);

};
74 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
} // namespace sc_core

5.12.3 Template parameters

The argument to template sc_export shall be the name of an interface proper. This interface is said to be the
type of the export. An export can only be bound to a channel derived from the type of the export or to
another export with a type derived from the type of the export.

NOTE—An export may be bound indirectly to a channel by being bound to another export. (See 4.1.3.)

5.12.4 Constraints on usage

An implementation shall derive class sc_export_base from class sc_object.

Exports shall only be instantiated during elaboration and only from within a module.

Every export of every module instance shall be bound once and once only during elaboration. It shall be an
error to have an export remaining unbound at the end of elaboration. It shall be an error to bind an export to
more than one channel.

The member function get_interface can be called during elaboration or simulation, whereas operator->
should only be called during simulation.

It is strongly recommended that an export within a given module should be bound within that same module.
Furthermore, it is strongly recommended that the export should be bound to a channel that is itself
instantiated within the current module or implemented by the current module, or bound to an export that is
instantiated within a child module. Any other usage would result in a breakdown of the normal discipline of
the module hierarchy, and is strongly discouraged (see 5.11.4).

5.12.5 Constructors

sc_export();
explicit sc_export(const char*);

The constructor for class sc_export shall pass the character string argument (if there is one) through
to the constructor belonging to the base class sc_object in order to set the string name of the instance
in the module hierarchy.
The default constructor shall call function sc_gen_unique_name("export") in order to generate a
unique string name that it shall then pass through to the constructor for the base class sc_object.
NOTE—An export instance need not be given an explicit string name within the application when it is
constructed.

5.12.6 kind

Member function kind shall return the string "sc_export".

5.12.7 Export binding

Exports can be bound using either of the two functions defined here. The notion of positional binding is not
applicable to exports. Each of these functions shall bind the export immediately, in contrast to ports for
which the implementation may need to defer the binding.

void operator() (IF&);
.
Copyright © 2005 OSCI. All rights reserved. 75

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
void bind(IF&);
Each of these two functions shall bind the export instance for which the function is called to the
channel instance passed as an argument to the function.
NOTE—The actual argument could be an export, in which case operator IF& would be called as an implicit
conversion.

Example:

struct i_f: virtual sc_interface
{

virtual void print() = 0;
};

struct Chan: sc_channel, i_f
{

SC_CTOR(Chan) {}
void print() { std::cout << "I'm Chan, name=" << name() << std::endl; }

};

struct Caller: sc_module
{

sc_port<i_f> p;
...

};

struct Bottom: sc_module
{

sc_export<i_f> xp;
Chan ch;
SC_CTOR(Bottom) : ch("ch")
{

xp.bind(ch); // Bind export xp to channel ch
}

};

struct Middle: sc_module
{

sc_export<i_f> xp;
Bottom* b;
SC_CTOR(Middle)
{

b = new Bottom ("b");
xp.bind(b->xp); // Bind export xp to export b->xp

b->xp->print(); // Call method of export within child module
}

};

struct Top: sc_module
{

Caller* c;
Middle* m;
76 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
SC_CTOR(Top)
{

c = new Caller ("c");
m = new Middle ("m");
c->p(m->xp); // Bind port c->p to export m->xp

}
};

5.12.8 Member functions for bound exports and export-to-export binding

The member functions described in this subclause return information about exports that have been bound
during elaboration, and hence these member functions should only be called after the export has been bound
during elaboration or during simulation. These functions return information concerning the channel instance
to which a particular export instance has been bound.

It shall be an error to bind an export more than once. It shall be an error for an export to be unbound at the
end of elaboration.

The channel instance to which a given export is bound (for the purpose of defining the semantics of the
functions given in this subclause) is determined as follows:

a) If the export is bound to a channel instance, that is the channel instance in question.
b) If the export is bound to another export, rules a) and b) shall be applied recursively to the other

export.

5.12.8.1 operator-> and operator IF&

IF* operator-> ();
const IF* operator-> () const;
operator IF& ();

operator-> and operator IF& shall both return a pointer to the channel instance to which the export
was bound during elaboration.
It shall be an error for an application to call this operator if the export is unbound.

NOTES

1—operator-> is intended for use during simulation when making an interface method call via an export
instance from a parent module of the module containing the export.

2—operator IF& is intended for use during elaboration as an implicit conversion when passing an object of
class sc_export in a context that requires an sc_interface. For example, when binding a port to an export or
when adding an export to the static sensitivity of a process.

3—There is no operator[] for class sc_export, and there is no notion of a multi-export. Each export can only be
bound to a single channel.

5.12.8.2 get_interface

virtual sc_interface* get_interface();
virtual const sc_interface* get_interface() const;

Member function get_interface shall return a pointer to the channel instance to which the export is
bound. If the export is unbound, a null pointer shall be returned. This member function may be
called during elaboration to test whether an export has yet been bound.
.
Copyright © 2005 OSCI. All rights reserved. 77

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.12.9 before_end_of_elaboration, end_of_elaboration, start_of_simulation,
end_of_simulation

See clause 4.4.
78 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.13 sc_interface

5.13.1 Description

sc_interface is the abstract base class for all interfaces.

An interface proper is an abstract class derived from class sc_interface, but not derived from class
sc_object. An interface proper contains a set of pure virtual functions that shall be defined in one or more
channels derived from that interface proper. Such a channel is said to implement the interface.

NOTES

1—The term interface proper is used to distinguish an interface proper from a channel. A channel is a class derived
indirectly from class sc_interface and in that sense a channel is an interface. However, a channel is not an interface
proper.

2—As a consequence of the rules of C++, an instance of a channel derived from an interface IF (or a pointer to such an
instance) can be passed as the argument to a function with a parameter of type IF& or IF*, or a port of type IF can be
bound to such a channel.

5.13.2 Class definition

namespace sc_core {

class sc_interface
{

public:
virtual void register_port(sc_port_base& , const char*);
virtual const sc_event& default_event() const;
virtual ~sc_interface();

protected:
sc_interface();

private:
// Disabled
sc_interface(const sc_interface&);
sc_interface& operator= (const sc_interface&);

};

} // namespace sc_core

5.13.3 Constraints on usage

An application should not use class sc_interface as the direct base class for any class other than an interface
proper.

An interface proper shall obey the following rules:
a) Shall be publicly derived directly or indirectly from class sc_interface
b) If directly derived from class sc_interface, shall use the virtual specifier
c) Shall not be derived directly or indirectly from class sc_object

An interface proper should typically obey the following rules:
a) Should contain one or more pure virtual functions
.
Copyright © 2005 OSCI. All rights reserved. 79

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
b) Should not be derived from any other class that is not itself an interface proper
c) Should not contain any function declarations or function definitions
d) Should not contain any data members

NOTES

1—An interface proper may be derived from another interface proper, or from two or more other interfaces proper, thus
creating a multiple inheritance hierarchy.

2—A channel class may be derived from any number of interfaces proper.

5.13.4 register_port

virtual void register_port(sc_port_base& , const char*);

Member function register_port of a channel shall be called by the implementation whenever a port is bound
to a channel instance. The first argument shall be a reference to the port instance being bound. The second
argument shall be the value returned from the expression typeid(IF).name(), where IF is the interface type
of the port.

Member function register_port shall not be called when an export is bound to a channel.

If a port P is bound to another port Q, and port Q is in turn bound to a channel instance, the first argument to
member function register_port shall be the port P. In other words, register_port is not passed a reference to
a port on a parent module if that port is in turn bound to a port on a child module; instead, it is passed as a
reference to the port on the child module, and so on recursively down the module hierarchy.

In the case that multiple ports are bound to the same single channel instance or port instance, member
function register_port shall be called once for each port so bound.

The definition of this function in class sc_interface does nothing. An application may override this function
in a channel.

The purpose of function register_port is to enable an application to perform actions that are dependent on
port binding during elaboration, such as checking connectivity errors.

Example:

void register_port(sc_port_base& port_, const char* if_typename_)
{

std::string nm(if_typename_);
if(nm == typeid(my_interface).name())

std::cout << " channel " << name() << " bound to port " << port_.name() << std::endl;
}

5.13.5 default_event

virtual const sc_event& default_event() const;

Member function default_event shall be called by the implementation in every case where a port or channel
instance is used to define the static sensitivity of a process instance by being passed directly as an argument
to operator<< of class sc_sensitive†. In such a case the application shall override this function in the
channel in question to return a reference to an event to which the process instance will be made sensitive.
80 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
If this function is called by the implementation but not overridden by the application, the implementation
may generate a warning.

Example:

struct my_if
: virtual sc_interface
{

virtual int read() = 0;
};

class my_ch
: public my_if, public sc_module
{

public:
virtual int read() { return m_val; }
virtual const sc_event& default_event() const { return m_ev; }

private:
int m_val;
sc_event m_ev;
...

};
.
Copyright © 2005 OSCI. All rights reserved. 81

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.14 sc_prim_channel

5.14.1 Description

sc_prim_channel is the base class for all primitive channels, and provides such channels with unique access
to the update phase of the scheduler. In common with hierarchical channels, a primitive channel may
provide public member functions that can be called via the interface method call paradigm.

This standard provides a number of predefined primitive channels to model common communication
mechanisms. (See Clause 6.)

5.14.2 Class definition

namespace sc_core {

class sc_prim_channel
: public sc_object
{

public:
virtual const char* kind() const;

protected:
sc_prim_channel();
explicit sc_prim_channel(const char*);
virtual ~sc_prim_channel();

void request_update();
virtual void update();

void next_trigger();
void next_trigger(const sc_event&);
void next_trigger(sc_event_or_list†&);
void next_trigger(sc_event_and_list†&);
void next_trigger(const sc_time&);
void next_trigger(double , sc_time_unit);
void next_trigger(const sc_time& , const sc_event&);
void next_trigger(double , sc_time_unit , const sc_event&);
void next_trigger(const sc_time& , sc_event_or_list†&);
void next_trigger(double , sc_time_unit , sc_event_or_list†&);
void next_trigger(const sc_time& , sc_event_and_list†&);
void next_trigger(double , sc_time_unit , sc_event_and_list†&);

void wait();
void wait(int);
void wait(const sc_event&);
void wait(sc_event_or_list†&);
void wait(sc_event_and_list†&);
void wait(const sc_time&);
void wait(double , sc_time_unit);
void wait(const sc_time& , const sc_event&);
void wait(double , sc_time_unit , const sc_event&);
void wait(const sc_time& , sc_event_or_list†&);
void wait(double , sc_time_unit , sc_event_or_list†&);
void wait(const sc_time& , sc_event_and_list†&);
82 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
void wait(double , sc_time_unit , sc_event_and_list†&);

void wait (sc_process_handle&);
virtual void before_end_of_elaboration();
virtual void end_of_elaboration();
virtual void start_of_simulation();
virtual void end_of_simulation();

private:
// Disabled
sc_prim_channel(const sc_prim_channel&);
sc_prim_channel& operator= (const sc_prim_channel&);

};

} // namespace sc_core

5.14.3 Constraints on usage

Objects of class sc_prim_channel can only be constructed during elaboration. It shall be an error to
instantiate a primitive channel during simulation.

A primitive channel shall implement one or more interfaces.

NOTES

1—Because the constructors are protected, class sc_prim_channel cannot be instantiated directly, but may be used as
a base class for a primitive channel.

2—A primitive channel should be publicly derived from class sc_prim_channel.

5.14.4 Constructors

sc_prim_channel();
explicit sc_prim_channel(const char*);

The constructor for class sc_prim_channel shall pass the character string argument (if such argument
exists) through to the constructor belonging to the base class sc_object to set the string name of the instance
in the module hierarchy.

NOTE - A class derived from class sc_prim_channel is not obliged to have a constructor, in which case the
default constructor for class sc_object will generate a unique string name. As a consequence, a primitive
channel instance need not be given an explicit string name within the application when it is constructed.

5.14.5 kind

Member function kind shall return the string "sc_prim_channel".

5.14.6 request_update and update

void request_update();
Member function request_update shall cause the scheduler to queue an update request for the
specific primitive channel instance making the call. (See 4.2.1.3.)

virtual void update();
.
Copyright © 2005 OSCI. All rights reserved. 83

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Member function update shall be called back by the scheduler during the update phase in response
to a call to request_update. An application may override this member function in a primitive
channel. The definition of this function in class sc_prim_channel itself does nothing.
When overridden in a derived class, member function update shall not perform any of the following
actions:
1) Call any member function of class sc_prim_channel with the exception of member function

update itself if overridden within a base class of the current object
2) Call member function notify() of class sc_event with no argument to create an immediate noti-

fication
If the application violates the two rules above, the behavior of the implementation shall be
undefined.

Member function update should not change the state of any storage except for data members of the
current object. Doing so may result in non-deterministic behavior.
Member function update should not read the state of any primitive channel instance other than the
current object. Doing so may result in non-deterministic behavior.
Member function update may call function sc_spawn to create a dynamic process instance. Such a
process shall not become runnable until the next evaluation phase.

NOTES

1—The purpose of the member functions request_update and update is to permit simultaneous requests to
a channel made during the evaluation phase to be resolved or arbitrated during the update phase. The nature of
the arbitration is the responsibility of the application; for example, the behavior of member function update
may be deterministic or random.

2—update will typically only read and modify data members of the current object and create delta
notifications.

5.14.7 next_trigger and wait

The behavior of the member functions wait and next_trigger of class sc_prim_channel is identical to that
of the member functions of class sc_module with the same function names and signatures. Aside from the
fact that they are members of different classes and so have different scopes, the restrictions concerning the
context in which the member functions may be called is also identical. For example, the member function
next_trigger shall only be called from a method process.

5.14.8 before_end_of_elaboration, end_of_elaboration, start_of_simulation,
end_of_simulation

See 4.4.

Example:

struct my_if
: virtual sc_interface // An interface proper
{

virtual int read() = 0;
virtual void write(int) = 0;

};

struct my_prim
: sc_prim_channel, my_if // A primitive channel
84 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
{
my_prim() // Default constructor
:

sc_prim_channel(sc_gen_unique_name("my_prim")),
m_req(false),
m_written(false),
m_cur_val(0) {}

virtual void write(int val)
{

if (!m_req) // Only keeps the 1st value written in any one delta
{

m_new_val = val;
request_update(); // Schedules an update request
m_req = true;

}
}

virtual void update() // Called back by the scheduler in the update phase
{

m_cur_val = m_new_val;
m_req = false;
m_written = true;
m_write_event.notify(SC_ZERO_TIME); // A delta notification

}

virtual int read()
{

if (!m_written) wait(m_write_event); // Blocked until update() is called
m_written = false;
return m_cur_val;

}

bool m_req, m_written;
sc_event m_write_event;
int m_new_val, m_cur_val;

};
.
Copyright © 2005 OSCI. All rights reserved. 85

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.15 sc_object

5.15.1 Description

Class sc_object is the common base class for classes sc_module, sc_port, and sc_prim_channel, and for
the implementation-defined classes associated with static and dynamic process instances. The set of
sc_objects shall be organized into an object hierarchy where each sc_object has no more than one parent
but may have multiple siblings and multiple children. Only module objects and process objects can have
children.

An sc_object is a child of a module instance if and only if that object lies within the module instance as
defined in 3.1.4. An sc_object is a child of a process instance if and only if that object was created during
the execution of the function associated with that process instance. Object P is a parent of object C if and
only if C is a child of P.

An sc_object that has no parent object is said to be a top-level object. Module instances, dynamic process
instances and objects of an application-defined class derived from class sc_object may be top-level objects.

Each call to function sc_spawn shall create a dynamic process instance that is a child of the caller. The
parent of the dynamic process instance so created may be another dynamic process instance, a static process
instance, a module instance, or the dynamic process instance may be a top-level object.

Each sc_object shall have a unique hierarchical name reflecting its position in the object hierarchy.

Attributes may be added to each sc_object.

NOTE—An implementation may permit multiple top-level sc_objects. (See 4.3.)

5.15.2 Class definition

namespace sc_core {

class sc_object
{

public:
const char* name() const;
const char* basename() const;
virtual const char* kind() const;

virtual void print(std::ostream& = std::cout) const;
virtual void dump(std::ostream& = std::cout) const;

virtual const std::vector<sc_object*>& get_child_objects() const;
const sc_object* get_parent_object() const;

bool add_attribute(sc_attr_base&);
sc_attr_base* get_attribute(const std::string&);
const sc_attr_base* get_attribute(const std::string&) const;
sc_attr_base* remove_attribute(const std::string&);
void remove_all_attributes();
int num_attributes() const;
sc_attr_cltn& attr_cltn();
const sc_attr_cltn& attr_cltn() const;
86 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
protected:
sc_object();
sc_object(const char*);
virtual ~sc_object();

};

const std::vector<sc_object*>& sc_get_top_level_objects();
const sc_object* sc_find_object(const char*);

} // namespace sc_core

5.15.3 Constraints on usage

An application may use class sc_object as a base class for other classes besides modules, ports, primitive
channels, and processes. An application may access the hierarchical name of such an object, or may add
attributes to such an object.

An application shall not define a class that has two or more base class sub-objects of class sc_object.

Objects of class sc_object may be instantiated during elaboration or may be instantiated dynamically during
simulation. However, modules, ports, and primitive channels can only be instantiated during elaboration. It
is permitted to create a channel that is neither a hierarchical channel nor a primitive channel but is
nonetheless derived from class sc_object, and to instantiate such a channel either during elaboration or
dynamically during simulation. Portless channel access is permitted for any channel, but a port or export
cannot be bound to a channel that is instantiated dynamically during simulation.

NOTES

1—Because the constructors are protected, class sc_object cannot be instantiated directly.

2—Since the classes having sc_object as a direct base class (that is, sc_module, sc_port, and sc_prim_channel)
have class sc_object as a non-virtual base class, any class derived from these classes shall have at most one direct base
class derived from class sc_object. In other words, multiple inheritance from the classes derived from class sc_object
is not permitted.

5.15.4 Constructors and hierarchical names

sc_object();
sc_object(const char*);

Both constructors shall register the sc_object as part of the object hierarchy and shall construct a
hierarchical name for the object using the string name passed as an argument. Calling the constructor
sc_object(const char*) with an empty string shall have the same behavior as the default constructor, that is,
the string name shall be set to "object".

A hierarchical name shall be composed of a set of string names separated by the period character '.', starting
with the string name of a top-level sc_object instance, and including the string name of each module
instance or process instance descending down through the object hierarchy until the current sc_object is
reached. The hierarchical name shall end with the string name of the sc_object itself.

Hierarchical names are case-sensitive.

It shall be an error if a string name includes the period character '.' or any white space characters. It is
strongly recommended that an application limit the character set of a string name to the following:
.
Copyright © 2005 OSCI. All rights reserved. 87

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
1) The lowercase letters a-z
2) The uppercase letters A-Z
3) The decimal digits 0-9
4) The underscore character _

An implementation may generate a warning if a string name contains characters outside this set, but is not
obliged to do so.

There shall be a single global namespace for hierarchical names. Each sc_object shall have a unique non-
empty hierarchical name. An implementation shall not add any names to this namespace other than the
hierarchical names of sc_objects explicitly constructed by an application.

The constructor shall build a hierarchical name from the string name (either passed in as an argument or the
default name "object") and test whether that hierarchical name is unique. If it is unique, that hierarchical
name shall become the hierarchical name of the object. If not, the constructor shall call function
sc_gen_unique_name passing the string name as a seed, shall use the value returned as a replacement for
the string name, and shall repeat this process until a unique hierarchical name is generated.

If function sc_gen_unique_name is called more than once in the course of constructing any given
sc_object, the choice of seed passed to sc_gen_unique_name on the second and subsequent calls shall be
implementation-defined but shall in any case be either the string name passed as the seed on the first such
call or shall be one of the string names returned from sc_gen_unique_name in the course of constructing
the given sc_object. In other words, the final string name shall have the original string name as a prefix.

If the constructor needs to substitute a new string name in place of the original string name as the result of a
name clash, the constructor shall generate a single warning.

NOTE—If an implementation were to create internal objects of class sc_object, the implementation would be obliged by
the rules of this subclause to exclude those objects from the object hierarchy and from the namespace of hierarchical
names. This would necessitate an extension to the semantics of class sc_object, and the implementation would be
obliged to make such an extension transparent to the application.

5.15.5 name, basename, and kind

const char* name() const;
Member function name shall return the hierarchical name of the sc_object instance in the object
hierarchy.

const char* basename() const;
Member function basename shall return the string name of the sc_object instance. This is the string
name created when the sc_object instance was constructed.

virtual const char* kind() const;
Member function kind returns a character string identifying the kind of the sc_object. Member
function kind of class sc_object shall return the string “sc_object”. Every class that is part of the
implementation and that is derived from class sc_object shall override member function kind to
return an appropriate string.

Example:

#include <systemc.h>
88 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
SC_MODULE(Mod)
{

sc_port<sc_signal_in_if<int> > p;

SC_CTOR(Mod) // p.name() returns "top.mod.p"
: p("p") // p.basename() returns "p"
{} // p.kind() returns "sc_port"

};

SC_MODULE(Top)
{

Mod *mod; // mod->name() returns "top.mod"
sc_signal<int> sig; // sig.name() returns "top.sig"

SC_CTOR(Top)
: sig("sig")
{
mod = new Mod("mod");
mod->p(sig);
}

};

int sc_main(int argc, char* argv[])
{

Top top("top"); // top.name() returns "top"
sc_start();
return 0;

}

5.15.6 print and dump

virtual void print(std::ostream& = std::cout) const;
Member function print shall print the character string returned by member function name to the
stream passed as an argument. No additional characters shall be printed.

virtual void dump(std::ostream& = std::cout) const;
Member function dump shall print at least the name and the kind of the sc_object to the stream
passed as an argument. The formatting can be implementation-depended. The purpose of dump is to
allow an implementation to dump out diagnostic information to help the user debug an application.

5.15.7 Functions for object hierarchy traversal

The four functions in this subclause return information that supports the traversal of the object hierarchy. An
implementation shall allow each of these four functions to be called at any stage during elaboration or
simulation. If called before elaboration is complete, they shall return information concerning the partially
constructed object hierarchy as it exists at the time the functions are called. In other words, a function shall
return pointers to any objects that have been constructed before the time the function is called, but will
exclude any objects constructed after the function is called.

virtual const std::vector<sc_object*>& get_child_objects() const;
Member function get_child_objects shall return a std::vector containing a pointer to every instance
of class sc_object that is a child of the current sc_object in the object hierarchy. The virtual function
.
Copyright © 2005 OSCI. All rights reserved. 89

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_object::get_child_objects shall return an empty vector, but shall be overridden by the
implementation in those classes derived from class sc_object that do have children, that is, class
sc_module and the implementation-defined classes associated with static and dynamic process
instances.

const sc_object* get_parent_object() const;
Member function get_parent_object shall return a pointer to the sc_object that is the parent of the
current object in the object hierarchy. If the current object is a top-level object, member function
get_parent_object shall return the null pointer.

const std::vector<sc_object*>& sc_get_top_level_objects();
Function sc_get_top_level_objects shall return a std::vector containing pointers to all of the top-
level sc_objects.

const sc_object* sc_find_object(const char*);
Function sc_find_object shall return a pointer to the sc_object that has a hierarchical name that
exactly matches the value of the string argument, or shall return the null pointer if there is no
sc_object having a matching name.

Examples:

void scan_hierarchy(sc_object* obj) // Traverse the entire object subhierarchy
// below a given object

{
std::vector<sc_object*> children = obj->get_child_objects();
for (unsigned i = 0; i < children.size(); i++)

if (children[i])
scan_hierarchy(children[i]);

}

std::vector<sc_object*> tops = sc_get_top_level_objects();
for (unsigned i = 0; i < tops.size(); i++)

if (tops[i])
scan_hierarchy(tops[i]); // Traverse the object hierarchy below

// each top-level object

sc_object* obj = sc_find_object("foo.foobar"); // Find an object given its hierarchical name

sc_module* m;
if (m = dynamic_cast<sc_module*>(obj)) // Test whether the given object is a module
 ... // The given object is a module

sc_object* parent = obj->get_parent_object(); // Get the parent of the given object
if (parent) // parent is a null pointer for a top-level object
 std::cout << parent->name() << " " << parent->kind();// Print the name and kind

5.15.8 Member functions for attributes

bool add_attribute(sc_attr_base&);
Member function add_attribute shall attempt to attach to the object of class sc_object the attribute
passed as an argument. If an attribute having the same name as the new attribute is already attached
90 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
to this object, member function add_attribute shall not attach the new attribute and shall return the
value false. Otherwise, member function add_attribute shall attach the new attribute and shall
return the value true. The argument should be an object of class sc_attribute, not sc_attr_base.
The lifetime of an attribute shall extend until the attribute has been completely detached from any
object. If an application deletes an attribute that is still attached to an object, the behavior of the
implementation shall be undefined.

sc_attr_base* get_attribute(const std::string&);
const sc_attr_base* get_attribute(const std::string&) const;

Member function get_attribute shall attempt to retrieve from the object of class sc_object an
attribute having the name passed as an argument. If an attribute with the given name is attached to
this object, member function get_attribute shall return a pointer to that attribute. Otherwise,
member function get_attribute shall return the null pointer.

sc_attr_base* remove_attribute(const std::string&);
Member function remove_attribute shall attempt to remove from the object of class sc_object an
attribute having the name passed as an argument. If an attribute with the given name is attached to
this object, member function remove_attribute shall return a pointer to that attribute and remove
the attribute from this object. Otherwise, member function remove_attribute shall return the null
pointer.

void remove_all_attributes();
Member function remove_all_attributes shall remove all attributes from the object of class
sc_object.

int num_attributes() const;
Member function num_attributes shall return the number of attributes attached to the object of
class sc_object.

sc_attr_cltn& attr_cltn();
const sc_attr_cltn& attr_cltn() const;

Member function attr_cltn shall return the collection of attributes attached to the object of class
sc_object. (See 5.18.)
NOTE - A pointer returned from function get_attribute shall be cast to type sc_attribute<T>* in order to
access data member value.

Example:

sc_signal<int> sig;
...
// Add an attribute to an sc_object
sc_attribute<int> a("number", 1);
sig.add_attribute(a);

// Retrieve the attribute by name and modify the value
sc_attribute<int>* ap;
ap = (sc_attribute<int>*)sig.get_attribute("number");
++ ap->value;
.
Copyright © 2005 OSCI. All rights reserved. 91

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.16 sc_attr_base

5.16.1 Description

Class sc_attr_base is the base class for attributes, storing only the name of the attribute. The name is used as
a key when retrieving an attribute from an object. Every attribute attached to a specific object shall have a
unique name, but two or more attributes with identical names may be attached to distinct objects.

5.16.2 Class definition

namespace sc_core {

class sc_attr_base
{

public:
sc_attr_base(const std::string&);
sc_attr_base(const sc_attr_base&);
virtual ~sc_attr_base();

const std::string& name() const;

private:
// Disabled
sc_attr_base();
sc_attr_base& operator= (const sc_attr_base&);

};

} // namespace sc_core

5.16.3 Member functions

The constructors for class sc_attr_base shall set the name of the attribute to the string passed as an argument
to the constructor.

Member function name shall return the name of the attribute.
92 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
5.17 sc_attribute

5.17.1 Description

Class sc_attribute stores the value of an attribute. It is derived from class sc_attr_base, which stores the
name of the attribute. An attribute can be attached to an object of class sc_object.

5.17.2 Class definition

namespace sc_core {

template <class T>
class sc_attribute
: public sc_attr_base
{

public:
sc_attribute(const std::string&);
sc_attribute(const std::string&, const T&);
sc_attribute(const sc_attribute<T>&);
virtual ~sc_attribute();

public:
T value;

private:
// Disabled
sc_attribute();
sc_attribute<T>& operator= (const sc_attribute<T>&);

};

} // namespace sc_core

5.17.3 Template parameters

The argument passed to template sc_attribute shall be a type having a default constructor and a copy
constructor.

5.17.4 Member functions and data members

The constructors shall set the name and value of the attribute using the name (of type std::string) and value
(of type T) passed as arguments to the constructor. If no value is passed to the constructor, the default
constructor (of type T) shall be called to construct the value.

Data member value is the value of the attribute. An application may read or assign this public data member.
.
Copyright © 2005 OSCI. All rights reserved. 93

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5.18 sc_attr_cltn

5.18.1 Description

Class sc_attr_cltn is a container class for attributes, as used in the implementation of class sc_object. It
provides iterators for traversing all of the attributes in an attribute collection.

5.18.2 Class definition

namespace sc_core {

class sc_attr_cltn
{

public:
typedef sc_attr_base* elem_type;
typedef elem_type* iterator;
typedef const elem_type* const_iterator;

iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

// Other members
Implementation-defined

private:
// Disabled
sc_attr_cltn(const sc_attr_cltn&);
sc_attr_cltn& operator= (const sc_attr_cltn&);

};

} // namespace sc_core

5.18.3 Constraints on usage

An application shall not explicitly create an object of class sc_attr_cltn. An application may use the
iterators to traverse the attribute collection returned by member function attr_cltn of class sc_object.

An implementation is only obliged to keep an attribute collection valid until a new attribute is added to the
sc_object or an existing attribute is deleted from the sc_object in question. Hence an application should
traverse the attribute collection immediately on return from member function attr_cltn.

5.18.4 Iterators

iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

Member function begin shall return a pointer to the first element of the collection. Each element of
the collection is itself a pointer to an attribute.
94 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Member function end shall return a pointer to the element following the last element of the
collection.

Example:

sc_signal<int> sig;
...

// Iterate through all the attributes of an sc_object
sc_attr_cltn& c = sig.attr_cltn();
for (sc_attr_cltn::iterator i = c.begin(); i < c.end(); i++)
{

ap = (sc_attribute<int>*)(*i);
std::cout << ap->name() << "=" << ap->value << std::endl;

}

.
Copyright © 2005 OSCI. All rights reserved. 95

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6. Predefined channel class definitions

6.1 sc_signal_in_if

6.1.1 Description

Class sc_signal_in_if is an interface proper, used by predefined channels including sc_signal and sc_clock.
Interface sc_signal_in_if gives read access to the value of a channel.

6.1.2 Class definition

namespace sc_core {

template <class T>
class sc_signal_in_if
: virtual public sc_interface
{

public:
virtual const T& read() const = 0;
virtual const sc_event& value_changed_event() const = 0;
virtual bool event() const = 0;

protected:
sc_signal_in_if();

private:
// Disabled
sc_signal_in_if(const sc_signal_in_if<T>&);
sc_signal_in_if<T>& operator= (const sc_signal_in_if<T>&);

};

} // namespace sc_core

6.1.3 Member functions

The member functions described below are all pure virtual functions. The descriptions refer to the expected
definitions of the functions when overridden in a channel that implements this interface. The precise
semantics will be channel-specific.

Member function read shall return a reference to the current value of the channel.

Member function value_changed_event shall return a reference to an event that is notified whenever the
value of the channel is written or modified.

Member function event shall return the value true if and only if the value of the channel was written or
modified in the immediately preceding delta cycle.

NOTE - The value of the channel may have been modified in the evaluation phase or in the update phase of the
immediately preceding delta cycle, depending on whether it is a hierarchical channel or a primitive channel (for
example, sc_signal).
96 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.2 sc_signal_in_if<bool> and sc_signal_in_if<sc_dt::sc_logic>

6.2.1 Description

Classes sc_signal_in_if<bool> and sc_signal_in_if<sc_dt::sc_logic> are interfaces which provide
additional member functions appropriate for two-valued signals.

6.2.2 Class definition

namespace sc_core {

template <>
class sc_signal_in_if<bool>
: virtual public sc_interface
{

public:
virtual const T& read() const = 0;

virtual const sc_event& value_changed_event() const = 0;
virtual const sc_event& posedge_event() const = 0;
virtual const sc_event& negedge_event() const = 0;

virtual bool event() const = 0;
virtual bool posedge() const = 0;
virtual bool negedge() const = 0;

protected:
sc_signal_in_if();

private:
// Disabled
sc_signal_in_if(const sc_signal_in_if<bool>&);
sc_signal_in_if<bool>& operator= (const sc_signal_in_if<bool>&);

};

template <>
class sc_signal_in_if<sc_dt::sc_logic>
: virtual public sc_interface
{

public:
virtual const T& read() const = 0;

virtual const sc_event& value_changed_event() const = 0;
virtual const sc_event& posedge_event() const = 0;
virtual const sc_event& negedge_event() const = 0;

virtual bool event() const = 0;
virtual bool posedge() const = 0;
virtual bool negedge() const = 0;

protected:
sc_signal_in_if();
.
Copyright © 2005 OSCI. All rights reserved. 97

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
private:
// Disabled
sc_signal_in_if(const sc_signal_in_if<sc_dt::sc_logic>&);
sc_signal_in_if<sc_dt::sc_logic>& operator= (const sc_signal_in_if<sc_dt::sc_logic>&);

};

} // namespace sc_core

6.2.3 Member functions

The following list is incomplete. For the remaining member functions, refer to the definitions of the member
functions for class sc_signal_in_if (see 6.1).

Member function posedge_event shall return a reference to an event that is notified whenever the value of
the channel (as returned by member function read) changes and the new value of the channel is true or '1'.

Member function negedge_event shall return a reference to an event that is notified whenever the value of
the channel (as returned by member function read) changes and the new value of the channel is false or '0'.

Member function posedge shall return the value true if and only if the value of the channel changed in the
update phase of the immediately preceding delta cycle and the new value of the channel is true or '1'.

Member function negedge shall return the value true if and only if the value of the channel changed in the
update phase of the immediately preceding delta cycle and the new value of the channel is false or '0'.
98 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.3 sc_signal_inout_if

6.3.1 Description

Class sc_signal_inout_if is an interface proper, used by predefined channels including sc_signal. Interface
sc_signal_inout_if gives both read and write access to the value of a signal.

6.3.2 Class definition

namespace sc_core {

template <class T>
class sc_signal_inout_if
: public sc_signal_in_if<T>
{

public:
virtual void write(const T&) = 0;

protected:
sc_signal_inout_if();

private:
// Disabled
sc_signal_inout_if(const sc_signal_inout_if<T>&);
sc_signal_inout_if<T>& operator= (const sc_signal_inout_if<T>&);

};

} // namespace sc_core

6.3.3 write

Member function write shall modify the value of the channel such that the channel appears to have the new
value (as returned by member function read) in the next delta cycle, but not before then. The new value is
passed as an argument to the function.
.
Copyright © 2005 OSCI. All rights reserved. 99

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.4 sc_signal

6.4.1 Description

Class sc_signal is a predefined primitive channel intended to model the behavior of a single piece of wire
carrying a digital electronic signal.

6.4.2 Class definition

namespace sc_core {

template <class T>
class sc_signal
: public sc_signal_inout_if<T>, public sc_prim_channel
{

public:
sc_signal();
explicit sc_signal(const char*);
virtual ~sc_signal();

virtual void register_port(sc_port_base&, const char*);

virtual const T& read() const;
operator const T& () const;

virtual void write(const T&);
sc_signal<T>& operator= (const T&);
sc_signal<T>& operator= (const sc_signal<T>&);

virtual const sc_event& default_event() const;
virtual const sc_event& value_changed_event() const;
virtual bool event() const;

virtual void print(std::ostream& = std::cout) const;
virtual void dump(std::ostream& = std::cout) const;
virtual const char* kind() const;

protected:
virtual void update();

private:
// Disabled
sc_signal(const sc_signal<T>&);

};

template <class T>
inline std::ostream& operator<< (std::ostream&, const sc_signal<T>&);

} // namespace sc_core
100 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.4.3 Template parameter T

The argument passed to template sc_signal shall be either a C++ type for which the predefined semantics for
assignment and equality are adequate (for example, a fundamental type or a pointer), or a type T that obeys
each of the following rules:

a) The following equality operator shall be defined for the type T, and should return the value true if
and only if the two values being compared are to be regarded as indistinguishable for the purposes of
signal propagation (that is, an event occurs only if the values are different). The implementation
shall use this operator within the implementation of the signal to determine whether an event has
occurred.

bool T::operator== (const T&);

b) The following stream operator shall be defined, and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is undefined by this standard. The implementation shall use this operator in implementing
the behavior of the member functions print and dump.

std::ostream& operator<< (std::ostream&, const T&);

c) If the default assignment semantics are inadequate (in the sense given in this subclause), the follow-
ing assignment operator should be defined for the type T. In either case (default assignment or
explicit operator), the semantics of assignment should be sufficient to assign the state of an object of
type T such that the value of the left operand is indistinguishable from the value of the right operand
using the equality operator mentioned in this subclause. The implementation shall use this assign-
ment operator within the implementation of the signal when assigning or copying values of type T.

const T& operator= (const T&);

d) If any constructor for type T exists, a default constructor for type T shall be defined.

e) If the class template is used to define a signal to which a port of type sc_in, sc_inout, or sc_out is
bound, the following function shall be defined:

void sc_trace(sc_trace_file*, const T&, const std::string&);

NOTES

1—The equality and assignment operators are not obliged to compare and assign the complete state of the object,
although they should typically do so. For example, diagnostic information may be associated with an object that is not to
be propagated via the signal.

2—The SystemC data types proper (sc_dt::sc_int, sc_dt::sc_logic, and so forth) all conform to the above
rule set.

3—It is illegal to pass class sc_module (for example) as a template argument to class sc_signal, because
sc_module::operator== does not exist. It is legal to pass type sc_module* via a signal, although this would
be regarded as an abuse of the module hierarchy and thus bad practice.

6.4.4 Reading and writing signals

A signal is read by calling member function read or operator T& ().
.
Copyright © 2005 OSCI. All rights reserved. 101

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
A signal is written by calling member function write or operator= of the given signal object. It shall be an
error to write a given signal instance from more than one process instance. A signal may be written during
elaboration to initialize the value of the signal.

Signals are typically read and written during the evaluation phase, but the value of the signal is only
modified during the subsequent update phase. If and only if the value of the signal actually changes as a
result of being written, an event (the value-changed event) shall be notified in the delta notification phase
that immediately follows.

If a given signal is written on multiple occasions within a particular evaluation phase, the value to which the
signal changes in the immediately following update phase shall be determined by the most recent write, that
is, the last write wins.

NOTES

1—The specialized ports sc_inout and sc_out have a member function initialize for the purpose of initializing the
value of a signal during elaboration.

2—If the value of a signal is read during elaboration, the value returned will be the initial value of the signal as created
by the default constructor for type T.

3—If a given signal is written and read during the same evaluation phase, the old value will be read. The value written
will not be available to be read until the subsequent evaluation phase.

6.4.5 Constructors

sc_signal();
This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(sc_gen_unique_name("signal"))

explicit sc_signal(const char* name_);
This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(name_)

Both constructors shall initialize the value of the signal by calling the default constructor for type T from
their initializer lists.

6.4.6 register_port

virtual void register_port(sc_port_base&, const char*);
Member function register_port of class sc_interface shall be overridden in class sc_signal, and
shall perform an error check. It is an error if more than one port of type sc_signal_inout_if is bound
to a given signal.

6.4.7 Member functions for reading

virtual const T& read() const;
Member function read shall return a reference to the current value of the signal, but shall not modify
the state of the signal.

operator const T& () const;
102 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
operator T& () shall return a reference to the current value of the signal (as returned by read).

6.4.8 Member functions for writing

virtual void write(const T&);
Member function write shall modify the value of the signal such that the signal appears to have the
new value (as returned by member function read) in the next delta cycle, but not before then. This
shall be accomplished using the update request mechanism of the primitive channel. The new value
is passed as an argument to member function write.

operator=
The behavior of operator= shall be equivalent to the following definitions:

sc_signal<T>& operator= (const T& arg) { write(arg); return *this; }
sc_signal<T>& operator= (const sc_signal<T>& arg) { write(arg.read()); return *this; }

virtual void update();
Member function update of class sc_prim_channel shall be overridden by the implementation in
class sc_signal to implement the updating of the signal value that occurs as a result of the signal
being written. Member function update shall modify the current value of the signal such that it gets
the new value (as passed as an argument to member function write), and shall cause the value-
changed event to be notified in the immediately following delta notification phase if the value of the
signal has changed.
NOTE—Member function update is called by the scheduler but typically is not called by an application.
However, member function update of class sc_signal may be called from member function update of a class
derived from class sc_signal.

6.4.9 Member functions for events

virtual const sc_event& default_event() const;
virtual const sc_event& value_changed_event() const;

Member functions default_event and value_changed_event shall both return a reference to the
value-changed event.

virtual bool event() const;
Member function event shall return the value true if and only if the value of the signal changed in
the update phase of the immediately preceding delta cycle; that is, a member function write or
operator= was called in the immediately preceding evaluation phase, and the value written or
assigned was different from the previous value of the signal.
NOTE - Member function event returns true if the process was executed as a direct result of the value-
changed event being notified.

6.4.10 Diagnostic member functions

virtual void print(std::ostream& = std::cout) const;
Member function print shall print the current value of the signal to the stream passed as an
argument by calling operator<< (std::ostream&, T&). No additional characters shall be printed.

virtual void dump(std::ostream& = std::cout) const;
.
Copyright © 2005 OSCI. All rights reserved. 103

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Member function dump shall print at least the hierarchical name, the current value, and the new
value of the signal to the stream passed as an argument. The formatting shall be implementation-
defined.

virtual const char* kind() const;
Member function kind shall return the string "sc_signal".

6.4.11 Operator<<

template <class T>
inline std::ostream& operator<< (std::ostream&, const sc_ signal<T>&);

operator<< shall print the current value of the signal passed as the second argument to the stream
passed as the first argument.

Example:

SC_MODULE(M)
{

sc_signal<int> sig;

SC_CTOR(M)
{

SC_THREAD(writer);
SC_THREAD(reader);
SC_METHOD(writer2);
sensitive << sig; // Sensitive to the default event

}
void writer()
{

wait(50, SC_NS);
sig.write(1);
sig.write(2);
wait(50, SC_NS);
sig = 3; // Calls operator= (const T&)

}
void reader()
{

wait(sig.value_changed_event());
int i = sig.read(); // Reads a value of 2
wait(sig.value_changed_event());
i = sig; // Calls operator const T& () which returns a value of 3

}
void writer2()
{

sig.write(sig + 1); // An error. A signal shall not have multiple writers
}

};

NOTE—The following classes are related to class sc_signal:

— The classes sc_signal<bool> and sc_signal<sc_dt::sc_logic> provide additional member functions
appropriate for two-valued signals.
104 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
— The class sc_buffer is derived from sc_signal, but differs in that the value-changed event is notified
whenever the buffer is written whether or not the value of the buffer has changed.

— The class sc_signal_resolved allows multiple writers.
— The classes sc_in, sc_out, and sc_inout are specialized ports that may be bound to signals, and

which provide functions to conveniently access the member functions of the signal via the port.
.
Copyright © 2005 OSCI. All rights reserved. 105

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.5 sc_signal<bool> and sc_signal<sc_dt::sc_logic>

6.5.1 Description

Classes sc_signal<bool> and sc_signal<sc_dt::sc_logic> are predefined primitive channels which provide
additional member functions appropriate for two-valued signals.

6.5.2 Class definition

namespace sc_core {

template <>
class sc_signal<bool>
: public sc_signal_inout_if<bool>, public sc_prim_channel
{

public:
sc_signal();
explicit sc_signal(const char*);
virtual ~sc_signal();

virtual void register_port(sc_port_base&, const char*);

virtual const bool& read() const;
operator const bool& () const;

virtual void write(const bool&);
sc_signal<bool>& operator= (const bool&);
sc_signal<bool>& operator= (const sc_signal<bool>&);

 virtual const sc_event& default_event() const;

virtual const sc_event& value_changed_event() const;
virtual const sc_event& posedge_event() const;
virtual const sc_event& negedge_event() const;

virtual bool event() const;
virtual bool posedge() const;
virtual bool negedge() const;

virtual void print(std::ostream& = std::cout) const;
virtual void dump(std::ostream& = std::cout) const;
virtual const char* kind() const;

protected:
virtual void update();

private:
// Disabled
sc_signal(const sc_signal<bool>&);

};

template <>
class sc_signal<sc_dt::sc_logic>
106 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
: public sc_signal_inout_if<sc_dt::sc_logic>, public sc_prim_channel
{

public:
sc_signal();
explicit sc_signal(const char*);
virtual ~sc_signal();

virtual void register_port(sc_port_base&, const char*);

virtual const sc_dt::sc_logic& read() const;
operator const sc_dt::sc_logic& () const;

virtual void write(const sc_dt::sc_logic&);
sc_signal<sc_dt::sc_logic>& operator= (const sc_dt::sc_logic&);
sc_signal<sc_dt::sc_logic>& operator= (const sc_signal<sc_dt::sc_logic>&);

virtual const sc_event& default_event() const;

virtual const sc_event& value_changed_event() const;
virtual const sc_event& posedge_event() const;
virtual const sc_event& negedge_event() const;

virtual bool event() const;
virtual bool posedge() const;
virtual bool negedge() const;

virtual void print(std::ostream& = std::cout) const;
virtual void dump(std::ostream& = std::cout) const;
virtual const char* kind() const;

protected:
virtual void update();

private:
// Disabled
sc_signal(const sc_signal<sc_dt::sc_logic>&);

};

} // namespace sc_core

6.5.3 Member functions

The following list is incomplete. For the remaining member functions, refer to the definitions of the member
functions for class sc_signal (see 6.4).

virtual const sc_event& posedge_event () const;
Member function posedge_event shall return a reference to an event that is notified whenever the
value of the signal (as returned by member function read) changes and the new value of the signal is
true or ‘1’.

virtual const sc_event& negedge_event() const;
.
Copyright © 2005 OSCI. All rights reserved. 107

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Member function negedge_event shall return a reference to an event that is notified whenever the
value of the signal (as returned by member function read) changes and the new value of the signal is
false or '0'.

virtual bool posedge () const;
Member function posedge shall return the value true if and only if the value of the signal changed in
the update phase of the immediately preceding delta cycle and the new value of the signal is true or
'1'.

virtual bool negedge() const;
Member function negedge shall return the value true if and only if the value of the signal changed
in the update phase of the immediately preceding delta cycle and the new value of the signal is false
or '0'.

Example:

sc_signal<bool> clk;
...
void thread_process()
{

for (;;)
{

if (clk.posedge())
wait(clk.negedge_event());

...
}

}

108 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.6 sc_buffer

6.6.1 Description

Class sc_buffer is a predefined primitive channel derived from class sc_signal. Class sc_buffer differs from
class sc_signal in that a value-changed event is notified whenever the buffer is written rather then only when
the value of the signal is changed. A buffer is an object of the class sc_buffer.

6.6.2 Class definition

namespace sc_core {

template <class T>
class sc_buffer
: public sc_signal<T>
{

public:
sc_buffer();
explicit sc_buffer(const char*);

virtual void write(const T&);

sc_buffer<T>& operator= (const T&);
sc_buffer<T>& operator= (const sc_signal<T>&);
sc_buffer<T>& operator= (const sc_buffer<T>&);

virtual const char* kind() const;

protected:
virtual void update();

private:
// Disabled
sc_buffer(const sc_buffer<T>&);

};

} // namespace sc_core

6.6.3 Constructors

sc_buffer();
This constructor shall call the base class constructor from its initializer list as follows:
sc_signal<T>(sc_gen_unique_name("buffer"))

explicit sc_buffer(const char* name_);
This constructor shall call the base class constructor from its initializer list as follows:
sc_signal<T>(name_)

6.6.4 Member functions

virtual void write(const T&);
.
Copyright © 2005 OSCI. All rights reserved. 109

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Member function write shall modify the value of the buffer such that the buffer appears to have the
new value (as returned by member function read) in the next delta cycle, but not before then. This
shall be accomplished using the update request mechanism of the primitive channel. The new value
is passed as an argument to member function write.

operator=
The behavior of operator= shall be equivalent to the following definitions:

sc_buffer<T>& operator= (const T& arg) { write(arg); return *this; }

sc_buffer<T>& operator= (const sc_signal<T>& arg) { write(arg.read()); return *this; }

sc_buffer<T>& operator= (const sc_buffer<T>& arg) { write(arg.read()); return *this; }

virtual void update();
Member function update of class sc_signal shall be overridden by the implementation in class
sc_buffer to implement the updating of the buffer value that occurs as a result of the buffer being
written. Member function update shall modify the current value of the buffer such that it gets the
new value (as passed as an argument to member function write), and shall cause the value changed
event to be notified in the immediately following delta notification phase regardless of whether of
not the value of the buffer has changed. (This is in contrast to member function update of the base
class sc_signal, which only causes the value changed event to be notified if the new value is
different from the old value.) See 6.6.4.

virtual const char* kind() const;
Member function kind shall return the string "sc_buffer".

Example:

C_MODULE(M)
{

sc_buffer<int> buf;

SC_CTOR(M)
{

SC_THREAD(writer);
SC_METHOD(reader);
sensitive << buf;

}
void writer()
{

buf.write(1);
wait(SC_ZERO_TIME);
buf.write(1);

}
void reader()
{ // Executed during initialization and then twice more with buf = 0, 1, 1

std::cout << buf << std::endl;
}

110 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
};
.
Copyright © 2005 OSCI. All rights reserved. 111

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.7 sc_clock

6.7.1 Description

Class sc_clock is a predefined primitive channel derived from the class sc_signal and intended to model the
behavior of a digital clock signal. A clock is an object of the class sc_clock. The value and events associated
with the clock are accessed via the interface sc_signal_in_if<bool>.

6.7.2 Class definition

namespace sc_core {

class sc_clock
: public sc_signal<bool>
{

public:
sc_clock();
explicit sc_clock(const char* name_);

sc_clock(const char* name_,
const sc_time& period_,
double duty_cycle_ = 0.5,
const sc_time& start_time_ = SC_ZERO_TIME,
bool posedge_first_ = true);

sc_clock(const char* name_,
double period_v_,
sc_time_unit period_tu_,
double duty_cycle_ = 0.5);

sc_clock(const char* name_,
double period_v_,
sc_time_unit period_tu_,
double duty_cycle_,
double start_time_v_,
sc_time_unit start_time_tu_,
bool posedge_first_ = true);

virtual ~sc_clock();

virtual void write(const bool&);

const sc_time& period() const;
double duty_cycle() const;
const sc_time& start_time() const;
bool posedge_first() const;

virtual const char* kind() const;

protected:
void before_end_of_elaboration();

private:
// Disabled
112 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_clock(const sc_clock&);
sc_clock& operator= (const sc_clock&);

};

typedef sc_in<bool> sc_in_clk ;

} // namespace sc_core

6.7.3 Characteristic properties

A clock is characterized by the following properties:
a) Period—The time interval between two consecutive transitions from value false to value true,

which shall be equal to the time interval between two consecutive transitions from value true to
value false. The period shall be greater than zero. The default period is 1 nanosecond.

b) Duty cycle—The proportion of the period during which the clock has the value true. The duty cycle
shall lie between the limits 0.0 and 1.0, exclusive. The default duty cycle is 0.5.

c) Start time—The absolute time of the first transition of the value of the clock (false to true or true to
false). The default start time is zero.

d) Posedge_first—If posedge_first is true, the clock is initialized to the value false, and changes from
false to true at the start time. If posedge_first is false, the clock is initialized to the value true, and
changes from true to false at the start time. The default value of posedge_first is true.

NOTE—A clock does not have a stop time, but will stop in any case when function sc_stop is called.

6.7.4 Constructors

The constructors shall set the characteristic properties of the clock as defined by the constructor arguments.
Any characteristic property not defined by the constructor arguments shall take a default value as defined in
6.7.3.

The default constructor shall call the base class constructor from its initializer list as follows:
sc_signal<bool>(sc_gen_unique_name("clock"))

6.7.5 write

virtual void write(const bool&);
It shall be an error for an application to call member function write. The member function write of
the base class sc_signal is not applicable for clocks.

6.7.6 Diagnostic member functions

const sc_time& period() const;
Member function period shall return the period of the clock.

double duty_cycle() const;
Member function duty_cycle shall return the duty cycle of the clock.

const sc_time& start_time() const;
Member function start_time shall return the start time of the clock.
.
Copyright © 2005 OSCI. All rights reserved. 113

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
bool posedge_first() const;
Member function posedge_first shall return the value of the posedge_first property of the clock.

virtual const char* kind() const;
Member function kind shall return the string "sc_clock".

6.7.7 before_end_of_elaboration

Member function before_end_of_elaboration, which is defined in the class sc_prim_channel, is
overridden in the current class with a behavior that is implementation-defined.

NOTES

1—An implementation may use before_end_of_elaboration to spawn one or more dynamic processes to generate the
clock.

2—If this member function is overridden in a class derived from the current class, function before_end_of_elaboration
as overridden in the current class should be called explicitly from the overridden member function of the derived class in
order to invoke the implementation-defined behavior.

6.7.8 sc_in_clk

typedef sc_in<bool> sc_in_clk ;
The typedef sc_in_clk is provided for convenience when adding clock inputs to a module and for
backward compatibility with earlier versions of SystemC. An application may use sc_in_clk or
sc_in<bool> interchangeably.
114 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.8 sc_in

6.8.1 Description

Class sc_in is a specialized port class for use with signals. It provides functions to conveniently access
certain member functions of the channel to which the port is bound. It may be used to model an input pin on
a module.

6.8.2 Class definition

namespace sc_core {

template <class T>
class sc_in
: public sc_port<sc_signal_in_if<T>,1>
{

public:
sc_in();
explicit sc_in(const char*);
virtual ~sc_in();

void bind (const sc_signal_in_if<T>&);
void operator() (const sc_signal_in_if<T>&);

void bind (sc_port<sc_signal_in_if<T>, 1>&);
void operator() (sc_port<sc_signal_in_if<T>, 1>&);

void bind (sc_port<sc_signal_inout_if<T>, 1>&);
void operator() (sc_port<sc_signal_inout_if<T>, 1>&);

virtual void end_of_elaboration();

 const T& read() const;
operator const T& () const;

const sc_event& default_event() const;
const sc_event& value_changed_event() const;
bool event() const;
sc_event_finder& value_changed() const;

virtual const char* kind() const;

private:
// Disabled
sc_in(const sc_in<T>&);
sc_in<T>& operator= (const sc_in<T>&);

};

template <class T>
inline void sc_trace(sc_trace_file*, const sc_in<T>&, const std::string&);

} // namespace sc_core
.
Copyright © 2005 OSCI. All rights reserved. 115

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.8.3 Member functions

The constructors shall pass their arguments to the corresponding constructor for the base class sc_port.

Member function bind and operator() shall each call member function bind of the base class sc_port,
passing through their parameters as arguments to function bind, in order to bind the object of class sc_in to
the channel or port instance passed as an argument.

Member function read and operator const T&() shall each call member function read of the object to
which the port is bound via operator-> of class sc_port, that is:
(*this)->read()

Member functions default_event, value_changed_event, and event shall each call the corresponding
member function of the object to which the port is bound via operator-> of class sc_port, for example:
(*this)->event()

Member function value_changed shall return a reference to class event_finder, where the event finder
object itself shall be constructed using the member function value_changed_event (see 5.7).

Member function kind shall return the string "sc_in".

6.8.4 Function sc_trace

template <class T>
inline void sc_trace(sc_trace_file*, const sc_in<T>&, const std::string&);

Function sc_trace shall trace the channel to which the port passed as the second argument is bound
(see 8.2) by calling function sc_trace with a second argument of type const T& (see 6.4.3). The
port need not have been bound at the point during elaboration when function sc_trace is called, in
which case the implementation shall defer the call to trace the signal until after the port has been
bound and the identity of the signal is known.

6.8.5 end_of_elaboration

Member function end_of_elaboration, which is defined in the class sc_port, is overridden in the current
class with a behavior that is implementation-defined.

NOTES

1—An implementation may use end_of_elaboration to implement the deferred call to sc_trace.

2—If this member function is overridden in a class derived from the current class, function end_of_elaboration as
overridden in the current class should be called explicitly from the overridden member function of the derived class in
order to invoke the implementation-defined behavior.
116 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.9 sc_in<bool> and sc_in<sc_dt::sc_logic>

6.9.1 Description

Class sc_in<bool> and sc_in<sc_dt::sc_logic> are specialized port classes which provide additional
member functions for two-valued signals.

6.9.2 Class definition

namespace sc_core {

template <>
class sc_in<bool>
: public sc_port<sc_signal_in_if<bool>,1>
{

public:
sc_in();
explicit sc_in(const char*);
virtual ~sc_in();

void bind (const sc_signal_in_if<bool>&);
void operator() (const sc_signal_in_if<bool>&);

void bind (sc_port<sc_signal_in_if<bool>, 1>&);
void operator() (sc_port<sc_signal_in_if<bool>, 1>&);

void bind (sc_port<sc_signal_inout_if<bool>, 1>&);
void operator() (sc_port<sc_signal_inout_if<bool>, 1>&);

virtual void end_of_elaboration();

const bool& read() const;
operator const bool& () const;

const sc_event& default_event() const;
const sc_event& value_changed_event() const;
const sc_event& posedge_event() const;
const sc_event& negedge_event() const;

bool event() const;
bool posedge() const;
bool negedge() const;

sc_event_finder& value_changed() const;
sc_event_finder& pos() const;
sc_event_finder& neg() const;

virtual const char* kind() const;

private:
// Disabled
sc_in(const sc_in<bool>&);
sc_in<bool>& operator= (const sc_in<bool>&);

};
.
Copyright © 2005 OSCI. All rights reserved. 117

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
template <>
inline void sc_trace<bool>(sc_trace_file*, const sc_in<bool>&, const std::string&);

template <>
class sc_in<sc_dt::sc_logic>
: public sc_port<sc_signal_in_if<sc_dt::sc_logic>,1>
{

public:
sc_in();
explicit sc_in(const char*);
virtual ~sc_in();

void bind (const sc_signal_in_if<sc_dt::sc_logic>&);
void operator() (const sc_signal_in_if<sc_dt::sc_logic>&);

void bind (sc_port<sc_signal_in_if<sc_dt::sc_logic>, 1>&);
void operator() (sc_port<sc_signal_in_if<sc_dt::sc_logic>, 1>&);

void bind (sc_port<sc_signal_inout_if<sc_dt::sc_logic>, 1>&);
void operator() (sc_port<sc_signal_inout_if<sc_dt::sc_logic>, 1>&);

virtual void end_of_elaboration();

const sc_dt::sc_logic& read() const;
operator const sc_dt::sc_logic& () const;

const sc_event& default_event() const;
const sc_event& value_changed_event() const;
const sc_event& posedge_event() const;
const sc_event& negedge_event() const;

bool event() const;
bool posedge() const;
bool negedge() const;

sc_event_finder& value_changed() const;
sc_event_finder& pos() const;
sc_event_finder& neg() const;

virtual const char* kind() const;

private:
// Disabled
sc_in(const sc_in<sc_dt::sc_logic>&);
sc_in<sc_dt::sc_logic>& operator= (const sc_in<sc_dt::sc_logic>&);

};

template <>
inline void
sc_trace<sc_dt::sc_logic>(sc_trace_file*, const sc_in<sc_dt::sc_logic>&, const std::string&);

} // namespace sc_core
118 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.9.3 Member functions

The following list is incomplete. For the remaining member functions and for the function sc_trace, refer to
the definitions of the member functions for class sc_in.

Member functions posedge_event, negedge_event, posedge, and negedge shall each call the corresponding
member function of the object to which the port is bound via operator-> of class sc_port, for example:
(*this)->negedge()

Member functions pos and neg shall return a reference to class event_finder, where the event finder object
itself shall be constructed using the member function posedge_event or negedge_event, respectively (see
5.7).
.
Copyright © 2005 OSCI. All rights reserved. 119

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.10 sc_inout

6.10.1 Description

Class sc_inout is a specialized port class for use with signals. It provides functions to conveniently access
certain member functions of the channel to which the port is bound. It may be used to model an output pin or
a bidirectional pin on a module.

6.10.2 Class definition

namespace sc_core {

template <class T>
class sc_inout
: public sc_port<sc_signal_inout_if<T>,1>
{

public:
sc_inout();
explicit sc_inout(const char*);
virtual ~sc_inout();

void initialize(const T&);
void initialize(const sc_signal_in_if<T>&);

virtual void end_of_elaboration();

const T& read() const;
operator const T& () const;

void write(const T&);
sc_inout<T>& operator= (const T&);
sc_inout<T>& operator= (const sc_signal_in_if<T>&);
sc_inout<T>& operator= (const sc_port< sc_signal_in_if<T>, 1>&);
sc_inout<T>& operator= (const sc_port< sc_signal_inout_if<T>, 1>&);
sc_inout<T>& operator= (const sc_inout<T>&);

const sc_event& default_event() const;
const sc_event& value_changed_event() const;
bool event() const;
sc_event_finder& value_changed() const;

virtual const char* kind() const;

private:
// Disabled
sc_inout(const sc_inout<T>&);

};

template <class T>
inline void sc_trace(sc_trace_file*, const sc_inout<T>&, const std::string&);

} // namespace sc_core
120 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.10.3 Member functions

The constructors shall pass their arguments to the corresponding constructor for the base class sc_port.

Member function read and operator const T&() shall each call member function read of the object to
which the port is bound via operator-> of class sc_port, that is:

(*this)->read()

Member function write and operator= shall each call the member function write of the object to which the
port is bound via operator-> of class sc_port, calling member function read to get the value of the
parameter where the parameter is an interface or a port, for example:

sc_inout<T>& operator= (const sc_inout<T>& port_)
{ (*this)->write(port_->read()); return *this; }

Member function write shall not be called during elaboration before the port has been bound. (See 6.10.4)

Member functions default_event, value_changed_event, and event shall each call the corresponding
member function of the object to which the port is bound via operator-> of class sc_port, for example:

(*this)->event()

Member function value_changed shall return a reference to class sc_event_finder, where the event finder
object itself shall be constructed using the member function value_changed_event (see 5.7).

Member function kind shall return the string "sc_inout".

6.10.4 initialize

Member function initialize shall set the initial value of the signal to which the port is bound by calling
member function write of that signal using the value passed as an argument to member function initialize. If
the argument is a channel, the initial value shall be determined by reading the value of the channel. The port
need not have been bound at the point during elaboration when member function initialize is called, in
which case the implementation shall defer the call to write until after the port has been bound and the
identity of the signal is known.

NOTES

1—A port of class sc_in will be bound to exactly one signal, but the binding may be performed indirectly via a port of
the parent module.

2—The purpose of member function initialize is to allow the value of a port to be initialized during elaboration prior to
the port being bound. However, member function initialize may be called during elaboration or simulation.

6.10.5 Function sc_trace

template <class T>
inline void sc_trace(sc_trace_file*, const sc_in<T>&, const std::string&);

Function sc_trace shall trace the channel to which the port passed as the second argument is bound
(see 8.2) by calling function sc_trace with a second argument of type const T& (see 6.4.3). The
port need not have been bound at the point during elaboration when function sc_trace is called, in
which case the implementation shall defer the call to trace the signal until after the port has been
bound and the identity of the signal is known.
.
Copyright © 2005 OSCI. All rights reserved. 121

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.10.6 end_of_elaboration

Member function end_of_elaboration, which is defined in the class sc_port, is overridden in the current
class with a behavior that is implementation-defined.

NOTES

1—An implementation may use end_of_elaboration to implement the deferred calls for initialize and sc_trace.

2—If this member function is overridden in a class derived from the current class, function end_of_elaboration as
overridden in the current class should be called explicitly from the overridden member function of the derived class in
order to invoke the implementation-defined behavior.

6.10.7 Binding

Because interface sc_signal_inout_if is derived from interface sc_signal_in_if, a port of class sc_in of a
child module may be bound to a port of class sc_inout of a parent module, but a port of class sc_inout of a
child module cannot be bound to a port of class sc_in of a parent module.
122 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.11 sc_inout<bool> and sc_inout<sc_dt::sc_logic>

6.11.1 Description

Class sc_inout<bool> and sc_inout<sc_dt::sc_logic> are specialized port classes which provide additional
member functions for two-valued signals.

6.11.2 Class definition

namespace sc_core {

template <>
class sc_inout<bool>
: public sc_port<sc_signal_inout_if<bool>,1>
{

public:
sc_inout();
explicit sc_inout(const char*);
virtual ~sc_inout();

void initialize(const bool&);
void initialize(const sc_signal_in_if<bool>&);

virtual void end_of_elaboration();

const bool& read() const;
operator const bool& () const;

void write(const bool&);
sc_inout<bool>& operator= (const bool&);
sc_inout<bool>& operator= (const sc_signal_in_if<bool>&);
sc_inout<bool>& operator= (const sc_port< sc_signal_in_if<bool>, 1>&);
sc_inout<bool>& operator= (const sc_port< sc_signal_inout_if<bool>, 1>&);
sc_inout<bool>& operator= (const sc_inout<bool>&);

const sc_event& default_event() const;
const sc_event& value_changed_event() const;
const sc_event& posedge_event() const;
const sc_event& negedge_event() const;

bool event() const;
bool posedge() const;
bool negedge() const;

sc_event_finder& value_changed() const;
sc_event_finder& pos() const;
sc_event_finder& neg() const;

virtual const char* kind() const;

private:
// Disabled
sc_inout(const sc_inout<bool>&);

};
.
Copyright © 2005 OSCI. All rights reserved. 123

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
template <>
inline void sc_trace<bool>(sc_trace_file*, const sc_inout<bool>&, const std::string&);

template <>
class sc_inout<sc_dt::sc_logic>
: public sc_port<sc_signal_inout_if<sc_dt::sc_logic>,1>
{

public:
sc_inout();
explicit sc_inout(const char*);
virtual ~sc_inout();

void initialize(const sc_dt::sc_logic&);
void initialize(const sc_signal_in_if<sc_dt::sc_logic>&);

virtual void end_of_elaboration();

const sc_dt::sc_logic& read() const;
operator const sc_dt::sc_logic& () const;

void write(const sc_dt::sc_logic&);
sc_inout<sc_dt::sc_logic>& operator= (const sc_dt::sc_logic&);
sc_inout<sc_dt::sc_logic>& operator= (const sc_signal_in_if<sc_dt::sc_logic>&);
sc_inout<sc_dt::sc_logic>& operator= (const sc_port< sc_signal_in_if<sc_dt::sc_logic>, 1>&);
sc_inout<sc_dt::sc_logic>& operator= (const sc_port< sc_signal_inout_if<sc_dt::sc_logic>, 1>&

);
sc_inout<sc_dt::sc_logic>& operator= (const sc_inout<sc_dt::sc_logic>&);

const sc_event& default_event() const;
const sc_event& value_changed_event() const;
const sc_event& posedge_event() const;
const sc_event& negedge_event() const;

bool event() const;
bool posedge() const;
bool negedge() const;

sc_event_finder& value_changed() const;
sc_event_finder& pos() const;
sc_event_finder& neg() const;

virtual const char* kind() const;

private:
// Disabled
sc_inout(const sc_inout<sc_dt::sc_logic>&);

};

template <>
inline void
sc_trace<sc_dt::sc_logic>(sc_trace_file*, const sc_inout<sc_dt::sc_logic>&, const std::string&);
124 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
} // namespace sc_core

6.11.3 Member functions

The following list is incomplete. For the remaining member functions and for the function sc_trace, refer to
the definitions of the member functions for class sc_inout.

Member functions posedge_event, negedge_event, posedge, and negedge shall each call the corresponding
member function of the object to which the port is bound via operator-> of class sc_port, for example:
(*this)->negedge()

Member functions pos and neg shall return a reference to class event_finder, where the event finder object
itself shall be constructed using the member function posedge_event or negedge_event, respectively (see
5.7).

NOTE - Member function kind shall return the string "sc_inout".
.
Copyright © 2005 OSCI. All rights reserved. 125

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.12 sc_out

6.12.1 Description

Class sc_out is derived from class sc_inout, and is identical to class sc_inout except for differences inherent
to derived classes, for example constructors and assignment operators. The purpose of having both classes is
to allow users to express their intent, that is, sc_out for output pins, sc_inout for bidirectional pins.

6.12.2 Class definition

namespace sc_core {

template <class T>
class sc_out
: public sc_inout<T>
{

public:
sc_out();
explicit sc_out(const char*);
virtual ~sc_out();

sc_out<T>& operator= (const T&);
sc_out<T>& operator= (const sc_signal_in_if<T>&);
sc_out<T>& operator= (const sc_port< sc_signal_in_if<T>, 1>&);
sc_out<T>& operator= (const sc_port< sc_signal_inout_if<T>, 1>&);
sc_out<T>& operator= (const sc_out<T>&);

virtual const char* kind() const;

private:
// Disabled
sc_out(const sc_out<T>&);

};

} // namespace sc_core

6.12.3 Member functions

The constructors shall pass their arguments to the corresponding constructors for the base class
sc_inout<T>.

The behavior of the assignment operators shall be identical to that of class sc_inout, but with the class name
sc_out substituted in place of the class name sc_inout wherever appropriate.

Member function kind shall return the string "sc_out".
126 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.13 sc_signal_resolved

6.13.1 Description

Class sc_signal_resolved is a predefined primitive channel derived from class sc_signal. A resolved signal
is an object of class sc_signal_resolved or class sc_signal_rv. Class sc_signal_resolved differs from class
sc_signal in that a resolved signal may be written by multiple processes, conflicting values being resolved
within the channel.

6.13.2 Class definition

namespace sc_core {

class sc_signal_resolved
: public sc_signal<sc_dt::sc_logic>
{

public:
sc_signal_resolved();
explicit sc_signal_resolved(const char*);
virtual ~sc_signal_resolved();

virtual void register_port(sc_port_base&, const char*);

virtual void write(const sc_dt::sc_logic&);
sc_signal_resolved& operator= (const sc_dt::sc_logic&);
sc_signal_resolved& operator= (const sc_signal_resolved&);

virtual const char* kind() const;

protected:
virtual void update();

private:
// Disabled
sc_signal_resolved(const sc_signal_resolved&);

};

} // namespace sc_core

6.13.3 Constructors

sc_signal_resolved();
This constructor shall call the base class constructor from its initializer list as follows:
sc_signal<sc_dt::sc_logic>(sc_gen_unique_name("signal_resolved"))

explicit sc_signal_resolved(const char* name_);
This constructor shall call the base class constructor from its initializer list as follows:
sc_signal<sc_dt::sc_logic>(name_)
.
Copyright © 2005 OSCI. All rights reserved. 127

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.13.4 Resolution semantics

A resolved signal is written by calling member function write or operator= of the given signal object. Like
class sc_signal, operator= shall call member function write.

Each resolved signal shall maintain a list of written values containing one value for each process that writes
to the resolved signal object. This list shall store the value most recently written to the resolved signal object
by each such process.

If and only if the written value is different from the previous written value or this is the first occasion on
which the particular process has written to the particular signal object, the member function write shall then
call the member function request_update.

During the update phase, member function update firstly shall use the list of written values to calculate a
single resolved value for the resolved signal, and secondly shall perform update semantics similar to class
sc_signal but using the resolved value just calculated.

A process shall add a value to the list of written values on the first occasion that that particular process writes
to the resolved signal object. Values shall not be removed from the list of written values. Prior to the first
occasion on which a given process writes to a given resolved signal, that process shall not contribute to the
calculation of the resolved value for that signal.

The resolved value shall be calculated from the list of written values by reducing the list until a single value
remains, using the following algorithm. Take any two values from the list and replace them with one value
according to the truth table below.

Prior to the first occasion on which a given process writes to a given resolved signal, the value written by
that process is effectively 'Z' in terms of its effect on the resolution calculation. On the other hand, the
default initial value for a resolved signal (as would be returned by member function read prior to the first
write) is 'X'. Thus it is strongly recommended that each process that writes to a given resolved signal should
perform a write to that signal at time zero.

NOTES

1—The order in which values are passed to the function defined by the above truth table does not affect the result of the
calculation.

2—The calculation of the resolved value is performed using the value most recently written by each and every process
that writes to that particular signal object, regardless of whether the most recent write occurred in the current delta cycle,
in some previous delta cycle, or at some earlier time.

3—These same resolution semantics apply whether the resolved signal is accessed directly by a process or is accessed
indirectly via a port bound to the resolved signal.

'0' '1' 'Z' 'X'

'0' '0' 'X' '0' 'X'

'1' 'X' '1' '1' 'X'

'Z' '0' '1' 'Z' 'X'

'X' 'X' 'X' 'X' 'X'
128 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.13.5 Member functions

Member function register_port of class sc_signal shall be overridden in class sc_signal_resolved, such that
the error check for multiple output ports performed by sc_signal::register_port is disabled for channel
objects of class sc_signal_resolved.

Member function write, operator=, and member function update shall have the same behavior as the
corresponding members of class sc_signal, except where the behavior differs for multiple writers as defined
in 6.13.4.

Member function kind shall return the string "sc_signal_resolved".

Example:

SC_MODULE(M)
{

sc_signal_resolved sig;

SC_CTOR(M)
{

SC_THREAD(T1);
SC_THREAD(T2);
SC_THREAD(T3);

}
void T1()
{ // Time=0 ns, no written values sig=X

wait(10, SC_NS);
sig = sc_dt::SC_LOGIC_0; // Time=10 ns, written values=0 sig=0
wait(20, SC_NS);
sig = sc_dt::SC_LOGIC_Z; // Time=30 ns, written values=Z,Z sig=Z

}
void T2()
{

wait(20, SC_NS);
sig = sc_dt::SC_LOGIC_Z; // Time=20 ns, written values=0,Z sig=0
wait(30, SC_NS);
sig = sc_dt::SC_LOGIC_0; // Time=50 ns, written values=Z,0,1 sig=X

}
void T3()
{

wait(40, SC_NS);
sig = sc_dt::SC_LOGIC_1; // Time=40 ns, written values=Z,Z,1 sig=1

}
};
.
Copyright © 2005 OSCI. All rights reserved. 129

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.14 sc_in_resolved

6.14.1 Description

Class sc_in_resolved is a specialized port class for use with resolved signals. It is similar in behavior to port
class sc_in<sc_dt::sc_logic> from which it is derived. The only difference is that a port of class
sc_in_resolved shall be bound to a channel of class sc_signal_resolved, whereas a port of class
sc_in<sc_dt::sc_logic> may be bound to a channel of class sc_signal<sc_dt::sc_logic> or class
sc_signal_resolved.

6.14.2 Class definition

namespace sc_core {

class sc_in_resolved
: public sc_in<sc_dt::sc_logic>
{

public:
sc_in_resolved();
explicit sc_in_resolved(const char*);
virtual ~sc_in_resolved();

virtual void end_of_elaboration();

virtual const char* kind() const;

private:
// Disabled
sc_in_resolved(const sc_in_resolved&);
sc_in_resolved& operator= (const sc_in_resolved&);

};

} // namespace sc_core

6.14.3 Member functions

The constructors shall pass their arguments to the corresponding constructors for the base class
sc_in<sc_dt::sc_logic>.

Member function end_of_elaboration shall perform an error check. It is an error if the port is not bound to
a channel of class sc_signal_resolved.

Member function kind shall return the string "sc_in_resolved".

NOTE—The port may be bound indirectly via a port of a parent module.
130 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.15 sc_inout_resolved

6.15.1 Description

Class sc_inout_resolved is a specialized port class for use with resolved signals. It is similar in behavior to
port class sc_inout<sc_dt::sc_logic> from which it is derived. The only difference is that a port of class
sc_inout_resolved shall be bound to a channel of class sc_signal_resolved, whereas a port of class
sc_inout<sc_dt::sc_logic> may be bound to a channel of class sc_signal<sc_dt::sc_logic> or class
sc_signal_resolved.

6.15.2 Class definition

namespace sc_core {

class sc_inout_resolved
: public sc_inout<sc_dt::sc_logic>
{

public:
sc_inout_resolved();
explicit sc_inout_resolved(const char*);
virtual ~sc_inout_resolved();

virtual void end_of_elaboration();

sc_inout_resolved& operator= (const sc_dt::sc_logic&);
sc_inout_resolved& operator= (const sc_signal_in_if<sc_dt::sc_logic>&);
sc_inout_resolved& operator= (const sc_port<sc_signal_in_if<sc_dt::sc_logic>, 1>&);
sc_inout_resolved& operator= (const sc_port<sc_signal_inout_if<sc_dt::sc_logic>, 1>&);
sc_inout_resolved& operator= (const sc_inout_resolved&);

virtual const char* kind() const;

private:
// Disabled
sc_inout_resolved(const sc_inout_resolved&);

};

} // namespace sc_core

6.15.3 Member functions

The constructors shall pass their arguments to the corresponding constructors for the base class
sc_inout<sc_dt::sc_logic>.

Member function end_of_elaboration shall perform an error check. It is an error if the port is not bound to
a channel of class sc_signal_resolved.

The behavior of the assignment operators shall be identical to that of class sc_inout<sc_dt::sc_logic>, but
with the class name sc_inout_resolved substituted in place of the class name sc_inout<sc_dt::sc_logic>
wherever appropriate.

Member function kind shall return the string "sc_inout_resolved".
.
Copyright © 2005 OSCI. All rights reserved. 131

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
NOTE—The port may be bound indirectly via a port of a parent module.
132 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.16 sc_out_resolved

6.16.1 Description

Class sc_out_resolved is derived from class sc_inout_resolved, and is identical to class sc_inout_resolved
except for differences inherent to derived classes, for example, constructors and assignment operators. The
purpose of having both classes is to allow users to express their intent, that is, sc_out_resolved for output
pins connected to resolved signals, sc_inout_resolved for bidirectional pins connected to resolved signals.

6.16.2 Class definition

namespace sc_core {

class sc_out_resolved
: public sc_inout_resolved
{

public:
sc_out_resolved();
explicit sc_out_resolved(const char*);
virtual ~sc_out_resolved();

sc_out_resolved& operator= (const sc_dt::sc_logic&);
sc_out_resolved& operator= (const sc_signal_in_if<sc_dt::sc_logic>&);
sc_out_resolved& operator= (const sc_port<sc_signal_in_if<sc_dt::sc_logic>, 1>&);
sc_out_resolved& operator= (const sc_port<sc_signal_inout_if<sc_dt::sc_logic>, 1>&);
sc_out_resolved& operator= (const sc_out_resolved&);

virtual const char* kind() const;

private:
// Disabled
sc_out_resolved(const sc_out_resolved&);

};

} // namespace sc_core

6.16.3 Member functions

The constructors shall pass their arguments to the corresponding constructors for the base class
sc_inout_resolved.

The behavior of the assignment operators shall be identical to that of class sc_inout_resolved, but with the
class name sc_out_resolved substituted in place of the class name sc_inout_resolved wherever appropriate.

Member function kind shall return the string "sc_out_resolved".
.
Copyright © 2005 OSCI. All rights reserved. 133

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.17 sc_signal_rv

6.17.1 Description

Class sc_signal_rv is a predefined primitive channel derived from class sc_signal. Class sc_signal_rv is
similar to class sc_signal_resolved. The difference is that the argument to the base class template sc_signal
is type sc_dt::sc_lv<W> instead of type sc_dt::sc_logic.

6.17.2 Class definition

namespace sc_core {

template <int W>
class sc_signal_rv
: public sc_signal<sc_dt::sc_lv<W> >
{

public:
sc_signal_rv();
explicit sc_signal_rv(const char*);
virtual ~sc_signal_rv();

virtual void register_port(sc_port_base&, const char*);

virtual void write(const sc_dt::sc_lv<W>&);
sc_signal_rv<W>& operator= (const sc_dt::sc_lv<W>&);
sc_signal_rv<W>& operator= (const sc_signal_rv<W>&);

virtual const char* kind() const;

protected:
virtual void update();

private:
// Disabled
sc_signal_rv(const sc_signal_rv<W>&);

};

} // namespace sc_core

6.17.3 Semantics and member functions

The semantics of class sc_signal_rv shall be identical to the semantics of class sc_signal_resolved except
for differences due to the fact that the value to be resolved is of type sc_dt::sc_lv (see 6.13).

The value shall be propagated via the resolved signal as an atomic value; that is, an event shall be notified
and the entire value of the vector shall be resolved and updated whenever any bit of the vector written by any
process changes.

The list of written values shall contain values of type sc_dt::sc_lv, and each value of type sc_dt::sc_lv shall
be treated atomically for the purpose of building and updating the list.

If and only if the written value differs from the previous written value (in one or more bit positions) or this is
the first occasion on which the particular process has written to the particular signal object, the member
function write shall then call the member function request_update.
134 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The resolved value shall be calculated for the entire vector by applying the rule described in 6.13 to each bit
position within the vector in turn.

The default constructor shall call the base class constructor from its initializer list as follows:
sc_signal<sc_dt::sc_lv<W> > (sc_gen_unique_name("signal_rv"))

Member function kind shall return the string "sc_signal_rv".
.
Copyright © 2005 OSCI. All rights reserved. 135

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.18 sc_in_rv

6.18.1 Description

Class sc_in_rv is a specialized port class for use with resolved signals. It is similar in behavior to port class
sc_in<sc_dt::sc_lv<W> > from which it is derived. The only difference is that a port of class sc_in_rv shall
be bound to a channel of class sc_signal_rv, whereas a port of class sc_in<sc_dt::sc_lv<W> > may be
bound to a channel of class sc_signal<sc_dt::sc_lv<W> > or class sc_signal_rv.

6.18.2 Class definition

namespace sc_core {

template <int W>
class sc_in_rv
: public sc_in<sc_dt::sc_lv<W> >
{

public:
sc_in_rv();
explicit sc_in_rv(const char*);
virtual ~sc_in_rv();

virtual void end_of_elaboration();

virtual const char* kind() const;

private:
// Disabled
sc_in_rv(const sc_in_rv<W>&);
sc_in_rv<W>& operator= (const sc_in_rv<W>&);

};

} // namespace sc_core

6.18.3 Member functions

The constructors shall pass their arguments to the corresponding constructors for the base class
sc_in<sc_dt::sc_lv<W> >.

Member function end_of_elaboration shall perform an error check. It is an error if the port is not bound to
a channel of class sc_signal_rv.

Member function kind shall return the string "sc_in_rv".

NOTE—The port may be bound indirectly via a port of a parent module.
136 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.19 sc_inout_rv

6.19.1 Description

Class sc_inout_rv is a specialized port class for use with resolved signals. It is similar in behavior to port
class sc_inout<sc_dt::sc_lv<W> > from which it is derived. The only difference is that a port of class
sc_inout_rv shall be bound to a channel of class sc_signal_rv, whereas a port of class
sc_inout<sc_dt::sc_lv<W> > may be bound to a channel of class sc_signal<sc_dt::sc_lv<W> > or class
sc_signal_rv.

6.19.2 Class definition

namespace sc_core {

template <int W>
class sc_inout_rv
: public sc_inout<sc_dt::sc_lv<W> >
{

public:
sc_inout_rv();
explicit sc_inout_rv(const char*);
virtual ~sc_inout_rv();

sc_inout_rv<W>& operator= (const sc_dt::sc_lv<W>&);
sc_inout_rv<W>& operator= (const sc_signal_in_if<sc_dt::sc_lv<W> >&);
sc_inout_rv<W>& operator= (const sc_port<sc_signal_in_if<sc_dt::sc_lv<W> >, 1>&);
sc_inout_rv<W>& operator= (const sc_port<sc_signal_inout_if<sc_dt::sc_lv<W> >, 1>&);
sc_inout_rv<W>& operator= (const sc_inout_rv<W>&);

virtual void end_of_elaboration();

virtual const char* kind() const;

private:
// Disabled
sc_inout_rv(const sc_inout_rv<W>&);

};

} // namespace sc_core

6.19.3 Member functions

The constructors shall pass their arguments to the corresponding constructors for the base class
sc_inout<sc_dt::sc_lv<W> >.

Member function end_of_elaboration shall perform an error check. It is an error if the port is not bound to
a channel of class sc_signal_rv.

The behavior of the assignment operators shall be identical to that of class sc_inout<sc_dt::sc_lv<W> >,
but with the class name sc_inout_rv substituted in place of the class name sc_inout<sc_dt::sc_lv<W> >
wherever appropriate.

Member function kind shall return the string "sc_inout_rv".
.
Copyright © 2005 OSCI. All rights reserved. 137

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
NOTE—The port may be bound indirectly via a port of a parent module.
138 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.20 sc_out_rv

6.20.1 Description

Class sc_out_rv is derived from class sc_inout_rv, and is identical to class sc_inout_rv except for
differences inherent to derived classes, for example, constructors and assignment operators. The purpose of
having both classes is to allow users to express their intent, that is, sc_out_rv for output pins connected to
resolved vectors, sc_inout_rv for bidirectional pins connected to resolved vectors.

6.20.2 Class definition

namespace sc_core {

template <int W>
class sc_out_rv
: public sc_inout_rv<W>
{

public:
sc_out_rv();
explicit sc_out_rv(const char*);
virtual ~sc_out_rv();

sc_out_rv<W>& operator= (const sc_dt::sc_lv<W>&);
sc_out_rv<W>& operator= (const sc_signal_in_if<sc_dt::sc_lv<W> >&);
sc_out_rv<W>& operator= (const sc_port<sc_signal_in_if<sc_dt::sc_lv<W> >, 1>&);
sc_out_rv<W>& operator= (const sc_port<sc_signal_inout_if<sc_dt::sc_lv<W> >, 1>&);
sc_out_rv<W>& operator= (const sc_out_rv<W>&);

virtual const char* kind() const;

private:
// Disabled
sc_out_rv(const sc_out_rv<W>&);

};

} // namespace sc_core

6.20.3 Member functions

The constructors shall pass their arguments to the corresponding constructors for the base class
sc_inout_rv<W>.

The behavior of the assignment operators shall be identical to that of class sc_inout_rv<W>, but with the
class name sc_out_rv<W> substituted in place of the class name sc_inout_rv<W> wherever appropriate.

Member function kind shall return the string "sc_out_rv".
.
Copyright © 2005 OSCI. All rights reserved. 139

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.21 sc_fifo_in_if

6.21.1 Description

Class sc_fifo_in_if is an interface proper, used by the predefined channel sc_fifo. Interface sc_fifo_in_if
gives read access to a fifo channel, and is derived from two further interfaces proper,
sc_fifo_nonblocking_in_if and sc_fifo_blocking_in_if.

6.21.2 Class definition

namespace sc_core {

template <class T>
class sc_fifo_nonblocking_in_if
: virtual public sc_interface
{

public:
virtual bool nb_read(T&) = 0;
virtual const sc_event& data_written_event() const = 0;

};

template <class T>
class sc_fifo_blocking_in_if
: virtual public sc_interface
{

public:
virtual void read(T&) = 0;
virtual T read() = 0;

};

template <class T>
class sc_fifo_in_if : public sc_fifo_nonblocking_in_if<T>, public sc_fifo_blocking_in_if<T>
{

public:
virtual int num_available() const = 0;

protected:
sc_fifo_in_if();

private:
// Disabled
sc_fifo_in_if(const sc_fifo_in_if<T>&);
sc_fifo_in_if<T>& operator= (const sc_fifo_in_if<T>&);

};

} // namespace sc_core

6.21.3 Member functions

The member functions described below are all pure virtual functions. The descriptions refer to the expected
definitions of the functions when overridden in a channel that implements this interface. The precise
semantics will be channel-specific.
140 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Member functions read and nb_read shall return the value least recently written into the fifo, and shall
remove that value from the fifo such that it cannot be read again. If the fifo is empty, member function read
shall suspend until a value has been written to the fifo, whereas member function nb_read shall return
immediately the return value of the function nb_read indicating whether or not a value was read.

When calling member function void read(T&) of class sc_fifo_blocking_in_if, the application shall be
obliged to ensure that the lifetime of the actual argument extends from the time the function is called to the
time the function call completes, and moreover the application shall not modify the value of the actual
argument during that period.

Member function data_written_event shall return a reference to an event that is notified whenever a value
is written into the fifo.

Member function num_available shall return the number of values currently available in the fifo to be read.
.
Copyright © 2005 OSCI. All rights reserved. 141

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.22 sc_fifo_out_if

6.22.1 Description

Class sc_fifo_out_if is an interface proper, used by the predefined channel sc_fifo. Interface sc_fifo_out_if
gives write access to a fifo channel, and is derived from two further interfaces proper,
sc_fifo_nonblocking_out_if and sc_fifo_blocking_out_if.

6.22.2 Class definition

namespace sc_core {

template <class T>
class sc_fifo_nonblocking_out_if
: virtual public sc_interface
{

public:
virtual bool nb_write(const T&) = 0;
virtual const sc_event& data_read_event() const = 0;

};

template <class T>
class sc_fifo_blocking_out_if
: virtual public sc_interface
{

public:
virtual void write(const T&) = 0;

};

template <class T>
class sc_fifo_out_if : public sc_fifo_nonblocking_out_if<T>, public sc_fifo_blocking_out_if<T>
{

public:
virtual int num_free() const = 0;

protected:
sc_fifo_out_if();

private:
// Disabled
sc_fifo_out_if(const sc_fifo_out_if<T>&);
sc_fifo_out_if<T>& operator= (const sc_fifo_out_if<T>&);

};

} // namespace sc_core

6.22.3 Member functions

The member functions described below are all pure virtual functions. The descriptions refer to the expected
definitions of the functions when overridden in a channel that implements this interface. The precise
semantics will be channel-specific.

Member functions write and nb_write shall write the value passed as an argument into the fifo. If the fifo is
full, member function write shall suspend until a value has been read from the fifo, whereas member
142 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
function nb_write shall return immediately the return value of the function nb_write indicating whether or
not a value was written into an empty slot.

When calling member function void write(const T&) of class sc_fifo_blocking_out_if, the application
shall be obliged to ensure that the lifetime of the actual argument extends from the time the function is called
to the time the function call completes, and moreover the application shall not modify the value of the actual
argument during that period.

Member function data_read_event shall return a reference to an event that is notified whenever a value is
read from the fifo.

Member function num_free shall return the number of unoccupied slots in the fifo available to accept
written values.
.
Copyright © 2005 OSCI. All rights reserved. 143

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.23 sc_fifo

6.23.1 Description

Class sc_fifo is a predefined primitive channel intended to model the behavior of a fifo, that is, a first-in-
first-out buffer. A fifo is an object of class sc_fifo. Each fifo has a number of slots for storing values. The
number of slots is fixed when the object is constructed.

6.23.2 Class definition

namespace sc_core {

template <class T>
class sc_fifo
: public sc_fifo_in_if<T>, public sc_fifo_out_if<T>, public sc_prim_channel
{

public:
explicit sc_fifo(int size_ = 16);
explicit sc_fifo(const char* name_, int size_ = 16);
virtual ~sc_fifo();

virtual void register_port(sc_port_base&, const char*);

virtual void read(T&);
virtual T read();
virtual bool nb_read(T&);
operator T ();

virtual void write(const T&);
virtual bool nb_write(const T&);
sc_fifo<T>& operator= (const T&);

virtual const sc_event& data_written_event() const;
virtual const sc_event& data_read_event() const;

virtual int num_available() const;
virtual int num_free() const;

virtual void print(std::ostream& = std::cout) const;
virtual void dump(std::ostream& = std::cout) const;
virtual const char* kind() const;

protected:
virtual void update();

private:
// Disabled
sc_fifo(const sc_fifo<T>&);
sc_fifo& operator= (const sc_fifo<T>&);

};

template <class T>
inline std::ostream& operator<< (std::ostream&, const sc_fifo<T>&);
144 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
} // namespace sc_core

6.23.3 Template parameter T

The argument passed to template sc_fifo shall be either a C++ type for which the predefined semantics for
assignment are adequate (for example, a fundamental type or a pointer), or a type T that obeys each of the
following rules:

a) The following stream operator shall be defined and should copy the state of the object given as the
second argument to the stream given as the first argument. The way in which the state information is
formatted is undefined by this standard. The implementation shall use this operator in implementing
the behavior of the member functions print and dump.

std::ostream& operator<< (std::ostream&, const T&);

b) If the default assignment semantics are inadequate to assign the state of the object, the following
assignment operator should be defined for the type T. The fifo shall use the given assignment opera-
tor to copy the value being written into a fifo slot, or the value being read out of a fifo slot.

const T& operator= (const T&);

c) If any constructor for type T exists, a default constructor for type T shall be defined.

NOTES

1—The assignment operator is not obliged to assign the complete state of the object, although it should typically do so.
For example, diagnostic information may be associated with an object that is not to be propagated via the fifo.

2—The SystemC data types proper (sc_dt::sc_int, sc_dt::sc_logic, and so forth) all conform to the above rule set.

3—It is legal to pass type sc_module* via a fifo, although this would be regarded as an abuse of the module hierarchy
and thus bad practice.

6.23.4 Constructors

explicit sc_fifo(int size_ = 16);
This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(sc_gen_unique_name("fifo"))

explicit sc_fifo(const char* name_, int size_ = 16);
This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(name_)

Both constructors shall initialize the number of slots in the fifo to the value given by the parameter size_.
The number of slots shall be greater than zero.

6.23.5 register_port

virtual void register_port(sc_port_base&, const char*);
Member function register_port of class sc_interface shall be overridden in class sc_fifo, and shall
perform an error check. It is an error if more than one port of type sc_fifo_in_if is bound to a given
fifo, and an error if more than one port of type sc_fifo_out_if is bound to a given fifo.
.
Copyright © 2005 OSCI. All rights reserved. 145

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.23.6 Member functions for reading

virtual void read(T&);
virtual T read();
virtual bool nb_read(T&);

Member functions read and nb_read shall return the value least recently written into the fifo, and
shall remove that value from the fifo such that it cannot be read again. Multiple values may be read
within a single delta cycle. The order in which values are read from the fifo shall match precisely the
order in which values were written into the fifo. Values written into the fifo during the current delta
cycle are not available for reading in that delta cycle, but become available for reading in the
immediately following delta cycle.

The value read from the fifo shall be returned as the value of the member function or as an argument
passed by reference, as appropriate.

If the fifo is empty (that is, no values are available for reading), member function read shall suspend
until the data-written event is notified, at which point it shall resume (in the immediately following
evaluation phase) and complete the reading of the value least recently written into the fifo before
returning.

If the fifo is empty, member function nb_read shall return immediately without modifying the state
of the fifo, without calling request_update, and with a return value of false. Otherwise, if a value is
available for reading, the return value of member function nb_read shall be true.

operator T ();
The behavior of operator T() shall be equivalent to the following definition:

operator T (){ return read(); }

6.23.7 Member functions for writing

virtual void write(const T&);
virtual bool nb_write(const T&);

Member functions write and nb_write shall write the value passed as an argument into the fifo.
Multiple values may be written within a single delta cycle. If values are read from the fifo during the
current delta cycle, the empty slots in the fifo so created do not become free for the purposes of
writing until the immediately following delta cycle.

If the fifo is full (that is, no free slots for the purposes of writing exist), member function write shall
suspend until the data-read event is notified, at which point it shall resume (in the immediately
following evaluation phase) and complete the writing of the argument value into the fifo before
returning.

If the fifo is full, member function nb_write shall return immediately without modifying the state of
the fifo, without calling request_update, and with a return value of false. Otherwise, if a slot is free,
the return value of member function nb_write shall be true.

operator=
The behavior of operator= shall be equivalent to the following definition:
146 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_fifo<T>& operator= (const T& a) { write(a); return *this; }

6.23.8 The update phase

Member functions read, nb_read, write, and nb_write shall complete the act of reading or writing the fifo
by calling member function request_update of class sc_prim_channel.

virtual void update();
Member function update of class sc_prim_channel shall be overridden in class sc_fifo to update
the number of values available for reading and the number of free slots for writing, and shall cause
the data-written event or the data-read event to be notified in the immediately following delta
notification phase as necessary.
NOTE - If a fifo is empty and member functions write and read are called (from the same process or from two
different processes) during the evaluation phase of the same delta cycle, the write will complete in that delta
cycle, but the read will suspend because the fifo is empty. The number of values available for reading will be
incremented to one during the update phase, and the read will complete in the following delta cycle, returning
the value just written.

6.23.9 Member functions for events

virtual const sc_event& data_written_event() const;
Member function data_written_event shall return a reference to an event, the data-written event,
that is notified in the delta notification phase that occurs at the end of the delta cycle in which a
value is written into the fifo.

virtual const sc_event& data_read_event() const;
Member function data_read_event shall return a reference to an event, the data-read event, that is
notified in the delta notification phase that occurs at the end of the delta cycle in which a value is
read from the fifo.

6.23.10 Member functions for available values and free slots

virtual int num_available() const;
Member function num_available shall return the number of values that are available for reading in
the current delta cycle. The calculation shall deduct any values read during the current delta cycle,
but shall not add any values written during the current delta cycle.

virtual int num_free() const;
Member function num_free shall return the number of empty slots that are free for writing in the
current delta cycle. The calculation shall deduct any slots written during the current delta cycle, but
shall not add any slots made free by reading in the current delta cycle.

6.23.11 Diagnostic member functions

virtual void print(std::ostream& = std::cout) const;
Member function print shall print a list of the values stored in the fifo and that are available for
reading. They will be printed in the order they were written to the fifo, and are printed to the stream
passed as an argument by calling operator<< (std::ostream&, T&). The formatting shall be
implementation-defined.
.
Copyright © 2005 OSCI. All rights reserved. 147

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
virtual void dump(std::ostream& = std::cout) const;
Member function dump shall print at least the hierarchical name of the fifo and a list of the values
stored in the fifo that are available for reading. They are printed to the stream passed as an argument.
The formatting shall be implementation-defined.

virtual const char* kind() const;
Member function kind shall return the string "sc_fifo".

6.23.12 Operator<<

template <class T>
inline std::ostream& operator<< (std::ostream&, const sc_fifo<T>&);

operator<< shall call member function print to print the contents of the fifo passed as the second
argument to the stream passed as the first argument.

Example:

SC_MODULE(M)
{

sc_fifo<int> fifo;
SC_CTOR(M) : fifo(4)
{

SC_THREAD(T);
}
void T()
{

int d;
fifo.write(1);
fifo.print(std::cout); // 1
fifo.write(2);
fifo.print(std::cout); // 1 2
fifo.write(3);
fifo.print(std::cout); // 1 2 3
std::cout << fifo.num_available(); // 0 values available to read
std::cout << fifo.num_free(); // 1 free slot
fifo.read(d); // read suspends and returns in the next delta cycle
fifo.print(std::cout); // 2 3
std::cout << fifo.num_available(); // 2 values available to read
std::cout << fifo.num_free(); // 1 free slot
fifo.read(d);
fifo.print(std::cout); // 3
fifo.read(d);
fifo.print(std::cout); // empty
std::cout << fifo.num_available(); // 0 values available to read
std::cout << fifo.num_free(); // 1 free slot
wait(SC_ZERO_TIME);
std::cout << fifo.num_free(); // 4 free slots

}
};
148 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.24 sc_fifo_in

6.24.1 Description

Class sc_fifo_in is a specialized port class for use when reading from a fifo. It provides functions to
conveniently access certain member functions of the fifo to which the port is bound.

6.24.2 Class definition

namespace sc_core {

template <class T>
class sc_fifo_in
: public sc_port<sc_fifo_in_if<T>,0>
{

public:
sc_fifo_in();
explicit sc_fifo_in(const char*);
virtual ~sc_fifo_in();

void read(T&);
T read();
bool nb_read(T&);
const sc_event& data_written_event() const;
sc_event_finder& data_written() const;
int num_available() const;
virtual const char* kind() const;

private:
// Disabled
sc_fifo_in(const sc_fifo_in<T>&);
sc_fifo_in<T>& operator= (const sc_fifo_in<T>&);

};

} // namespace sc_core

6.24.3 Member functions

The constructors shall pass their arguments to the corresponding constructor for the base class sc_port.

Member functions read, nb_read, data_written_event, and num_available shall each call the
corresponding member function of the object to which the port is bound via operator-> of class sc_port, for
example:

T read() { return (*this)->read(); }

Member function data_written shall return a reference to class event_finder, where the event finder object
itself shall be constructed using the member function data_written_event (see 5.7).

Member function kind shall return the string "sc_fifo_in".
.
Copyright © 2005 OSCI. All rights reserved. 149

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.25 sc_fifo_out

6.25.1 Description

Class sc_fifo_out is a specialized port class for use when writing to a fifo. It provides functions to
conveniently access certain member functions of the fifo to which the port is bound.

6.25.2 Class definition

namespace sc_core {

template <class T>
class sc_fifo_out
: public sc_port<sc_fifo_out_if<T>,0>
{

public:
sc_fifo_out();
explicit sc_fifo_out(const char*);
virtual ~sc_fifo_out();

void write(const T&);
bool nb_write(const T&);
const sc_event& data_read_event() const;
sc_event_finder& data_read() const;
int num_free() const;
virtual const char* kind() const;

private:
// Disabled
sc_fifo_out(const sc_fifo_out<T>&);
sc_fifo_out<T>& operator= (const sc_fifo_out<T>&);

};

} // namespace sc_core

6.25.3 Member functions

The constructors shall pass their arguments to the corresponding constructor for the base class sc_port.

Member functions write, nb_write, data_read_event, and num_free shall each call the corresponding
member function of the object to which the port is bound via operator-> of class sc_port, for example:
void write(const T& a) { (*this)->write(a); }

Member function data_read shall return a reference to class event_finder, where the event finder object
itself shall be constructed using the member function data_read_event (see 5.7).

Member function kind shall return the string "sc_fifo_out".

Example:

class U
{

150 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
public:
U(int val = 0) // If any constructor exists, a default constructor is required.
{

ptr = new int;
*ptr = val;

}
int get() const { return *ptr; }
void set(int i) { *ptr = i; }
// Default assignment semantics are inadequate
const U& operator= (const U& arg) { *(this->ptr) = *(arg.ptr); return *this; }

private:
int *ptr;

};

// operator<< required
std::ostream& operator<< (std::ostream& os, const U& arg) { return (os << arg.get()); }

SC_MODULE(M1)
{

sc_fifo_out<U> fifo_out;

SC_CTOR(M1)
{

SC_THREAD(producer);
}

void producer()
{

U u;
for (int i = 0; i < 4; i++)
{

u.set(i);
bool status;
do {

wait(1, SC_NS);
status = fifo_out.nb_write(u); // Non-blocking write

} while (!status);
}

}
};

SC_MODULE(M2)
{

sc_fifo_in<U> fifo_in;

SC_CTOR(M2)
{

SC_THREAD(consumer);
sensitive << fifo_in.data_written();

}

void consumer()
{

for (;;)
.
Copyright © 2005 OSCI. All rights reserved. 151

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
{
wait(fifo_in.data_written_event());
U u;
bool status = fifo_in.nb_read(u);
std::cout << u << " "; // 0 1 2 3

}
}

};

SC_MODULE(Top)
{

sc_fifo<U> fifo;
M1 m1;
M2 m2;

SC_CTOR(Top)
: m1("m1"), m2("m2")
{

m1.fifo_out(fifo);
m2.fifo_in (fifo);

}
};
152 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.26 sc_mutex_if

6.26.1 Description

Class sc_mutex_if is an interface proper, and is implemented by the predefined channel sc_mutex.

6.26.2 Class definition

namespace sc_core {

class sc_mutex_if
: virtual public sc_interface
{

public:
virtual int lock() = 0;
virtual int trylock() = 0;
virtual int unlock() = 0;

protected:
sc_mutex_if();

private:
// Disabled
sc_mutex_if(const sc_mutex_if&);
sc_mutex_if& operator= (const sc_mutex_if&);

};

} // namespace sc_core

6.26.3 Member functions

The behavior of the member functions of class sc_mutex_if is defined in class sc_mutex.
.
Copyright © 2005 OSCI. All rights reserved. 153

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.27 sc_mutex

6.27.1 Description

Class sc_mutex is a predefined primitive channel intended to model the behavior of a mutual exclusion lock
as used to control access to a resource shared by concurrent processes. A mutex is an object of class
sc_mutex. A mutex shall be in one of two exclusive states: unlocked or locked. Only one process can lock a
given mutex at one time. A mutex can only be unlocked by the particular process that locked the mutex, but
may be locked subsequently by a different process.

NOTE—Although sc_mutex is derived from sc_prim_channel, sc_mutex does not use the request update
mechanism.

6.27.2 Class definition

namespace sc_core {

class sc_mutex
: public sc_mutex_if, public sc_prim_channel
{

public:
sc_mutex();
explicit sc_mutex(const char*);

virtual int lock();
virtual int trylock();
virtual int unlock();

virtual const char* kind() const;

private:
// Disabled
sc_mutex(const sc_mutex&);
sc_mutex& operator= (const sc_mutex&);

};

} // namespace sc_core

6.27.3 Constructors

explicit sc_mutex();
This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(sc_gen_unique_name("mutex"))

explicit sc_mutex(const char* name_);
This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(name_)

Both constructors shall unlock the mutex.
154 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.27.4 Member functions

virtual int lock();
If the mutex is unlocked, member function lock shall lock the mutex and return.

If the mutex is locked, member function lock shall suspend until the mutex is unlocked (by another
process), at which point it shall resume and attempt to lock the mutex by applying these same rules
again.

Member function lock shall unconditionally return the value 0.

If multiple processes attempt to lock the mutex in the same delta cycle, the choice of which process
is given the lock in that delta cycle shall be non-deterministic; that is, it will rely on the order in
which processes are resumed within the evaluation phase.

virtual int trylock();
If the mutex is unlocked, member function trylock shall lock the mutex and shall return the value 0.

If the mutex is locked, member function trylock shall immediately return the value -1. The mutex
shall remain locked.

virtual int unlock();
If the mutex is unlocked, member function unlock shall return the value -1. The mutex shall remain
unlocked.

If the mutex was locked by a process other than the calling process, member function unlock shall
return the value -1. The mutex shall remain locked.

If the mutex was locked by the calling process, member function unlock shall unlock the mutex and
shall return the value 0. If processes are suspended and are waiting for the mutex to be unlocked, the
lock shall be given to exactly one of these processes (the choice of process being non-deterministic)
while the remaining processes shall suspend again. This shall be accomplished within a single
evaluation phase; that is, an implementation shall use immediate notification to signal the act of
unlocking a mutex to other processes.

virtual const char* kind() const;
Member function kind shall return the string "sc_mutex".
.
Copyright © 2005 OSCI. All rights reserved. 155

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.28 sc_semaphore_if

6.28.1 Description

Class sc_semaphore_if is an interface proper, and is implemented by the predefined channel
sc_semaphore.

6.28.2 Class definition

namespace sc_core {

class sc_semaphore_if
: virtual public sc_interface
{

public:
virtual int wait() = 0;
virtual int trywait() = 0;
virtual int post() = 0;
virtual int get_value() const = 0;

protected:
sc_semaphore_if();

private:
// Disabled
sc_semaphore_if(const sc_semaphore_if&);
sc_semaphore_if& operator= (const sc_semaphore_if&);

};

} // namespace sc_core

6.28.3 Member functions

The behavior of the member functions of class sc_semaphore_if is defined in class sc_semaphore.
156 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.29 sc_semaphore

6.29.1 Description

Class sc_semaphore is a predefined primitive channel intended to model the behavior of a software
semaphore as used to provide limited concurrent access to a shared resource. A semaphore has an integer
value, the semaphore value, which is set to the permitted number of concurrent accesses when the
semaphore is constructed.
NOTE - Although sc_semaphore is derived from sc_prim_channel, sc_semaphore does not use the request
update mechanism.

6.29.2 Class definition

namespace sc_core {

class sc_semaphore
: public sc_semaphore_if, public sc_prim_channel
{

public:
explicit sc_semaphore(int);
sc_semaphore(const char*, int);

virtual int wait();
virtual int trywait();
virtual int post();
virtual int get_value() const;

virtual const char* kind() const;

private:
// Disabled
sc_semaphore(const sc_semaphore&);
sc_semaphore& operator= (const sc_semaphore&);

};

} // namespace sc_core

6.29.3 Constructors

explicit sc_semaphore(int);
This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(sc_gen_unique_name("semaphore"))

sc_semaphore(const char* name_, int);

This constructor shall call the base class constructor from its initializer list as follows:
sc_prim_channel(name_)

Both constructors shall set the semaphore value to the value of the int parameter, which shall be non-
negative.
.
Copyright © 2005 OSCI. All rights reserved. 157

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
6.29.4 Member functions

virtual int wait();
If the semaphore value is greater than 0, member function wait shall decrement the semaphore value
and return.

If the semaphore value is equal to 0, member function wait shall suspend until the semaphore value
is incremented (by another process), at which point it shall resume and attempt to decrement the
semaphore value by applying these same rules again.

Member function wait shall unconditionally return the value 0.

The semaphore value shall not become negative. If multiple processes attempt to decrement the
semaphore value in the same delta cycle, the choice of which processes decrements the semaphore
value and which processes suspend shall be non-deterministic; that is, it will rely on the order in
which processes are resumed within the evaluation phase.

virtual int trywait();
If the semaphore value is greater than 0, member function trywait shall decrement the semaphore
value and shall return the value 0.

If the semaphore value is equal to 0, member function trywait shall immediately return the value -1
without modifying the semaphore value.

virtual int post();
Member function post shall increment the semaphore value. If processes exist that are suspended
and are waiting for the semaphore value to be incremented, exactly one of these processes shall be
permitted to decrement the semaphore value (the choice of process being non-deterministic) while
the remaining processes shall suspend again. This shall be accomplished within a single evaluation
phase; that is, an implementation shall use immediate notification to signal the act incrementing the
semaphore value to any waiting processes.

Member function post shall unconditionally return the value 0.

virtual int get_value() const;
Member function get_value shall return the semaphore value.

virtual const char* kind() const;
Member function kind shall return the string "sc_semaphore".

NOTES

1—The semaphore value may be decremented and incremented by different processes.

2—The semaphore value may exceed the value set by the constructor.
158 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
6.30 sc_event_queue

6.30.1 Description

Class sc_event_queue represents an event queue. Like class sc_event, an event queue has a member
function notify. Unlike an sc_event, an event queue is a hierarchical channel and can have multiple
notifications pending.

6.30.2 Class definition

namespace sc_core {

class sc_event_queue_if
: public virtual sc_interface
{

public:
virtual void notify(double , sc_time_unit) = 0;
virtual void notify(const sc_time&) = 0;
virtual void cancel_all() = 0;

};

class sc_event_queue
: public sc_event_queue_if , public sc_module
{

 public:
sc_event_queue();
explicit sc_event_queue(sc_module_name);
~sc_event_queue();

virtual const char* kind() const;

virtual void notify(double , sc_time_unit);
virtual void notify(const sc_time&);
virtual void cancel_all();

virtual const sc_event& default_event() const;
};

} // namespace sc_core

6.30.3 Constraints on usage

Class sc_event_queue is a hierarchical channel and thus sc_event_queue objects can only be constructed
during elaboration.

NOTE—An object of class sc_event_queue cannot be used in a context requiring an sc_event, but can be used to create
static sensitivity because it implements member function sc_interface::default_event.

6.30.4 Constructors

sc_event_queue();
The default constructor shall call the base class constructor from its initializer list as follows:
sc_module(sc_gen_unique_name("event_queue"))
.
Copyright © 2005 OSCI. All rights reserved. 159

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
explicit sc_event_queue(sc_module_name);
This constructor shall pass the module name argument through to the constructor for the base class
sc_module.

6.30.5 kind

Member function kind shall return the string "sc_event_queue".

6.30.6 Member functions

virtual void notify(double , sc_time_unit);
virtual void notify(const sc_time&);

A call to member function notify with an argument that represents a zero time shall cause a delta
notification on the default event.
A call to function notify with an argument that represents a non-zero time shall cause a timed
notification on the default event at the given time, expressed relative to the simulation time when
function notify is called. In other words, the value of the time argument is added to the current
simulation time to determine the time at which the event will be notified.
If function notify is called when there is a already one or more notifications pending, then the new
notification shall be queued in addition to the pending notifications. Each queued notification shall
occur at the time determined by the semantics of function notify irrespective of the order in which
the calls to notify are made.
The default event shall not be notified more than once in any one delta cycle. If multiple
notifications are pending for the same delta cycle, then those notifications shall occur in successive
delta cycles. If multiple timed notification are pending for the same simulation time, then those
notifications shall occur in successive delta cycles starting with the first delta cycle at that
simulation time step and with no gaps in the sequence.

virtual void cancel_all();
Member function cancel_all shall immediately delete every pending notification for this event
queue object including both delta and timed notifications, but shall have no effect on other event
queue objects.

virtual const sc_event& default_event() const;
Member function default_event shall return a reference to the default event.
The mechanism used to queue notifications shall be implementation-defined, with the proviso that
an event queue object must provide a single default event which is notified once for every call to
member function notify.
NOTE—Event queue notifications are anonymous in the sense that the only information carried by the default
event is its time. A process instance sensitive to the default event cannot tell which call to function notify
caused the event.

Example:

sc_event_queue EQ;

SC_CTOR(Mod)
{

SC_THREAD(T);
160 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
SC_METHOD(M);
sensitive << EQ;
dont_initialize();

}

void T()
{

EQ.notify(2, SC_NS); // M runs at time 2ns
EQ.notify(1, SC_NS); // M runs at time 1ns, 1st or 2nd delta cycle
EQ.notify(SC_ZERO_TIME); // M runs at time 0ns
EQ.notify(1, SC_NS); // M runs at time 1ns, 2nd or 1st delta cycle

}

.
Copyright © 2005 OSCI. All rights reserved. 161

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7. Data types

7.1 Introduction

All native C++ types are supported within a SystemC application. SystemC provides additional data type
classes within the sc_dt namespace to represent values with application-specific word lengths applicable to
digital hardware.

The data type classes consist of the following:
— fixed-precision integers, which are classes derived from class sc_int_base, class sc_uint_base, or

instances of such classes. A fixed-precision integer shall represent a signed or unsigned integer value
at a precision limited by its underlying native C++ representation and its specified word length.

— arbitrary-precision integers, which are classes derived from class sc_signed, class sc_unsigned, or
instances of such classes. An arbitrary-precision integer shall represent a signed or unsigned integer
value at a precision limited only by its specified word length.

— fixed-point types, which are classes derived from class sc_fxnum, or instances of such classes. A
fixed-point type shall represent a signed or unsigned floating point value at a precision limited only
by its specified word length, integer word length, quantization mode, and overflow mode.

— limited-precision fixed-point types, which are classes derived from class sc_fxnum_fast, or instances
of such classes. A limited-precision fixed-point type shall represent a signed or unsigned floating
point value at a precision limited by its underlying native C++ floating point representation and its
specified word length, integer word length, quantization mode, and overflow mode.

— single-bit logic types implement a four-valued logic data type with states logic 0, logic 1, high-
impedance, and unknown and shall be represented by the symbols '0', '1', 'X', and 'Z', respectively.
The lower-case symbols 'x' and 'z' are acceptable alternatives for 'X' and 'Z', respectively, as
assigned character literals.

— bit vectors, which are classes derived from class sc_bv_base, or instances of such classes. A bit vec-
tor shall implement a multiple bit data type where each bit has a state of logic 0 or logic 1 and is rep-
resented by the symbols '0' or '1', respectively.

— logic vectors, which are classes derived from class sc_lv_base, or instances of such classes. A logic
vector shall implement a multiple bit data type where each bit has a state of logic 0, logic 1, high-
impedance, or unknown, and is represented by the symbols '0', '1', 'X', or 'Z'. The lower-case sym-
bols 'x' and 'z' are acceptable alternatives for 'X' and 'Z', respectively, within assigned string literals.

The classes within each category are organized as an object-oriented hierarchy with common behavior
defined in base classes. A class template shall be derived from each base class such that applications can
specify word lengths as template arguments.

The term numeric type is used in this standard to refer to any fixed-precision integer, arbitrary-precision
integer, fixed-point type, or limited-precision fixed-point type. The term vector is used to refer to any bit-
vector or logic-vector. The word length of a numeric type or vector object shall be set when the object is
initialized and shall not subsequently be altered. Each bit within a word shall have an index. The index of the
right-hand bit shall be 0 and is the least-significant bit for numeric types. The index of the left-hand bit shall
be the word length minus 1.

The fixed-precision signed integer base class is sc_int_base. The fixed-precision unsigned integer base class
is sc_uint_base. The corresponding class templates are sc_int and sc_uint, respectively.

The arbitrary-precision signed integer base class is sc_signed. The arbitrary-precision unsigned integer base
class is sc_unsigned. The corresponding class templates are sc_bigint and sc_biguint, respectively.
162 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The signed fixed-point base class is sc_fix. The unsigned fixed-point base class is sc_ufix. The
corresponding class templates are sc_fixed and sc_ufixed, respectively.

The signed limited-precision fixed-point base class is sc_fix_fast. The unsigned limited-precision fixed-
point base class is sc_ufix_fast. The corresponding class templates are sc_fixed_fast and sc_ufixed_fast,
respectively.

The bit vector base class is sc_bv_base. The corresponding class template is sc_bv.

The logic vector base class is sc_lv_base. The corresponding class template is sc_lv.

The single-bit logic type is sc_logic.

NOTE—A data type object should normally be an instance of a data type class template. A data type base
class may be used in place of a derived class template provided only member functions defined in both the
base class and derived class template are called.
.
Copyright © 2005 OSCI. All rights reserved. 163

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.2 Common characteristics

An underlying principle is that native C++ integer and floating-point types, C++ string types, and SystemC
data types may be mixed in expressions.

Equality and bitwise operators can be used for all SystemC data types. Arithmetic and relational operators
can be used with the numeric types only. The semantics and meaning of the equality operators, bitwise
operators, arithmetic operators, and relational operators are the same in SystemC as in C++.

User-defined conversions support translation from SystemC types to C++ native types and other SystemC
types.

NOTES
1—The bitwise shift left or shift right operation has no meaning for a single-bit logic type and is undefined.

2—The term user-defined conversions in this context has the same meaning as in the C++ standard. It applies to type
conversions of class objects via constructors and conversion functions that are used for implicit type conversions and
explicit type conversions.

3—Care should be taken when mixing signed and unsigned numeric types in expressions that use implicit type
conversions since an application is not required to issue a warning if the polarity of a converted value is changed.

7.2.1 Initialization and assignment operators

Overloaded constructors shall be provided for all integer (fixed-precision integer and arbitrary-precision
integer) class templates that allow initialization with an object of any SystemC data type.

Overloaded constructors shall be provided for all vector (bit-vector and logic-vector) class templates that
allow initialization with an object of any SystemC integer or vector data type.

Overloaded constructors shall be provided for all fixed-point and limited precision fixed-point class
templates that allow initialization with an object of any SystemC integer data type.

All data type classes shall define a copy constructor that creates a copy of the specified object with the same
value and the same word length.

Overloaded assignment operators and constructors shall perform direct or indirect conversion between
types. The data type base classes may define a restricted set of constructors and assignment operators that
only permit direct initialization from a subset of the SystemC data types.

If the target of an assignment operation has a word length that is insufficient to hold its assigned value, the
left-hand bits of the value stored shall be truncated to fit the target word length. If a data type object or string
literal is assigned to a target having a greater word length, the value shall be extended with additional bits at
its left-hand side to match the target word length. Extension of a signed numeric type shall preserve both its
sign and magnitude and is referred to as sign extension. Extension of all other types shall insert bits with a
value of logic 0 and is referred to as zero extension.

Assignment of a fixed-point type to an integer type shall use the integer component only; any fractional
component is discarded.

Assignment of a value with a word length greater than 1 to a single-bit logic type shall be an error.

NOTE—An integer literal is always treated as unsigned, unless prefixed by a minus symbol. An unsigned integer literal
will always be extended with leading zeros when assigned to a data type object having a larger word length, regardless
of whether the object itself is signed or unsigned.
164 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.2.2 Base class default word length

The default word length of a data type base class shall be used where its default constructor is called
(implicitly or explicitly). The default word length shall be set by the length parameter in context at the point
of construction. A length parameter may be brought into context by creating a length context object. Length
contexts shall have local scope and by default be activated immediately. Once activated, they shall remain in
effect for as long as they are in scope, or until another length context is activated. Activation of a length
context shall be deferred if its second constructor argument is SC_LATER (the default value is SC_NOW).
A deferred length context can be activated by calling its begin member function.

Length contexts shall be managed by a global length context stack. When a length context is activated, it
shall be placed at the top of the stack. A length context may be deactivated and removed from the top of the
stack by calling its end member function. The end method shall only be called for the length context
currently at the top of the context stack. A length context is also deactivated and removed from the stack
when it goes out of scope. The current context shall always be the length context at the top of the stack.

A length context shall only be activated once. An active length context shall only be deactivated once.

The sc_length_param and sc_length_context classes shall be used to create length parameters and length
contexts respectively for SystemC integers and vectors.

In addition to the word length, the fixed-point types shall have default integer word length and mode
attributes. These shall be set by the fixed-point type parameter in context at the point of construction. A
fixed-point type parameter shall be brought into context by creating a fixed-point type context object. The
use of a fixed-point type context shall follow the same rules as a length context. A stack for fixed-point type
contexts that has same characteristics as the length context stack shall exist.

The sc_fxtype_params and sc_fxtype_context classes shall be used to create fixed-point type parameters
and fixed-point type contexts, respectively.

Example:

sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2]; // Array of 10-bit integers
sc_core::sc_signal<sc_int_base> S1; // Signal of 10-bit integer
I1[1] = true; // Selected bit used as lvalue
bool b0 = I1[0].to_bool(); // Selected bit used as rvalue
{

sc_length_param length12(12);
sc_length_context cntxt12(length12,SC_LATER); // cntxt12 deferred
sc_length_param length14(14);
sc_length_context cntxt14(length14,SC_LATER); // cntxt14 deferred
sc_uint_base var1; // length 10
cntxt14.end(); // cntx12 restored
sc_bv_base var4; // length 12

} // cntxt12 out of scope, cntx10 restored
sc_bv_base var5; // length 10

NOTES

1—The context stacks allow a default context to be locally replaced by an alternative context and subsequently restored.

2 - An activated context remains active for the lifetime of the context object or until it is explicitly deactivated. A context
can therefore affect the default parameters of data type objects created outside of the function in which it is activated. An
.
Copyright © 2005 OSCI. All rights reserved. 165

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
application should ensure that any contexts created or activated within functions whose execution order is non-
deterministic do not result in temporal ordering dependencies in other parts of the application. Failure to meet this
condition could result in behavior that is implementation-dependent.

7.2.3 Word length

The word length (a positive integer indicating the number of bits) of a SystemC integer, vector, part-select or
concatenation shall be returned by the length member function.

7.2.4 Bit-select

Bit-selects are objects that reference the bit at the specified position within an associated object that is a
SystemC numeric type or vector.

The C++ subscript operator (operator[]) shall be overloaded to create a bit-select when called with a single
positive integer argument specifying the bit position. It shall be an error if the specified bit position is
outside the bounds of its numeric type or vector object.

User-defined conversions shall allow bit-selects to be used in expressions where a bool object operand is
expected. A bit-select of an lvalue may be used as an rvalue or an lvalue. A bit-select of an rvalue shall only
be used as an rvalue.

An lvalue bit-select may be assigned a bool value or the value of another bit-select. The assignment shall
modify the state of the selected bit within its associated numeric type or vector object. An application shall
not assign a value to an rvalue bit-select.

Bit-selects for integer, bit vector, and logic vector types shall have an explicit to_bool conversion function
that returns the state of the selected bit.

Example:

sc_int<4> I1; // 4 bit signed integer
I1[1] = true; // selected bit used as lvalue
bool b0 = I1[0].to_bool(); //.selected bit used as rvalue

NOTES

1—A bit-select is created automatically from a proxy class. The term proxy class is used here to mean a class whose only
purpose is to extend the readability of certain statements that would otherwise be restricted by the semantics of C++. An
example is to allow an sc_int variable to be used as if it was a C++ array of bool. Proxy classes are only intended to be
used for the temporary (unnamed) value returned by a function. A proxy class constructor shall not be called explicitly
by an application to create a named object.

2—Bit-selects corresponding to lvalues and rvalues of a particular type are distinct classes.

3—A bit-select class can contain user-defined conversions for both implicit and explicit conversion of the selected bit
value to bool.

7.2.5 Part-select

Part-selects are objects that provide access to a contiguous subset of bits within an associated object that is a
numeric type or vector.

A part-select shall be created by calling the range(int , int) member function for a numeric type, bit vector,
or logic vector object with two positive integer arguments specifying left and right-hand index positions. A
part-select shall provide a reference to a word within its associated object, starting at the left-hand index
166 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
position and extending to, and including, the right-hand index position. It shall be an error if the left-hand
index position or right-hand index position lie outside the bounds of the object.

The C++ function call operator (operator()) shall be overloaded to create a part-select and may be used as a
direct replacement for the range function.

User-defined conversions shall allow a part-select to be used in expressions where the expected operand is
an object of the numeric type or vector type associated with the part-select, subject to certain constraints (see
7.5.7.3, 7.6.8.3, 7.9.8.3). A part-select of an lvalue may be used as an rvalue or an lvalue. A part-select of an
rvalue shall only be used as an rvalue.

Integer part selects may be directly assigned to an object of any other SystemC data type, with the exception
of bit-selects. Fixed-point part-selects may be directly assigned to any SystemC integer or vector, any part-
select or any concatenation. Vector part-selects may only be directly assigned to a vector, vector part-select,
or vector concatenation (assignments to other types are ambiguous or require an explicit conversion).

The bits within a part-select do not reflect the sign of their associated object and shall be taken as
representing an unsigned binary number when converted to a numeric value. Assignments of part-selects to
a target having a greater word length shall be zero extended regardless of the type of their associated object.

Example:

sc_int<8> I2 = 2; // "0b00000010"
I2.range(3,2) = I2.range(1,0); // "0b00001010"
sc_int<8> I3 = I2.range(3,0); // "0b00001010"

// Zero-extended to 8 bits
sc_bv<8> b1 = "0b11110000";
b1.range(5,2) = b1.range(2,3); // "0b11001100"

// Reversed bit-order between position 5 and 2

NOTES

1—A part-select is created automatically from a proxy class.

2—Using a part-select to reverse the bit-order of a fixed-precision integer type shall be an error.

3—Part-selects corresponding to lvalues and rvalues of a particular type may be distinct classes.

4—A part-select is not required to be an acceptable replacement where an object reference operand is expected. If an
implementation provides a mechanism to allow such replacements (for example, by defining the same member
functions) it is not required to do so for all data types.

7.2.6 Concatenation

Concatenations are objects that reference the bits within multiple objects as if they were part of a single
aggregate object.

A concatenation shall be created by calling the concat(arg0 , arg1) function. The concatenation arguments
(arg0 and arg1) may be two SystemC integer, vector, bit-select, part-select, or concatenation objects. The
C++ comma operator (operator ,) shall also be overloaded to create a concatenation and may be used as a
direct replacement for the concat function.

A concatenation argument shall have a corresponding concatenation base type. An implementation shall
provide a common concatenation base type for all SystemC integers and a common concatenation base type
for all vectors. The concatenation base type of bit-select and part-select concatenation arguments is the same
as their associated integer or vector objects. The concatenation arguments may be any combination of two
.
Copyright © 2005 OSCI. All rights reserved. 167

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
objects having the same concatenation base type. Concatenations shall have a concatenation base type that is
the same as their concatenation arguments. The set of permissible concatenation arguments for a given
concatenation base type consists of the following:

a) Objects whose base class or concatenation base type matches the given concatenation base type
b) Bit-selects of a)
c) Part-selects of a)
d) Concatenations of a) and/or b) and/or c) in any combination.

When both concatenation arguments are lvalues, the concatenation shall be an lvalue. If any concatenation
argument is an rvalue, the concatenation shall be an rvalue.

A single concatenation argument may be a bool value when the other argument is a SystemC integer, vector,
bit-select, part-select, or concatenation object. The resulting concatenation shall be an rvalue.

The bits within a concatenation shall be referenced from left to right in the same order as the concatenation
is declared (by its concatenation arguments). Using a concatenation as an rvalue shall return the aggregate
value of its concatenation arguments. Assignment to a concatenation shall update the values of the objects
specified by its concatenation arguments.

A concatenation may be assigned to an object whose base class is the same as the concatenation base type.
Where a concatenation is assigned to a target having a greater word length than the concatenation, it is zero-
extended to the target length.

An lvalue concatenation may be assigned from any expression whose return value has a base type that is the
same as the concatenation base type. Where a concatenation with a signed base type is assigned a value
having a smaller word length, the value is sign-extended to the concatenation length. Assignments to
concatenations of all other numeric types and vectors shall be zero-extended (if required).

Example:

The following concatenations are well formed:

sc_uint<8> U1 = 2; // "0b00000010"
sc_uint<2> U2 = 1; // "0b01"
sc_uint<8> U3 = (true,U1.range(3,0),U2,U2[0]); // U3 = "0b10010010"

// Base class same as concatenation base type
(U2[0],U1[0],U1.range(7,1)) = (U1[7],U1); // Copies U1[7] to U2[0], U1 rotated left
concat(U2[0],concat(U1[0],U1.range(7,1))) = concat(U1[7],U1);

// Same as previous example but using concat

The following concatenations are ill-formed:

sc_bv<8> Bv1;
(Bv1,U1) = "0xffff"; // Bv1 and U1 do not share common base type

bool C1=true; bool C2 = false;
U2 = (C1,C1); // Cannot concatenate 2 bool objects
(C1,I1) = "0x1ff"; // Bool concatenation argument creates rvalue

NOTES

1—A concatenation is created automatically from a proxy class.
168 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
2—Parenthesis are required around the concatenation arguments when using the C++ comma operator due to its low
precedence.

3—An implementation is not required to support bit-selects and part-selects of concatenations.

4—Concatenations corresponding to lvalues and rvalues of a particular type may be distinct classes.

7.2.7 Reduction operators

The reduction operators shall perform a sequence of bit-wise operations on a SystemC integer or vector to
produce a bool result. The first step shall be a boolean operation applied to the first and second bits of the
object. The boolean operation shall then be re-applied using the previous result and the next bit of the object.
This process shall be repeated until every bit of the object has been processed. The value returned shall be
the result of the final boolean operation. The following reduction operators shall be provided:

a) and_reduce performs a bit-wise AND between all bits.
b) nand_reduce performs a bit-wise NAND between all bits.
c) or_reduce performs a bit-wise OR between all bits.
d) nor_reduce performs a bit-wise NOR between all bits.
e) xor_reduce performs a bit-wise XOR between all bits.
f) xnor_reduce performs a bit-wise XNOR between all bits.

7.2.8 Integer conversion

All SystemC data types shall provide an assignment operator that can accept a C++ integer value. A signed
value shall be sign-extended to match the length of the SystemC data type target.

SystemC data types shall provide member functions for explicit type conversion to C++ integer types as
follows:

a) to_int converts to native C++ int type.
b) to_uint converts to native C++ unsigned type.
c) to_long converts to native C++ long type.
d) to_ulong converts to native C++ unsigned long type.
e) to_uint64() converts to a native C++ unsigned integer type having a word length of 64 bits.
f) to_int64() converts to native C++ integer type having a word length of 64 bits.

The explicit conversion to C++ types shall interpret the bits within a SystemC integer, fixed-point type or
vector, or any part-select or concatenation thereof, as representing an unsigned binary value, with the
exception of signed integers and signed fixed-point types.

Truncation shall be performed where necessary for the value to be represented as a C++ integer.

Attempting to convert a logic vector containing 'X' or 'Z' values to an integer is an error.

7.2.9 String input and output

All SystemC data types shall provide a scan member function that allows an object value to be assigned
from a C++ input stream.

All SystemC data types shall provide a print member function that allows an object value to be written to a
C++ output stream.
.
Copyright © 2005 OSCI. All rights reserved. 169

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
All SystemC data types shall support the output stream inserter (operator<<) for formatted printing to a
C++ stream.

All SystemC data types shall support the input stream inserter (operator>>) for formatted input from a C++
input stream.

7.2.10 Conversion of application-defined types in integer expressions

The generic base proxy class template sc_generic_base shall be provided and may be used as a base class
for application-defined classes.

All SystemC integer, integer part-select, and integer concatenation classes shall provide an assignment
operator that accepts an object derived from the generic base proxy class template. All SystemC integer
classes shall additionally provide an overloaded constructor with a single argument that is a constant
reference to a generic base proxy object.

NOTE— The generic base proxy class is not included in the collection of classes described by the term “data types” as
used in this standard.
170 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.3 String literals

A string literal representation may be used as the value of a SystemC numeric or vector type object. It shall
consist of a standard prefix followed by a magnitude expressed as one or more digits.

The magnitude representation for SystemC integer types shall be based on that of C++ integer literals.

The magnitude representation for SystemC vector types shall be based on that of C++ unsigned integer
literals.

The magnitude representation for SystemC fixed-point types shall be based on that of C++ floating literals
but without the optional floating suffix.

The permitted representations are identified with a symbol from the enumerated type sc_numrep as
specified in Table 1.

A string literal value may be assigned to an object of any SystemC numeric type or vector. Integer string
literals shall be assumed to be signed numbers by default and shall be sign-extended if assigned to an object
having a longer word length.

The canonical signed digit representation shall use the character ‘-’ to represent the bit value -1.

A bit pattern string (containing bit or logic character values with no prefix) may be assigned to a vector. If
the number of characters in the bit pattern string is less than the vector word length, the sting shall be zero
extended at its left-hand side to the vector word length.The result of assigning such a string to a numeric
type is undefined.

Table 1—String literal representation

sc_numrep Prefix Magnitude format

SC_DEC 0d decimal

SC_BIN 0b binary

SC_BIN_US 0bus binary unsigned

SC_BIN_SM 0bsm binary sign & magnitude

SC_OCT 0o octal

SC_OCT_US 0ous octal unsigned

SC_OCT_SM 0osm octal sign & magnitude

SC_HEX 0x hexadecimal

SC_HEX_US 0xus hexadecimal unsigned

SC_HEX_SM 0xsm hexadecimal sign & magnitude

SC_CSD 0csd canonical signed digit
.
Copyright © 2005 OSCI. All rights reserved. 171

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
An instance of a SystemC numeric type, vector, part-select or concatenation may be converted to a C++
std::string object by calling its to_string member function. The signature of to_string shall be as follows:

std::string to_string(sc_numrep numrep , bool with_prefix)

Where numrep shall be one of the sc_numrep values given in Table 1. The magnitude representation in a
string created from an unsigned integer or vector shall be prefixed by a single zero, except where numrep is
SC_DEC. If the with_prefix argument is true, the prefix corresponding to the numrep value in Table 1
shall be appended to the left-hand side of the resulting string. The default value of with_prefix shall be true.

It shall be an error to call the to_string member function of a logic-vector object if any of its elements have
the value 'X' or 'Z'.

The value of an instance of a single-bit logic type may be converted to a single character by calling its
to_char member function.

Example:

sc_int<4> I1; // 4-bit signed integer
I1 = "0b10100"; // 5-bit signed binary literal truncated to 4 bits
std::string S1 = I1.to_string(SC_BIN,true); // The contents of S1 will be the string "0b0100"
sc_int<10> I2; // 10-bit integer
I2 = "478"; // Decimal equivalent of "0b0111011110"
std::string S2 = I2.to_string(SC_CSD,false); // The contents of S2 will be the string "1000-000-0"
sc_uint<8> I3; // 8-bit unsigned integer
I3 = "0x7"; // Zero-extended to 8-bit value "0x07"
std::string S3 = I3.to_string(SC_HEX); // The contents of S3 will be the string "0x007"
sc_lv<16> lv; // 16-bit logic vector
lv = "0xff"; // Sign-extended to 16-bit value "0xffff"
std::string S4 = lv.to_string(SC_HEX); // The contents of S4 will be the string "0x0ffff"
sc_bv<8> bv; // 8-bit bit vector
bv = "11110000"; // Bit pattern string
std::string S5 = bv.to_string(SC_BIN); // The contents of S5 will be the string "0b011110000"

NOTE—SystemC data types may provide additional overloaded to_string functions that require a different number of
arguments.
172 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.4 sc_value_base†

7.4.1 Description

Class sc_value_base† provides a common base class for all SystemC integer types. It provides a set of
virtual methods that may be called by an implementation to perform concatenation operations.

7.4.1.1 Class definition

namespace sc_dt {

class sc_value_base†
{

friend class sc_concatref†;
private:

virtual void concat_clear_data(bool to_ones=false);
virtual bool concat_get_ctrl(unsigned long* dst_p , int low_i) const;
virtual bool concat_get_data(unsigned long* dst_p , int low_i) const;
virtual uint64 concat_get_uint64() const;
virtual int concat_length(bool* xz_present_p=0) const;
virtual void concat_set(int64 src , int low_i);
virtual void concat_set(const sc_signed& src , int low_i);
virtual void concat_set(const sc_unsigned& src , int low_i);
virtual void concat_set(uint64 src , int low_i);

};

} // namespace sc_dt

7.4.1.2 Constraints on usage

An application should not create an object of type sc_value_base† and should not directly call any member
function inherited by a derived class from an sc_value_base† parent.

If an application-defined class derived from the generic base proxy class template sc_generic_base also
inherits sc_value_base†, objects of this class may be used as arguments to an integer concatenation. Such a
class shall override the virtual member functions of sc_value_base† as private members to provide the
concatenation operations permitted for objects of that type.

It shall be an error for any member function of sc_value_base† that is not overriden in a derived class, to be
called for an object of the derived class.

7.4.1.3 Member functions

virtual void concat_clear_data(bool to_ones=false);
Member function concat_clear_data shall set every bit in the sc_value_base† object to the state
provided by the argument.

virtual bool concat_get_ctrl(unsigned long* dst_p , int low_i) const;
Member function concat_get_ctrl shall copy control data to the packed-array given as the first
argument, starting at the bit position within the packed-array given by the second argument. The
return value shall always be false for SystemC 2.1.
.
Copyright © 2005 OSCI. All rights reserved. 173

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
virtual bool concat_get_data(unsigned long* dst_p , int low_i) const;
Member function concat_get_data shall copy data to the packed-array given as the first argument,
starting at the bit position within the packed-array given by the second argument. The return value
shall be true if the data is non-zero; otherwise, it shall be false.

virtual uint64 concat_get_uint64() const;
Member function concat_get_uint64 shall return the value of the sc_value_base† object as a C++
unsigned integer having a word length of exactly 64-bits.

virtual int concat_length(bool* xz_present_p=0) const;
Member function concat_length shall return the number of bits in the sc_value_base† object. The
value of the object associated with the optional argument shall be set to true if any bits have the
value 'X'' or 'Z'.

virtual void concat_set(int64 src , int low_i);
virtual void concat_set(const sc_signed& src , int low_i);
virtual void concat_set(const sc_unsigned& src , int low_i);
virtual void concat_set(uint64 src , int low_i);

Member function concat_set shall set the value of the sc_value_base† object to the bit-pattern of the
integer given by the first argument. The bit-pattern shall be read as a contiguous sequence of bits
starting at the position given by the second argument.
174 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.5 Fixed-precision integer types

7.5.1 Type definitions

The following type definitions are used in the fixed-precision integer type classes:

typedef implementation-defined int_type;
typedef implementation-defined uint_type;
typedef implementation-defined int64;
typedef implementation-defined uint64;

int_type is an implementation-dependent native C++ integer type. An implementation shall provide a
minimum representation size of 64 bits.

uint_type is an implementation-dependent native C++ unsigned integer type. An implementation shall
provide a minimum representation size of 64 bits.

int64 is a native C++ integer type having a word length of exactly 64 bits.

uint64 is a native C++ unsigned integer type having a word length of exactly 64 bits.
.
Copyright © 2005 OSCI. All rights reserved. 175

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.5.2 sc_int_base

7.5.2.1 Description

Class sc_int_base represents a finite word length integer. The word length is specified by a constructor
argument or by default, the sc_length_context object currently in scope. The word length of an sc_int_base
object shall be fixed during instantiation and shall not subsequently be changed.

The integer value shall be held in an implementation-dependent native C++ integer type. A minimum
representation size of 64 bits is required.

sc_int_base is the base class for the sc_int class template.

7.5.2.2 Class definition

namespace sc_dt {

class sc_int_base
: public sc_value_base†

{
friend class sc_uint_bitref_r†;
friend class sc_uint_bitref†;
friend class sc_uint_subref_r†;
friend class sc_uint_subref†;

public:
// Constructors
explicit sc_int_base(int w = sc_length_param().len());
sc_int_base(int_type v , int w);
sc_int_base(const sc_int_base& a);

template< typename T >
explicit sc_int_base(const sc_generic_base<T>& a);
explicit sc_int_base(const sc_int_subref_r†& a);
explicit sc_int_base(const sc_signed& a);
explicit sc_int_base(const sc_unsigned& a);
explicit sc_int_base(const sc_bv_base& v);
explicit sc_int_base(const sc_lv_base& v);
explicit sc_int_base(const sc_uint_subref_r†& v);
explicit sc_int_base(const sc_signed_subref_r†& v);
explicit sc_int_base(const sc_unsigned_subref_r†& v);

// Destructor
~sc_int_base();

// Assignment operators
sc_int_base& operator= (int_type v);
sc_int_base& operator= (const sc_int_base& a);
sc_int_base& operator= (const sc_int_subref_r†& a);
template<class T>
sc_int_base& operator = (const sc_generic_base<T>& a);
sc_int_base& operator= (const sc_signed& a);
sc_int_base& operator= (const sc_unsigned& a);
sc_int_base& operator= (const sc_fxval& a);
176 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_int_base& operator= (const sc_fxval_fast& a);
sc_int_base& operator= (const sc_fxnum& a);
sc_int_base& operator= (const sc_fxnum_fast& a);
sc_int_base& operator= (const sc_bv_base& a);
sc_int_base& operator= (const sc_lv_base& a);
sc_int_base& operator= (const char* a);
sc_int_base& operator= (unsigned long a);
sc_int_base& operator= (long a);
sc_int_base& operator= (unsigned int a);
sc_int_base& operator= (int a);
sc_int_base& operator= (uint64 a);
sc_int_base& operator= (double a);

// Prefix and postfix increment and decrement operators
sc_int_base& operator++ (); // prefix
const sc_int_base operator++ (int); // postfix
sc_int_base& operator-- (); // prefix
const sc_int_base operator-- (int); // postfix

// Bit selection
sc_int_bitref† operator[] (int i);
sc_int_bitref_r† operator[] (int i) const;

// Part selection
sc_int_subref† operator() (int left , int right);
sc_int_subref_r† operator() (int left , int right) const;
sc_int_subref† range(int left , int right);
sc_int_subref_r† range(int left , int right) const;

// Capacity
int length() const;

// Reduce methods
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Implicit conversion to int_type
operator int_type() const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
.
Copyright © 2005 OSCI. All rights reserved. 177

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

// Other methods
void print(std::ostream& os = std::cout) const;
void scan(std::istream& is = std::cin);

};

} // namespace sc_dt

7.5.2.3 Constraints on usage

The word length of an sc_int_base object shall not be greater than the maximum size of the integer
representation used to hold its value.

7.5.2.4 Constructors

explicit sc_int_base(int w = sc_length_param().len());
Constructor sc_int_base shall create an object of word length specified by w. It is the default
constructor when w is not specified (in which case its value shall be set by the current length
context). The initial value of the object shall be 0.

sc_int_base(int_type v , int w);
Constructor sc_int_base shall create an object of word length specified by w with initial value
specified by v. Truncation of most significant bits shall occur if the value cannot be represented in
the specified word length.

template< class T >
sc_int_base(const sc_generic_base<T>& a);

Constructor sc_int_base shall create an sc_int_base object with a word length matching the
constructor argument. The to_int64 member function of the constructor argument shall be called to
set the initial value.

The other constructors shall create an sc_int_base object whose size and value matches that of the
argument. The size of the argument shall not be greater than the maximum word length of an sc_int_base.
object

7.5.2.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_int_base, using truncation or sign-extension as described in 7.2.1.

7.5.2.6 Implicit type conversion

operator int_type() const;
Operator int_type can be used for implicit type conversion from sc_int_base to the native C++
integer representation.

NOTES

1—This operator enables the use of standard C++ bitwise logical and arithmetic operators with sc_int_base
objects.
178 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
2—This operator is used by the C++ output stream operator and by the member functions of other data type
classes that are not explicitly overload for sc_int_base.

7.5.2.7 Explicit type conversion

const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep, bool w_prefix) const;

Member function to_string shall perform the conversion to an std::string as described in 7.2.10.
Calling the to_string function with a single argument is equivalent to calling the to_string function
with two arguments where the second argument is true. Calling the to_string function with no
arguments is equivalent to calling the to_string function with two arguments where the first
argument is SC_DEC and the second argument is true.

7.5.2.8 Arithmetic, bitwise, and comparison operators

Operations specified in Table 2 are permitted. The following applies:
— I represents an object of type sc_int_base.
— i represents an object of integer type int_type.

The arguments of the comparison operators may also be of any other class that is derived from sc_int_base.

Table 2—sc_int_base arithmetic, bitwise, and comparison operations

Expression Return class Operational semantics

I += i sc_int_base& sc_int_base assign sum

I -= i sc_int_base& sc_int_base assign difference

I *= i sc_int_base& sc_int_base assign product

I /= i sc_int_base& sc_int_base assign quotient

I %= i sc_int_base& sc_int_base assign remainder

I &= i sc_int_base& sc_int_base assign bitwise and
.
Copyright © 2005 OSCI. All rights reserved. 179

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Arithmetic and bitwise operations permitted for C++ integer types shall be permitted for sc_int_base objects
via implicit type conversions. The return type of these operations is an implementation-dependent C++
integer.

NOTE—An implementation is required to supply overloaded operators on sc_int_base objects to satisfy the
requirements of this clause. It is unspecified whether these operators are members of sc_int_base, global operators, or
provided in some other way.

I |= i sc_int_base& sc_int_base assign bitwise or

I ^= i sc_int_base& sc_int_base assign bitwise exclusive or

I <<= i sc_int_base& sc_int_base assign left-shift

I >>= i sc_int_base& sc_int_base assign right-shift

I == I bool equal

I != I bool not equal

I < I bool less than

I <= I bool less than or equal

I > I bool greater than

I >= I bool greater than or equal

Table 2—sc_int_base arithmetic, bitwise, and comparison operations

Expression Return class Operational semantics
180 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.5.3 sc_uint_base

7.5.3.1 Description

Class sc_uint_base represents a finite word length unsigned integer. The word length shall be specified by a
constructor argument or by default, the sc_length_context object currently in scope. The word length of an
sc_uint_base object shall be fixed during instantiation and shall not subsequently be changed.

The integer value shall be held in an implementation-dependent native C++ unsigned integer type. A
minimum representation size of 64 bits is required.

sc_uint_base is the base class for the sc_uint class template.

7.5.3.2 Class definition

namespace sc_dt {

class sc_uint_base
: public sc_value_base†

{
friend class sc_uint_bitref_r†;
friend class sc_uint_bitref†;
friend class sc_uint_subref_r†;
friend class sc_uint_subref†;

public:
// Constructors
explicit sc_uint_base(int w = sc_length_param().len());
sc_uint_base(uint_type v , int w);
sc_uint_base(const sc_uint_base& a);
explicit sc_uint_base(const sc_uint_subref_r†& a);

template <class T>
explicit sc_uint_base(const sc_generic_base<T>& a);
explicit sc_uint_base(const sc_bv_base& v);
explicit sc_uint_base(const sc_lv_base& v);
explicit sc_uint_base(const sc_int_subref_r†& v);
explicit sc_uint_base(const sc_signed_subref_r†& v);
explicit sc_uint_base(const sc_unsigned_subref_r†& v);
explicit sc_uint_base(const sc_signed& a);
explicit sc_uint_base(const sc_unsigned& a);

// Destructor
~sc_uint_base();

// Assignment operators
sc_uint_base& operator= (uint_type v);
sc_uint_base& operator= (const sc_uint_base& a);
sc_uint_base& operator= (const sc_uint_subref_r†& a);
template <class T>
sc_uint_base& operator= (const sc_generic_base<T>& a);
sc_uint_base& operator= (const sc_signed& a);
sc_uint_base& operator= (const sc_unsigned& a);
sc_uint_base& operator= (const sc_fxval& a);
.
Copyright © 2005 OSCI. All rights reserved. 181

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_uint_base& operator= (const sc_fxval_fast& a);
sc_uint_base& operator= (const sc_fxnum& a);
sc_uint_base& operator= (const sc_fxnum_fast& a);
sc_uint_base& operator= (const sc_bv_base& a);
sc_uint_base& operator= (const sc_lv_base& a);
sc_uint_base& operator= (const char* a);
sc_uint_base& operator= (unsigned long a);
sc_uint_base& operator= (long a);
sc_uint_base& operator= (unsigned int a);
sc_uint_base& operator= (int a);
sc_uint_base& operator= (int64 a);
sc_uint_base& operator= (double a);

// Prefix and postfix increment and decrement operators
sc_uint_base& operator++ (); // prefix
const sc_uint_base operator++ (int); // postfix
sc_uint_base& operator-- (); // prefix
const sc_uint_base operator-- (int); // postfix

// Bit selection
sc_uint_bitref† operator[] (int i);
sc_uint_bitref_r† operator[] (int i) const;

// Part selection
sc_uint_subref† operator() (int left, int right);
sc_uint_subref_r† operator() (int left, int right) const;
sc_uint_subref† range(int left, int right);
sc_uint_subref_r† range(int left, int right) const;

// Capacity
int length() const;

// Reduce methods
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Implicit conversion to uint_type
operator uint_type() const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

 // Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
182 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

// Other methods
void print(std::ostream& os = std::cout) const;
void scan(std::istream& is = std::cin);

};

} // namespace sc_dt

7.5.3.3 Constraints on usage

The word length of an sc_uint_base object shall not be greater than the maximum size of the unsigned
integer representation used to hold its value.

7.5.3.4 Constructors

explicit sc_uint_base(int w = sc_length_param().len());
Constructor sc_uint_base shall create an object of word length specified by w. This is the default
constructor when w is not specified (in which case its value is set by the current length context). The
initial value of the object shall be 0.

sc_uint_base(uint_type v , int w);
Constructor sc_uint_base shall create an object of word length specified by w with initial value
specified by v. Truncation of most significant bits shall occur if the value cannot be represented in
the specified word length.

template< class T >
sc_uint_base(const sc_generic_base<T>& a);

Constructor sc_uint_base shall create an sc_uint_base object with a word length matching the
constructor argument. The to_uint64 member function of the constructor argument shall be called to
set the initial value.

The other constructors shall create an sc_uint_base object whose size and value matches that of the
argument. The size of the argument shall not be greater than the maximum word length of an sc_uint_base.
object

7.5.3.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_uint_base, using truncation or sign-extension as described in 7.2.1.

7.5.3.6 Implicit type conversion

operator uint_type() const;
Operator uint_type can be used for implicit type conversion from sc_uint_base to the native C++
unsigned integer representation.

NOTES

1—This operator enables the use of standard C++ bitwise logical and arithmetic operators with sc_uint_base
objects.
.
Copyright © 2005 OSCI. All rights reserved. 183

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
2—This operator is used by the C++ output stream operator and by the member functions of other data type
classes that are not explicitly overload for sc_uint_base.

7.5.3.7 Explicit type conversion

const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

Member function to_string shall perform the conversion to an std::string as described in 7.2.10.
Calling the to_string function with a single argument is equivalent to calling the to_string function
with two arguments where the second argument is true. Calling the to_string function with no
arguments is equivalent to calling the to_string function with two arguments where the first
argument is SC_DEC and the second argument is true.

7.5.3.8 Arithmetic, bitwise, and comparison operators

Operations specified in Table 3 are permitted. The following applies:
— U represents an object of type sc_uint_base.
— u represents an object of integer type uint_type.

The arguments of the comparison operators may also be of any other class that is derived from
sc_uint_base.

Table 3—sc_uint_base arithmetic, bitwise, and comparison operations

Expression Return class Operational semantics

U += u sc_uint_base& sc_uint_base assign sum

U -= u sc_uint_base& sc_uint_base assign difference

U *= u sc_uint_base& sc_uint_base assign product

U /= u sc_uint_base& sc_uint_base assign quotient

U %= u sc_uint_base& sc_uint_base assign remainder

U &= u sc_uint_base& sc_uint_base assign bitwise and
184 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Arithmetic and bitwise operations permitted for C++ integer types shall be permitted for sc_uint_base
objects via implicit type conversions. The return type of these operations is an implementation-dependent
C++ integer.

NOTE—An implementation is required to supply overloaded operators on sc_uint_base objects to satisfy the
requirements of this clause. It is unspecified whether these operators are members of sc_uint_base, global operators, or
provided in some other way.

U |= u sc_uint_base& sc_uint_base assign bitwise or

U ^= u sc_uint_base& sc_uint_base assign bitwise exclusive or

U <<= u sc_uint_base& sc_uint_base assign left-shift

U >>= u sc_uint_base& sc_uint_base assign right-shift

U == U bool equal

U != U bool not equal

U < U bool less than

U <= U bool less than or equal

U > U bool greater than

U >= U bool greater than or equal

Table 3—sc_uint_base arithmetic, bitwise, and comparison operations

Expression Return class Operational semantics
.
Copyright © 2005 OSCI. All rights reserved. 185

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.5.4 sc_int

7.5.4.1 Description

Class template sc_int represents a finite word length signed integer. The word length shall be specified by a
template argument. All the public methods of its sc_int_base base class shall be public members of sc_int
or shall be overridden to implement the same behavior.

7.5.4.2 Class definition

namespace sc_dt {

template <int W>
class sc_int
: public sc_int_base
{

public:
// Constructors
sc_int();
sc_int(int_type v);
sc_int(const sc_int<W>& a);
sc_int(const sc_int_base& a);
sc_int(const sc_int_subref_r†& a);

template <class T>
sc_int(const sc_generic_base<T>& a);
sc_int(const sc_signed& a);
sc_int(const sc_unsigned& a);
explicit sc_int(const sc_fxval& a);
explicit sc_int(const sc_fxval_fast& a);
explicit sc_int(const sc_fxnum& a);
explicit sc_int(const sc_fxnum_fast& a);
sc_int(const sc_bv_base& a);
sc_int(const sc_lv_base& a);
sc_int(const char* a);
sc_int(unsigned long a);
sc_int(long a);
sc_int(unsigned int a);
sc_int(int a);
sc_int(uint64 a);
sc_int(double a);

// Assignment operators
sc_int<W>& operator= (int_type v);
sc_int<W>& operator= (const sc_int_base& a);

 sc_int<W>& operator= (const sc_int_subref_r†& a);
sc_int<W>& operator= (const sc_int<W>& a);
template <class T>
sc_int<W>& operator= (const sc_generic_base<T>& a);
sc_int<W>& operator= (const sc_signed& a);
sc_int<W>& operator= (const sc_unsigned& a);
sc_int<W>& operator= (const sc_fxval& a);
sc_int<W>& operator= (const sc_fxval_fast& a);
sc_int<W>& operator= (const sc_fxnum& a);
186 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_int<W>& operator= (const sc_fxnum_fast& a);
sc_int<W>& operator= (const sc_bv_base& a);
sc_int<W>& operator= (const sc_lv_base& a);
sc_int<W>& operator= (const char* a);
sc_int<W>& operator= (unsigned long a);
sc_int<W>& operator= (long a);
sc_int<W>& operator= (unsigned int a);
sc_int<W>& operator= (int a);
sc_int<W>& operator= (uint64 a);
sc_int<W>& operator= (double a);

// Prefix and postfix increment and decrement operators
sc_int<W>& operator++ (); // Prefix
const sc_int<W> operator++ (int); // Postfix
sc_int<W>& operator-- (); // Prefix
const sc_int<W> operator-- (int); // Postfix

};

} // namespace sc_dt

7.5.4.3 Constraints on usage

The word length of an sc_int object shall not be greater than the maximum word length of an sc_int_base.

7.5.4.4 Constructors

sc_int();
Default constructor sc_int shall create an sc_int object of word length specified by the template
argument W. The initial value of the object shall be 0.

template< class T >
sc_bigint(const sc_generic_base<T>& a);

Constructor sc_bigint shall create an sc_int object of word length specified by the template
argument. The to_int64 member function of the constructor argument shall be called to set the
initial value.

The other constructors shall create an sc_int object of word length specified by the template argument W
and value corresponding to the integer magnitude of the constructor argument. If the word length of the
specified initial value differs from the template argument, truncation or sign-extension shall be used as
described in 7.2.1.

7.5.4.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_int, using truncation or sign-extension as described in 7.2.1.
.
Copyright © 2005 OSCI. All rights reserved. 187

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.5.4.6 Arithmetic and bitwise operators

Operations specified in Table 4 are permitted. The following applies:
— I represents an object of type sc_int.
— i represents an object of integer type int_type.

Arithmetic and bitwise operations permitted for C++ integer types shall be permitted for sc_int objects via
implicit type conversions. The return type of these operations is an implementation-dependent C++ integer.

NOTE—An implementation is required to supply overloaded operators on sc_int objects to satisfy the requirements of
this clause. It is unspecified whether these operators are members of sc_int, global operators, or provided in some other
way.

Table 4—sc_int arithmetic and bitwise operations

Expression Return class Operational semantics

I += i sc_int<W>& sc_int assign sum

I -= i sc_int<W>& sc_int assign difference

I *= i sc_int<W>& sc_int assign product

I /= i sc_int<W>& sc_int assign quotient

I %= i sc_int<W>& sc_int assign remainder

I &= i sc_int<W>& sc_int assign bitwise and

I |= i sc_int<W>& sc_int assign bitwise or

I ^= i sc_int<W>& sc_int assign bitwise exclusive or

I <<= i sc_int<W>& sc_int assign left-shift

I >>= i sc_int<W>& sc_int assign right-shift
188 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.5.5 sc_uint

7.5.5.1 Description

Class template sc_uint represents a finite word length unsigned integer. The word length shall be specified
by a template argument. All the public methods of its sc_uint_base base class shall be public members of
sc_uint or shall be overridden to implement the same behavior.

7.5.5.2 Class definition

namespace sc_dt {

template <int W>
class sc_uint
: public sc_uint_base
{

public:
// Constructors

sc_uint();
sc_uint(uint_type v);
sc_uint(const sc_uint<W>& a);
sc_uint(const sc_uint_base& a);
sc_uint(const sc_uint_subref_r†& a);
template <class T>
sc_uint(const sc_generic_base<T>& a);
sc_uint(const sc_signed& a);
sc_uint(const sc_unsigned& a);
explicit sc_uint(const sc_fxval& a);
explicit sc_uint(const sc_fxval_fast& a);
explicit sc_uint(const sc_fxnum& a);

 explicit sc_uint(const sc_fxnum_fast& a);
 sc_uint(const sc_bv_base& a);

sc_uint(const sc_lv_base& a);
 sc_uint(const char* a);
 sc_uint(unsigned long a);
 sc_uint(long a);

sc_uint(unsigned int a);
sc_uint(int a);
sc_uint(int64 a);
sc_uint(double a);

// Assignment operators
sc_uint<W>& operator= (uint_type v);
sc_uint<W>& operator= (const sc_uint_base& a);
sc_uint<W>& operator= (const sc_uint_subref_r†& a);
sc_uint<W>& operator= (const sc_uint<W>& a);
template <class T>

 sc_uint<W>& operator= (const sc_generic_base<T>& a);
sc_uint<W>& operator= (const sc_signed& a);
sc_uint<W>& operator= (const sc_unsigned& a);
sc_uint<W>& operator= (const sc_fxval& a);
sc_uint<W>& operator= (const sc_fxval_fast& a);
sc_uint<W>& operator= (const sc_fxnum& a);
.
Copyright © 2005 OSCI. All rights reserved. 189

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_uint<W>& operator= (const sc_fxnum_fast& a);
sc_uint<W>& operator= (const sc_bv_base& a);
sc_uint<W>& operator= (const sc_lv_base& a);
sc_uint<W>& operator= (const char* a);
sc_uint<W>& operator= (unsigned long a);
sc_uint<W>& operator= (long a);
sc_uint<W>& operator= (unsigned int a);

 sc_uint<W>& operator= (int a);
 sc_uint<W>& operator= (int64 a);
 sc_uint<W>& operator= (double a);

// Prefix and postfix increment and decrement operators
sc_uint<W>& operator++ (); // Prefix
const sc_uint<W> operator++ (int); // Postfix
sc_uint<W>& operator-- (); // Prefix

 const sc_uint<W> operator-- (int); // Postfix
};

} // namespace sc_dt

7.5.5.3 Constraints on usage

The word length of an sc_uint object shall not be greater than the maximum word length of an
sc_uint_base.

7.5.5.4 Constructors

sc_uint();
Default constructor sc_uint shall create an sc_uint object of word length specified by the template
argument W. The initial value of the object shall be 0.

template< class T >
sc_uint(const sc_generic_base<T>& a);

Constructor sc_uint shall create an sc_uint object of word length specified by the template
argument. The to_unit64 member function of the constructor argument shall be called to set the
initial value.

The other constructors shall create an sc_uint object of word length specified by the template argument W
and value corresponding to the integer magnitude of the constructor argument. If the word length of the
specified initial value differs from the template argument, truncation or sign-extension shall be used as
described in 7.2.1.

7.5.5.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_uint. If the size of a data type or string literal operand differs from the sc_uint
word length, truncation or sign-extension shall be used as described in 7.2.1.
190 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.5.5.6 Arithmetic and bitwise operators

Operations specified in Table 5 are permitted. The following applies:
— U represents an object of type sc_uint.
— u represents an object of integer type uint_type.

Arithmetic and bitwise operations permitted for C++ integer types shall be permitted for sc_uint objects via
implicit type conversions. The return type of these operations is an implementation dependent C++ integer.

NOTE—An implementation is required to supply overloaded operators on sc_uint objects to satisfy the requirements of
this clause. It is unspecified whether these operators are members of sc_uint, global operators, or provided in some
other way.

Table 5—sc_uint arithmetic and bitwise operations

Expression Return class Operational semantics

U += u sc_uint<W>& sc_uint assign sum

U -= u sc_uint<W>& sc_uint assign difference

U *= u sc_uint<W>& sc_uint assign product

U /= u sc_uint<W>& sc_uint assign quotient

U %= u sc_uint<W>& sc_uint assign remainder

U &= u sc_uint<W>& sc_uint assign bitwise and

U |= u sc_uint<W>& sc_uint assign bitwise or

U ^= u sc_uint<W>& sc_uint assign bitwise exclusive or

U <<= u sc_uint<W>& sc_uint assign left-shift

U >>= u sc_uint<W>& sc_uint assign right-shift
.
Copyright © 2005 OSCI. All rights reserved. 191

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.5.6 Bit-selects

7.5.6.1 Description

Class sc_int_bitref_r† represents a bit selected from an sc_int_base used as an rvalue.

Class sc_int_bitref† represents a bit selected from an sc_int_base used as an lvalue.

Class sc_uint_bitref_r† represents a bit selected from an sc_uint_base used as an rvalue.

Class sc_uint_bitref† represents a bit selected from an sc_uint_base used as an lvalue.

7.5.6.2 Class definition

namespace sc_dt {

class sc_int_bitref_r†

: public sc_value_base†

{
friend class sc_int_base;

public:
// Copy constructor
sc_int_bitref_r†(const sc_int_bitref_r†& a);

// Destructor
virtual ~sc_int_bitref_r†();

// Capacity
int length() const;

// Implicit conversion to uint64
operator uint64 () const;
bool operator! () const;
bool operator~ () const;

// Explicit conversions
bool to_bool() const;

// Other methods
void print(std::ostream& os = std::cout) const;

protected:
sc_int_bitref_r†();

private:
// Disabled
sc_int_bitref_r†& operator= (const sc_int_bitref_r†&);

};

// ---

class sc_int_bitref†
192 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
: public sc_int_bitref_r†

{
friend class sc_int_base;

public:
// Copy constructor

 sc_int_bitref†(const sc_int_bitref†& a);

// Assignment operators
sc_int_bitref†& operator= (const sc_int_bitref_r†& b);
sc_int_bitref†& operator= (const sc_int_bitref†& b);
sc_int_bitref†& operator= (bool b);
sc_int_bitref†& operator&= (bool b);
sc_int_bitref†& operator|= (bool b);
sc_int_bitref†& operator^= (bool b);

// Other methods
void scan(std::istream& is = std::cin);

private:
// Disabled
sc_int_bitref†();

};

// ---

class sc_uint_bitref_r†
: public sc_value_base†

{
friend class sc_uint_base;

public:
// Copy constructor
sc_uint_bitref_r†(const sc_uint_bitref_r†& a);

// Destructor
virtual ~sc_uint_bitref_r†();

// Capacity
int length() const;

// Implicit conversion to uint64
operator uint64 () const;
bool operator! () const;
bool operator~ () const;

// Explicit conversions
bool to_bool() const;

// Other methods
 void print(std::ostream& os = std::cout) const;

protected:
sc_uint_bitref_r†();
.
Copyright © 2005 OSCI. All rights reserved. 193

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
private:
// Disabled
sc_uint_bitref_r†& operator= (const sc_uint_bitref_r†&);

};

// ---

class sc_uint_bitref†
: public sc_uint_bitref_r†

{
friend class sc_uint_base;

public:
// Copy constructor
sc_uint_bitref†(const sc_uint_bitref†& a);

// Assignment operators
sc_uint_bitref†& operator= (const sc_uint_bitref_r†& b);
sc_uint_bitref†& operator= (const sc_uint_bitref†& b);
sc_uint_bitref†& operator= (bool b);
sc_uint_bitref†& operator&= (bool b);
sc_uint_bitref†& operator|= (bool b);
sc_uint_bitref†& operator^= (bool b);

// Other methods
void scan(std::istream& is = std::cin);

private:
// Disabled
sc_uint_bitref†();

};

} // namespace sc_dt

7.5.6.3 Constraints on usage

Bit-select objects shall only be created using the bit-select operators of an sc_int_base or sc_uint_base
object (or an instance of a class derived from sc_int_base or sc_uint_base).

An application shall not explicitly create an instance of any bit-select class.

An application should not declare a reference or pointer to any bit-select object.

7.5.6.4 Assignment operators

Overloaded assignment operators for the lvalue bit-selects shall provide conversion from bool values.
Assignment operators for rvalue bit-selects shall be declared as private to prevent their use by an
application.

7.5.6.5 Implicit type conversion

operator uint64() const;
194 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Operator uint64 can be used for implicit type conversion from a bit-select to the native C++
unsigned integer having exactly 64 bits. If the selected bit has the value '1' (true), the conversion
shall return the value 1; otherwise, it shall return 0.

bool operator! () const;
bool operator~ () const;

Operator! and operator~ shall return a C++ bool value that is the inverse of the selected bit.
.
Copyright © 2005 OSCI. All rights reserved. 195

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.5.7 Part-Selects

7.5.7.1 Description

Class sc_int_subref_r† represents a signed integer part-select from an sc_int_base used as an rvalue.

Class sc_int_subref† represents a signed integer part-select from an sc_int_base used as an lvalue.

Class sc_uint_subref_r† represents an unsigned integer part-select from an sc_uint_base used as an rvalue.

Class sc_uint_subref† represents an unsigned integer part-select from an sc_uint_base used as an lvalue.

7.5.7.2 Class definition

namespace sc_dt {

class sc_int_subref_r†

{
friend class sc_int_base;
friend class sc_int_subref†;

public:
// Copy constructor
sc_int_subref_r†(const sc_int_subref_r†& a);

// Destructor
virtual ~sc_int_subref_r†();

// Capacity
int length() const;

// Reduce methods
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Implicit conversion to uint_type
operator uint_type() const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;
196 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
// Other methods
void print(std::ostream& os = std::cout) const;

protected:
sc_int_subref_r†();

private:
// Disabled
sc_int_subref_r†& operator= (const sc_int_subref_r†&);

};

// ---

class sc_int_subref†
: public sc_int_subref_r†

{
friend class sc_int_base;

public:
// Copy constructor
sc_int_subref†(const sc_int_subref†& a);

// Assignment operators
sc_int_subref†& operator= (int_type v);
sc_int_subref†& operator= (const sc_int_base& a);
sc_int_subref†& operator= (const sc_int_subref_r†& a);
sc_int_subref†& operator= (const sc_int_subref†& a);
template< class T >
sc_int_subref†& operator = (const sc_generic_base<T>& a);
sc_int_subref†& operator= (const char* a);
sc_int_subref†& operator= (unsigned long a);
sc_int_subref†& operator= (long a);
sc_int_subref†& operator= (unsigned int a);
sc_int_subref†& operator= (int a);
sc_int_subref†& operator= (uint64 a);
sc_int_subref†& operator= (double a);
sc_int_subref†& operator= (const sc_signed&);
sc_int_subref†& operator= (const sc_unsigned&);
sc_int_subref†& operator= (const sc_bv_base&);
sc_int_subref†& operator= (const sc_lv_base&);

// Other methods
void scan(std::istream& is = std::cin);

protected:
sc_int_subref†();

};

// ---

class sc_uint_subref_r†

{

.
Copyright © 2005 OSCI. All rights reserved. 197

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
friend class sc_uint_base;
friend class sc_uint_subref†;

public:
// Copy constructor
sc_uint_subref_r†(const sc_uint_subref_r†& a);

// Destructor
virtual ~sc_uint_subref_r()

// Capacity
int length() const;

// Reduce methods
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Implicit conversion to uint_type
operator uint_type() const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

// Other methods
void print(std::ostream& os = std::cout) const;

protected:
sc_uint_subref_r†();

private:
// Disabled
sc_uint_subref_r& operator = (const sc_uint_subref_r&);

};

// ---

class sc_uint_subref†
: public sc_uint_subref_r†

{
friend class sc_uint_base;
198 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
public:
// Copy constructor
sc_uint_subref†(const sc_uint_subref†& a);

// Assignment operators
sc_uint_subref†& operator= (uint_type v);
sc_uint_subref†& operator= (const sc_uint_base& a);
sc_uint_subref†& operator= (const sc_uint_subref_r& a);
sc_uint_subref†& operator= (const sc_uint_subref& a);
template<class T>
sc_uint_subref†& operator = (const sc_generic_base<T>& a);
sc_uint_subref†& operator= (const char* a);
sc_uint_subref†& operator= (unsigned long a);
sc_uint_subref†& operator= (long a);
sc_uint_subref†& operator= (unsigned int a);
sc_uint_subref†& operator= (int a);
sc_uint_subref†& operator= (int64 a);
sc_uint_subref†& operator= (double a);
sc_uint_subref†& operator= (const sc_signed&);
sc_uint_subref†& operator= (const sc_unsigned&);
sc_uint_subref†& operator= (const sc_bv_base&);
sc_uint_subref†& operator= (const sc_lv_base&);

// Other methods
void scan(std::istream& is = std::cin);

protected:
sc_uint_subref†();

} // namespace sc_dt

7.5.7.3 Constraints on usage

Integer part-select objects shall only be created using the part-select operators of an sc_int_base or
sc_uint_base object (or an instance of a class derived from sc_int_base or sc_uint_base).

An application shall not explicitly create an instance of any integer part-select class.

An application should not declare a reference or pointer to any integer part-select object.

It shall be an error if the left-hand index of a fixed-precision integer part select is less than the right-hand
index.

7.5.7.4 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to lvalue integer part-selects. If the size of a data type or string literal operand differs
from the integer part-select word length, truncation, zero-extension or sign-extension shall be used as
described in 7.2.1.

Assignment operators for rvalue integer part-selects shall be declared as private to prevent their use by an
application.
.
Copyright © 2005 OSCI. All rights reserved. 199

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.5.7.5 Implicit type conversion

sc_int_subref_r†::operator uint_type() const;
sc_uint_subref_r†::operator uint_type() const;

Operator int_type and operator uint_type can be used for implicit type conversion from integer
part-selects to the native C++ unsigned integer representation.

NOTES

1—These operators enable the use of standard C++ bitwise logical and arithmetic operators with integer part-
select objects.

2—These operators are used by the C++ output stream operator and by member functions of other data type
classes that are not explicitly overload for integer part-selects.

7.5.7.6 Explicit type conversion

const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

Member function to_string shall perform the conversion to an std::string as described in 7.2.10.
Calling the to_string function with a single argument is equivalent to calling the to_string function
with two arguments where the second argument is true. Calling the to_string function with no
arguments is equivalent to calling the to_string function with two arguments where the first
argument is SC_DEC and the second argument is true.
200 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.6 Arbitrary-precision integer types

7.6.1 Type definitions

The following type definitions are used in the arbitrary-precision integer type classes:

typedef implementation-defined int64;
typedef implementation-defined uint64;

int64 is a native C++ integer type having a word length of exactly 64 bits.

uint64 is a native C++ unsigned integer type having a word length of exactly 64 bits.

7.6.2 Constraints on usage

Overloaded arithmetic and comparison operators shall allow arbitrary-precision integer objects to be used in
expressions following similar but not identical rules to standard C++ integer types. The differences from the
standard C++ integer operator behavior are the following:

a) Where one operand is unsigned and the other is signed, the unsigned operand shall be converted to
signed and the return type shall be signed.

b) The return type of a subtraction shall always be signed.
c) The word length of the return type of an arithmetic operator shall depend only on the nature of the

operation and the word length of its operands.
d) A floating point variable or literal shall not be directly used as an operand. It should first be con-

verted to an appropriate signed or unsigned integer type.
.
Copyright © 2005 OSCI. All rights reserved. 201

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.6.3 sc_signed

7.6.3.1 Description

Class sc_signed represents a finite word length integer. The word length shall be specified by a constructor
argument or by default, the length context object currently in scope. The word length of an sc_signed object
shall be fixed during instantiation and shall not subsequently be changed.

The integer value shall be stored with an arbitrary precision determined by the specified word length. The
precision shall not depend on the finite resolution of any standard C++ integer type.

sc_signed is the base class for the sc_bigint class template.

7.6.3.2 Class definition

namespace sc_dt {

class sc_signed
: public sc_value_base†

{
friend class sc_concatref†;
friend class sc_signed_bitref_r†;
friend class sc_signed_bitref†;
friend class sc_signed_subref_r†;
friend class sc_signed_subref†;
friend class sc_unsigned;
friend class sc_unsigned_subref;

public:
// Constructors
explicit sc_signed(int nb = sc_length_param().len());
sc_signed(const sc_signed& v);
sc_signed(const sc_unsigned& v);
template<class T>
explicit sc_signed(const sc_generic_base<T>& v);
explicit sc_signed(const sc_bv_base& v);
explicit sc_signed(const sc_lv_base& v);
explicit sc_signed(const sc_int_subref_r& v);
explicit sc_signed(const sc_uint_subref_r& v);
explicit sc_signed(const sc_signed_subref_r& v);
explicit sc_signed(const sc_unsigned_subref_r& v);

// Assignment operators
sc_signed& operator= (const sc_signed& v);
sc_signed& operator= (const sc_signed_subref_r†& a);
template< class T >
sc_signed& operator = (const sc_generic_base<T>& a);
sc_signed& operator= (const sc_unsigned& v);
sc_signed& operator= (const sc_unsigned_subref_r†& a);
sc_signed& operator= (const char* v);
sc_signed& operator= (int64 v);
sc_signed& operator= (uint64 v);
sc_signed& operator= (long v);
sc_signed& operator= (unsigned long v);
202 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_signed& operator= (int v);
sc_signed& operator= (unsigned int v);
sc_signed& operator= (double v);
sc_signed& operator= (const sc_int_base& v);
sc_signed& operator= (const sc_uint_base& v);
sc_signed& operator= (const sc_bv_base&);
sc_signed& operator= (const sc_lv_base&);
sc_signed& operator= (const sc_fxval&);
sc_signed& operator= (const sc_fxval_fast&);
sc_signed& operator= (const sc_fxnum&);
sc_signed& operator= (const sc_fxnum_fast&);

// Destructor
~sc_signed();

// Increment operators.
sc_signed& operator++ ();
const sc_signed operator++ (int);

// Decrement operators.
sc_signed& operator-- ();
const sc_signed operator-- (int);

// Bit selection
sc_signed_bitref† operator[] (int i);
sc_signed_bitref_r† operator[] (int i) const;

// Part selection
sc_signed_subref† range(int i , int j);
sc_signed_subref_r† range(int i , int j) const;
sc_signed_subref† operator() (int i , int j);
sc_signed_subref_r† operator() (int i , int j) const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep, bool w_prefix) const;

// Print functions
void print(std::ostream& os = std::cout) const;
void scan(std::istream& is = std::cin);

// Capacity
int length() const;

// Reduce methods
.
Copyright © 2005 OSCI. All rights reserved. 203

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Overloaded operators

};

} // namespace sc_dt

7.6.3.3 Constraints on usage

An object of type sc_signed shall not be used as a direct replacement for a C++ integer type since no
implicit type conversion member functions are provided. An explicit type conversion is required to pass the
value of an sc_signed object as an argument to a function expecting a C++ integer value argument.

7.6.3.4 Constructors

explicit sc_signed(int nb = sc_length_param().len());
Constructor sc_signed shall create an sc_signed object of word length specified by nb. This is the
default constructor when nb is not specified (in which case its value is set by the current length
context). The initial value of the object shall be 0.

template< class T >
sc_signed(const sc_generic_base<T>& a);

Constructor sc_signed shall create an sc_signed object with a word length matching the constructor
argument. The to_sc_signed member function of the constructor argument shall be called to set the
initial value.

The other constructors create an sc_signed object with the same word length and value as the constructor
argument.

7.6.3.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_signed, using truncation or sign-extension as described in 7.2.1.

7.6.3.6 Explicit type conversion

const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep, bool w_prefix) const;

Member function to_string shall perform conversion to an std::string representation as described
in 7.2.10. Calling the to_string function with a single argument is equivalent to calling the to_string
function with two arguments where the second argument is true. Calling the to_string function with
no arguments is equivalent to calling the to_string function with two arguments where the first
argument is SC_DEC and the second argument is true.
204 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.6.3.7 Arithmetic, bitwise, and comparison operators

Operations specified in Table 6, Table 7, and Table 8 are permitted. The following applies:
— S represents an object of type sc_signed.
— U represents an object of type sc_unsigned.
— i represents an object of integer type int, long, unsigned int, unsigned long, sc_signed,

sc_unsigned, sc_int_base, or sc_uint_base.
— s represents an object of signed integer type int, long, sc_signed, or sc_int_base.

The operands may also be of any other class that is derived from those given above.

Table 6—sc_signed arithmetic operations

Expression Return class Operational semantics

S + i sc_signed sc_signed addition

i + S sc_signed sc_signed addition

U + s sc_signed addition of sc_unsigned and signed

s + U sc_signed addition of signed and sc_unsigned

S += i sc_signed& sc_signed assign sum

S - i sc_signed sc_signed subtraction

i - S sc_signed sc_signed subtraction

U - i sc_signed sc_unsigned subtraction

i - U sc_signed sc_unsigned subtraction

S -= i sc_signed& sc_signed assign difference

S * i sc_signed sc_signed multiplication

i * S sc_signed sc_signed multiplication

U * s sc_signed multiplication of sc_unsigned by signed

s * U sc_signed multiplication of signed by sc_unsigned

S *= i sc_signed& sc_signed assign product

S / i sc_signed sc_signed division

i / S sc_signed sc_signed division

U / s sc_signed division of sc_unsigned by signed
.
Copyright © 2005 OSCI. All rights reserved. 205

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
If the result of any arithmetic operation is zero, the word length of the return value shall be set by the
sc_length_context in scope. Otherwise, the following rules apply:

— Addition shall return a result with a word length that is equal to the word length of the longest oper-
and plus one.

— Multiplication shall return a result with a word length that is equal to the sum of the word lengths of
the two operands.

— Remainder shall return a result with a word length that is equal to the word length of the shortest
operand.

— All other arithmetic operators shall return a result with a word length that is equal to the word length
of the longest operand.

s / U sc_signed division of signed by sc_unsigned

S /= i sc_signed& sc_signed assign quotient

S % i sc_signed sc_signed remainder

i % S sc_signed sc_signed remainder

U % s sc_signed remainder of sc_unsigned with signed

s % U sc_signed remainder of signed with sc_unsigned

S %= i sc_signed& sc_signed assign remainder

+S sc_signed sc_signed unary plus

-S sc_signed sc_signed unary minus

-U sc_signed sc_unsigned unary minus

Table 6—sc_signed arithmetic operations

Expression Return class Operational semantics
206 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Binary bitwise operators shall return a result with a word length that is equal to the word length of the
longest operand.

The left shift operator shall return a result with a word length that is equal to the word length of its sc_signed
operand plus the right (integer) operand. Bits added on the right-hand side of the result shall be set to zero.

Table 7—sc_signed bitwise operations

Expression Return class Operational semantics

S & i sc_signed sc_signed bitwise and

i & S sc_signed sc_signed bitwise and

U & s sc_signed sc_unsigned bitwise and signed

s & U sc_signed signed bitwise and sc_unsigned

S &= i sc_signed& sc_signed assign bitwise and

S | i sc_signed sc_signed bitwise or

i | S sc_signed sc_signed bitwise or

U | s sc_signed sc_unsigned bitwise or signed

s | U sc_signed signed bitwise or sc_unsigned

S |= i sc_signed& sc_signed assign bitwise or

S ^ i sc_signed sc_signed bitwise exclusive or

i ^ S sc_signed sc_signed bitwise exclusive or

U ^ s sc_signed sc_unsigned bitwise exclusive or signed

s ^ U sc_signed sc_unsigned bitwise exclusive or signed

S ^= i sc_signed& sc_signed assign bitwise exclusive or

S << i sc_signed sc_signed left-shift

U << S sc_unsigned sc_unsigned left-shift

S <<= i sc_signed& sc_signed assign left-shift

S >> i sc_signed sc_signed right-shift

U >> S sc_unsigned sc_unsigned right-shift

S >>= i sc_signed& sc_signed assign right-shift

~S sc_signed sc_signed bitwise complement
.
Copyright © 2005 OSCI. All rights reserved. 207

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The right shift operator shall return a result with a word length that is equal to the word length of its
sc_signed operand. Bits added on the left-hand side of the result shall be set to the same value as the left-
hand bit of the sc_signed operand (a right-shift preserves the sign).

The behavior of a shift operator is undefined if the right operand is negative.

NOTE—An implementation is required to supply overloaded operators on sc_signed objects to satisfy the
requirements of this clause. It is unspecified whether these operators are members of sc_signed, global operators, or
provided in some other way.

Table 8—sc_signed comparison operations

Expression Return type Operational semantics

S == i bool equal

i == S bool equal

S != i bool not equal

i != S bool not equal

S < i bool less than

i < S bool less than

S <= i bool less than or equal

i <= S bool less than or equal

S > i bool greater than

i > S bool greater than

S >= i bool greater than or equal

i >= S bool greater than or equal
208 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.6.4 sc_unsigned

7.6.4.1 Description

Class sc_unsigned represents a finite word length unsigned integer. The word length shall be specified by a
constructor argument or by default, the length context currently in scope. The word length of an
sc_unsigned object is fixed during instantiation and shall not subsequently be changed.

The integer value shall be stored with an arbitrary precision determined by the specified word length. The
precision shall not depend on the finite resolution of any standard C++ integer type.

sc_unsigned is the base class for the sc_biguint class template.

7.6.4.2 Class definition

namespace sc_dt {

class sc_unsigned
: public sc_value_base†

{
friend class sc_concatref†;
friend class sc_unsigned_bitref_r†;
friend class sc_unsigned_bitref†;
friend class sc_unsigned_subref_r†;
friend class sc_unsigned_subref†;
friend class sc_signed;
friend class sc_signed_subref†;

public:
// Constructors
explicit sc_unsigned(int nb = sc_length_param().len());
sc_unsigned(const sc_unsigned& v);
sc_unsigned(const sc_signed& v);
template<class T>
explicit sc_unsigned(const sc_generic_base<T>& v);
explicit sc_unsigned(const sc_bv_base& v);
explicit sc_unsigned(const sc_lv_base& v);
explicit sc_unsigned(const sc_int_subref_r& v);
explicit sc_unsigned(const sc_uint_subref_r& v);
explicit sc_unsigned(const sc_signed_subref_r& v);
explicit sc_unsigned(const sc_unsigned_subref_r& v);

// Assignment operators
sc_unsigned& operator= (const sc_unsigned& v);
sc_unsigned& operator= (const sc_unsigned_subref_r†& a);
template<class T>
sc_unsigned& operator = (const sc_generic_base<T>& a);
sc_unsigned& operator= (const sc_signed& v);
sc_unsigned& operator= (const sc_signed_subref_r†& a);
sc_unsigned& operator= (const char* v);
sc_unsigned& operator= (int64 v);
sc_unsigned& operator= (uint64 v);
sc_unsigned& operator= (long v);
sc_unsigned& operator= (unsigned long v);
.
Copyright © 2005 OSCI. All rights reserved. 209

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
 sc_unsigned& operator= (int v);
sc_unsigned& operator= (unsigned int v);
sc_unsigned& operator= (double v);
sc_unsigned& operator= (const sc_int_base& v);
sc_unsigned& operator= (const sc_uint_base& v);
sc_unsigned& operator= (const sc_bv_base&);
sc_unsigned& operator= (const sc_lv_base&);

 sc_unsigned& operator= (const sc_fxval&);
sc_unsigned& operator= (const sc_fxval_fast&);
sc_unsigned& operator= (const sc_fxnum&);
sc_unsigned& operator= (const sc_fxnum_fast&);

// Destructor
 ~sc_unsigned();

// Increment operators
sc_unsigned& operator++ ();
const sc_unsigned operator++ (int);

// Decrement operators
sc_unsigned& operator-- ();
const sc_unsigned operator-- (int) ;

// Bit selection
sc_unsigned_bitref† operator[] (int i);
sc_unsigned_bitref_r† operator[] (int i) const;

// Part selection
sc_unsigned_subref† range (int i , int j);
sc_unsigned_subref_r† range(int i , int j) const;
sc_unsigned_subref† operator() (int i , int j);
sc_unsigned_subref_r† operator() (int i , int j) const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep, bool w_prefix) const;

// Print functions
void print(std::ostream& os = std::cout) const;
void scan(std::istream& is = std::cin);

// Capacity
 int length() const { } // Bit width.

// Reduce methods
210 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Overloaded operators

};

} // namespace sc_dt

7.6.4.3 Constraints on usage

An object of type sc_unsigned may not be used as a direct replacement for a C++ integer type since no
implicit type conversion member functions are provided. An explicit type conversion is required to pass the
value of an sc_unsigned object as an argument to a function expecting a C++ integer value argument.

7.6.4.4 Constructors

explicit sc_unsigned(int nb = sc_length_param().len());
Constructor sc_unsigned shall create an sc_unsigned object of word length specified by nb. This is
the default constructor when nb is not specified (in which case its value is set by the current length
context). The initial value shall be 0.

template< class T >
sc_unsigned(const sc_generic_base<T>& a);

Constructor sc_unsigned shall create an sc_unsigned object with a word length matching the
constructor argument. The to_sc_unsigned member function of the constructor argument shall be
called to set the initial value.

The other constructors create an sc_unsigned object with the same word length and value as the construc-
tor argument.

7.6.4.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_unsigned, using truncation or sign-extension as described in 7.2.1.

7.6.4.6 Explicit type conversion

const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep, bool w_prefix) const;

Member function to_string shall perform the conversion to an std::string as described in 7.2.10.
Calling the to_string function with a single argument is equivalent to calling the to_string function
with two arguments where the second argument is true. Calling the to_string function with no
arguments is equivalent to calling the to_string function with two arguments where the first
argument is SC_DEC and the second argument is true.
.
Copyright © 2005 OSCI. All rights reserved. 211

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.6.4.7 Arithmetic, bitwise, and comparison operators

Operations specified in Table 9, Table 10, and Table 11 are permitted. The following applies:
— S represents an object of type sc_signed.
— U represents an object of type sc_unsigned.
— i represents an object of integer type int, long, unsigned int, unsigned long, sc_signed,

sc_unsigned, sc_int_base, or sc_uint_base.
— s represents an object of signed integer type int, long, sc_signed, or sc_int_base.
— u represents an object of unsigned integer type unsigned int, unsigned long, sc_unsigned, or

sc_uint_base.

The operands may also be of any other class that is derived from those given above.

Table 9—sc_unsigned arithmetic operations

Expression Return class Operational semantics

U + u sc_unsigned sc_unsigned addition

u + U sc_unsigned sc_unsigned addition

U + s sc_signed addition of sc_unsigned and signed

s + U sc_signed addition of signed and sc_unsigned

U += i sc_unsigned& sc_unsigned assign sum

U - i sc_signed sc_unsigned subtraction

i - U sc_signed sc_unsigned subtraction

U -= i sc_unsigned& sc_unsigned assign difference

U * u sc_unsigned sc_unsigned multiplication

u * U sc_unsigned sc_unsigned multiplication

U * s sc_signed multiplication of sc_unsigned by signed

s * U sc_signed multiplication of signed by sc_unsigned

U *= i sc_unsigned& sc_unsigned assign product

U / u sc_unsigned sc_unsigned division

u / U sc_unsigned sc_unsigned division
212 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
If the result of any arithmetic operation is zero, the word length of the return value shall be set by the
sc_length_context in scope. Otherwise, the following rules apply:

— Addition shall return a result with a word length that is equal to the word length of the longest oper-
and plus one.

— Multiplication shall return a result with a word length that is equal to the sum of the word lengths of
the two operands.

— Remainder shall return a result with a word length that is equal to the word length of the shortest
operand.

U / s sc_signed division of sc_unsigned by signed

s / U sc_signed division of signed by sc_unsigned

U /= i sc_unsigned& sc_unsigned assign quotient

U % u sc_unsigned sc_unsigned remainder

u % U sc_unsigned sc_unsigned remainder

U % s sc_signed remainder of sc_unsigned with signed

s % U sc_signed remainder of signed with sc_unsigned

U %= i sc_unsigned& sc_unsigned assign remainder

+U sc_unsigned sc_unsigned unary plus

-U sc_signed sc_unsigned unary minus

Table 9—sc_unsigned arithmetic operations

Expression Return class Operational semantics
.
Copyright © 2005 OSCI. All rights reserved. 213

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
— All other arithmetic operators shall return a result with a word length that is equal to the word length
of the longest operand.

Binary bitwise operators shall return a result with a word length that is equal to the word length of the
longest operand.

Table 10—sc_unsigned bitwise operations

Expression Return class Operational semantics

U & u sc_unsigned sc_unsigned bitwise and

u & U sc_unsigned sc_unsigned bitwise and

U & s sc_signed sc_unsigned bitwise and signed

s & U sc_signed signed bitwise and sc_unsigned

U &= i sc_unsigned& sc_unsigned assign bitwise and

U | u sc_unsigned sc_unsigned bitwise or

u | U sc_unsigned sc_unsigned bitwise or

U | s sc_signed sc_unsigned bitwise or signed

s | U sc_signed signed bitwise or sc_unsigned

U |= i sc_unsigned& sc_unsigned assign bitwise or

U ^ u sc_unsigned sc_unsigned bitwise exclusive or

u ^ U sc_unsigned sc_unsigned bitwise exclusive or

U ^ s sc_signed sc_unsigned bitwise exclusive or signed

s ^ U sc_signed sc_unsigned bitwise exclusive or signed

U ^= i sc_unsigned& sc_unsigned assign bitwise exclusive or

U << i sc_unsigned sc_unsigned left-shift

S << U sc_signed sc_signed left-shift

U <<= i sc_unsigned& sc_unsigned assign left-shift

U >> i sc_unsigned sc_unsigned right-shift

S >> U sc_signed sc_signed right-shift

U >>= i sc_unsigned& sc_unsigned assign right-shift

~U sc_unsigned sc_unsigned bitwise complement
214 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The left shift operator shall return a result with a word length that is equal to the word length of its
sc_unsigned operand plus one. The bit on the right-hand side of the result shall be set to zero.

The right shift operator shall return a result with a word length that is equal to the word length of its
sc_unsigned operand. The bit on the left-hand side of the result shall be set to zero.

NOTE—An implementation is required to supply overloaded operators on sc_unsigned objects to satisfy the
requirements of this clause. It is unspecified whether these operators are members of sc_unsigned, global operators, or
provided in some other way.

Table 11—sc_unsigned comparison operations

Expression Return type Operational semantics

U == i bool equal

i == U bool equal

U != i bool not equal

i != U bool not equal

U < i bool less than

i < U bool less than

U <= i bool less than or equal

i <= U bool less than or equal

U > i bool greater than

i > U bool greater than

U >= i bool greater than or equal

i >= U bool greater than or equal
.
Copyright © 2005 OSCI. All rights reserved. 215

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.6.5 sc_bigint

7.6.5.1 Description

Class template sc_bigint represents a finite word length signed integer. The word length shall be specified
by a template argument. The integer value shall be stored with an arbitrary precision determined by the
specified word length. The precision shall not depend on the finite resolution of any standard C++ integer
type.

All the public methods of its sc_signed base class shall be public members of sc_bigint. The operations
specified in 7.6.3.7 are permitted for objects of type sc_bigint.

7.6.5.2 Class definition

namespace sc_dt {

template< int W >
class sc_bigint
: public sc_signed
{

public:
// Constructors
sc_bigint();
sc_bigint(const sc_bigint<W>& v);
sc_bigint(const sc_signed& v);
sc_bigint(const sc_signed_subref†& v);
template< class T >
sc_bigint(const sc_generic_base<T>& a);
sc_bigint(const sc_unsigned& v);
sc_bigint(const sc_unsigned_subref†& v);
sc_bigint(const char* v);
sc_bigint(int64 v);
sc_bigint(uint64 v);
sc_bigint(long v);
sc_bigint(unsigned long v);
sc_bigint(int v);
sc_bigint(unsigned int v);
sc_bigint(double v);
sc_bigint(const sc_bv_base& v);
sc_bigint(const sc_lv_base& v);
explicit sc_bigint(const sc_fxval& v);
explicit sc_bigint(const sc_fxval_fast& v);
explicit sc_bigint(const sc_fxnum& v);
explicit sc_bigint(const sc_fxnum_fast& v);

// Destructor
~sc_bigint();

// Assignment operators
sc_bigint<W>& operator= (const sc_bigint<W>& v);
sc_bigint<W>& operator= (const sc_signed& v);
sc_bigint<W>& operator= (const sc_signed_subref†& v);
template< class T >
sc_bigint<W>& operator = (const sc_generic_base<T>& a);
216 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_bigint<W>& operator= (const sc_unsigned& v);
sc_bigint<W>& operator= (const sc_unsigned_subref†& v);
sc_bigint<W>& operator= (const char* v);
sc_bigint<W>& operator= (int64 v);
sc_bigint<W>& operator= (uint64 v);
sc_bigint<W>& operator= (long v);
sc_bigint<W>& operator= (unsigned long v);
sc_bigint<W>& operator= (int v);
sc_bigint<W>& operator= (unsigned int v);
sc_bigint<W>& operator= (double v);
sc_bigint<W>& operator= (const sc_bv_base& v);
sc_bigint<W>& operator= (const sc_lv_base& v);
sc_bigint<W>& operator= (const sc_int_base& v);
sc_bigint<W>& operator= (const sc_uint_base& v);
sc_bigint<W>& operator= (const sc_fxval& v);
sc_bigint<W>& operator= (const sc_fxval_fast& v);
sc_bigint<W>& operator= (const sc_fxnum& v);
sc_bigint<W>& operator= (const sc_fxnum_fast& v);

};

} // namespace sc_dt

7.6.5.3 Constraints on usage

An object of type sc_bigint may not be used as a direct replacement for a C++ integer type since no implicit
type conversion member functions are provided. An explicit type conversion is required to pass the value of
an sc_bigint object as an argument to a function expecting a C++ integer value argument.

7.6.5.4 Constructors

sc_bigint();
Default constructor sc_bigint shall create an sc_bigint object of word length specified by the
template argument W and shall set the initial value to 0.

template< class T >
sc_bigint(const sc_generic_base<T>& a);

Constructor sc_bigint shall create an sc_bigint object of word length specified by the template
argument. The to_sc_signed member function of the constructor argument shall be called to set the
initial value.

Other constructors shall create an sc_bigint object of word length specified by the template argument W and
value corresponding to the integer magnitude of the constructor argument. If the word length of the specified
initial value differs from the template argument, truncation or sign-extension shall be used as described in
7.2.1.

7.6.5.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_bigint, using truncation or sign-extension as described in 7.2.1.
.
Copyright © 2005 OSCI. All rights reserved. 217

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.6.6 sc_biguint

7.6.6.1 Description

Class template sc_biguint represents a finite word length unsigned integer. The word length shall be
specified by a template argument. The integer value shall be stored with an arbitrary precision determined
by the specified word length. The precision shall not depend on the finite resolution of any standard C++
integer type.

All the public methods of its sc_unsigned base class shall be public members of sc_biguint. The operations
specified in 7.6.4.7 are permitted for objects of type sc_biguint.

7.6.6.2 Class definition

namespace sc_dt {

template< int W >
class sc_biguint
: public sc_unsigned
{

public:
// Constructors
sc_biguint();
sc_biguint(const sc_biguint<W>& v);
sc_biguint(const sc_unsigned& v);
sc_biguint(const sc_unsigned_subref†& v);
template< class T >
sc_biguint(const sc_generic_base<T>& a);
sc_biguint(const sc_signed& v);
sc_biguint(const sc_signed_subref†& v);
sc_biguint(const char* v);
sc_biguint(int64 v);
sc_biguint(uint64 v);
sc_biguint(long v);
sc_biguint(unsigned long v);
sc_biguint(int v);
sc_biguint(unsigned int v);
sc_biguint(double v);
sc_biguint(const sc_bv_base& v);
sc_biguint(const sc_lv_base& v);
explicit sc_biguint(const sc_fxval& v);
explicit sc_biguint(const sc_fxval_fast& v);
explicit sc_biguint(const sc_fxnum& v);
explicit sc_biguint(const sc_fxnum_fast& v);

// Destructor
~sc_biguint();

// Assignment operators
sc_biguint<W>& operator= (const sc_biguint<W>& v);
sc_biguint<W>& operator= (const sc_unsigned& v);
sc_biguint<W>& operator= (const sc_unsigned_subref†& v);
template< class T >
sc_biguint<W>& operator = (const sc_generic_base<T>& a);
218 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_biguint<W>& operator= (const sc_signed& v);
sc_biguint<W>& operator= (const sc_signed_subref†& v);
sc_biguint<W>& operator= (const char* v);
sc_biguint<W>& operator= (int64 v);
sc_biguint<W>& operator= (uint64 v);
sc_biguint<W>& operator= (long v);
sc_biguint<W>& operator= (unsigned long v);
sc_biguint<W>& operator= (int v);
sc_biguint<W>& operator= (unsigned int v);
sc_biguint<W>& operator= (double v);
sc_biguint<W>& operator= (const sc_bv_base& v);
sc_biguint<W>& operator= (const sc_lv_base& v);
sc_biguint<W>& operator= (const sc_int_base& v);
sc_biguint<W>& operator= (const sc_uint_base& v);
sc_biguint<W>& operator= (const sc_fxval& v);
sc_biguint<W>& operator= (const sc_fxval_fast& v);
sc_biguint<W>& operator= (const sc_fxnum& v);

 sc_biguint<W>& operator= (const sc_fxnum_fast& v);
};

} // namespace sc_dt

7.6.6.3 Constraints on usage

An object of type sc_biguint may not be used as a direct replacement for a C++ integer type since no
implicit type conversion member functions are provided. An explicit type conversion is required to pass the
value of an sc_biguint object as an argument to a function expecting a C++ integer value argument.

7.6.6.4 Constructors

sc_biguint();
Default constructor sc_biguint shall create an sc_biguint object of word length specified by the
template argument W and shall set the initial value to 0.

template< class T >
sc_biguint(const sc_generic_base<T>& a);

Constructor shall create an sc_biguint object of word length specified by the template argument.
The to_sc_unsigned member function of the constructor argument shall be called to set the initial
value.

The other constructors shall create an sc_biguint object of word length specified by the template argument
W and value corresponding to the integer magnitude of the constructor argument. If the word length of the
specified initial value differs from the template argument, truncation or sign-extension shall be used as
described in 7.2.1.

7.6.6.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_biguint, using truncation or sign-extension as described in 7.2.1.
.
Copyright © 2005 OSCI. All rights reserved. 219

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.6.7 Bit-selects

7.6.7.1 Description

Class sc_signed_bitref_r† represents a bit selected from an sc_signed used as an rvalue.

Class sc_signed_bitref† represents a bit selected from an sc_signed used as an lvalue.

Class sc_unsigned_bitref_r† represents a bit selected from an sc_unsigned used as an rvalue.

Class sc_unsigned_bitref† represents a bit selected from an sc_unsigned used as an lvalue.

7.6.7.2 Class definition

namespace sc_dt {

class sc_signed_bitref_r†

: public sc_value_base†

{
friend class sc_signed;
friend class sc_signed_bitref†;

public:
// Copy constructor
sc_signed_bitref_r†(const sc_signed_bitref_r†& a);

// Destructor
virtual ~sc_signed_bitref_r†()

// Capacity
int length() const;

// Implicit conversion to uint64
operator uint64 () const;
bool operator! () const;
bool operator~ () const;

// Explicit conversions
bool to_bool() const;

// Other methods
void print(std::ostream& os = std::cout) const;

protected:
sc_signed_bitref_r†();

private:
// Disabled
sc_signed_bitref_r†& operator= (const sc_signed_bitref_r†&);

};

// ---

class sc_signed_bitref†
220 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
: public sc_signed_bitref_r†

{
friend class sc_signed;

public:
// Copy constructor
sc_signed_bitref†(const sc_signed_bitref†& a);

// Assignment operators
sc_signed_bitref†& operator= (const sc_signed_bitref_r†&);
sc_signed_bitref†& operator= (const sc_signed_bitref†&);
sc_signed_bitref†& operator= (bool);

sc_signed_bitref†& operator&= (bool);
sc_signed_bitref†& operator|= (bool);
sc_signed_bitref†& operator^= (bool);

// Other methods
void scan(std::istream& is = std::cin);

protected:
sc_signed_bitref†();

};

// ---

class sc_unsigned_bitref_r†
: public sc_value_base†

{
friend class sc_unsigned;

public:
// Copy constructor
sc_unsigned_bitref_r†(const sc_unsigned_bitref_r†& a);

// Destructor
virtual ~sc_unsigned_bitref_r†()

// Capacity
int length() const;

// Implicit conversion to uint64
operator uint64 () const;
bool operator! () const;
bool operator~ () const;

// Explicit conversions
bool to_bool() const { return operator bool(); }

// Other methods
void print(std::ostream& os = std::cout) const;

protected:
sc_unsigned_bitref_r†();
.
Copyright © 2005 OSCI. All rights reserved. 221

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
private:
// Disabled
sc_unsigned_bitref_r†& operator= (const sc_unsigned_bitref_r†&);

};

// ---

class sc_unsigned_bitref†
: public sc_unsigned_bitref_r†

{
friend class sc_unsigned;

public:
// Copy constructor
sc_unsigned_bitref†(const sc_unsigned_bitref†& a);

// Assignment operators
sc_unsigned_bitref†& operator= (const sc_unsigned_bitref_r†&);
sc_unsigned_bitref†& operator= (const sc_unsigned_bitref†&);
sc_unsigned_bitref†& operator= (bool);

sc_unsigned_bitref†& operator&= (bool);
sc_unsigned_bitref†& operator|= (bool);
sc_unsigned_bitref†& operator^= (bool);

// Other methods
void scan(std::istream& is = std::cin);

protected:
sc_unsigned_bitref†();

};

} // namespace sc_dt

7.6.7.3 Constraints on usage

Bit-select objects shall only be created using the bit-select operators of an sc_signed or sc_unsigned object
(or an instance of a class derived from sc_signed or sc_unsigned).

An application shall not explicitly create an instance of any bit-select class.

An application should not declare a reference or pointer to any bit-select object.

7.6.7.4 Assignment operators

Overloaded assignment operators for the lvalue bit-selects shall provide conversion from bool values.
Assignment operators for rvalue bit-selects shall be declared as private to prevent their use by an
application.

7.6.7.5 Implicit type conversion

operator uint64 () const;
222 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Operator uint64 can be used for implicit type conversion from a bit-select to a native C++ unsigned
integer having exactly 64 bits. If the selected bit has the value '1' (true) the conversion shall return
the value 1; otherwise, it shall return 0

bool operator! () const;
bool operator~ () const;

Operator! and operator~ shall return a C++ bool value that is the inverse of the selected bit.
.
Copyright © 2005 OSCI. All rights reserved. 223

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.6.8 Part-Selects

7.6.8.1 Description

Class sc_signed_subref_r† represents a signed integer part-select from an sc_signed used as an rvalue.

Class sc_signed_subref† represents a signed integer part-select from an sc_signed used as an lvalue.

Class sc_unsigned_subref_r† represents an unsigned integer part-select from an sc_unsigned used as an
rvalue.

Class sc_unsigned_subref† represents an unsigned integer part-select from an sc_unsigned used as an
lvalue.

7.6.8.2 Class definition

namespace sc_dt {

class sc_signed_subref_r†
: public sc_value_base†

{
friend class sc_signed;
friend class sc_unsigned;

public:
// Copy constructor
sc_signed_subref_r†(const sc_signed_subref_r†& a);

// Destructor
virtual ~sc_unsigned_subref_r†();

// Capacity
int length() const;

// Implicit conversion to sc_unsigned
operator sc_unsigned () const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep, bool w_prefix) const;

// Reduce methods
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
224 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Other methods
void print(std::ostream& os = std::cout) const;

protected:
sc_signed_subref_r†();

private:
// Disabled
sc_signed_subref_r†& operator= (const sc_signed_subref_r†&);

};

// --

class sc_signed_subref†
: public sc_signed_subref_r†

{
friend class sc_signed;

public:
// Copy constructor
sc_signed_subref†(const sc_signed_subref†& a);

// Assignment operators
sc_signed_subref†& operator= (const sc_signed_subref_r†& a);
sc_signed_subref†& operator= (const sc_signed_subref†& a);
sc_signed_subref†& operator= (const sc_signed& a);
template< class T >
sc_signed_subref†& operator = (const sc_generic_base<T>& a);
sc_signed_subref†& operator= (const sc_unsigned_subref_r†& a);
sc_signed_subref†& operator= (const sc_unsigned& a);
sc_signed_subref†& operator= (const char* a);
sc_signed_subref†& operator= (unsigned long a);
sc_signed_subref†& operator= (long a);
sc_signed_subref†& operator= (unsigned int a);
sc_signed_subref†& operator= (int a);
sc_signed_subref†& operator= (uint64 a);
sc_signed_subref†& operator= (int64 a);
sc_signed_subref†& operator= (double a);
sc_signed_subref†& operator= (const sc_int_base& a);
sc_signed_subref†& operator= (const sc_uint_base& a);

// Other methods
void scan(std::istream& is = std::cin);

private:
// Disabled
sc_signed_subref†();

};

// --
.
Copyright © 2005 OSCI. All rights reserved. 225

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
class sc_unsigned_subref_r†
: public sc_value_base†

{
friend class sc_signed;
friend class sc_unsigned;

public:
// Copy constructor
sc_unsigned_subref_r†(const sc_unsigned_subref_r†& a);

// Destructor
virtual ~sc_unsigned_subref_r†();

// Capacity
int length() const;

// Implicit conversion to sc_unsigned
operator sc_unsigned () const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

// Reduce methods
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Other methods
void print(std::ostream& os = std::cout) const;

protected:
sc_unsigned_subref_r†();

private:
// Disabled
sc_unsigned_subref_r& operator= (const sc_unsigned_subref_r†&);

};

// --
226 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
class sc_unsigned_subref†

: public sc_unsigned_subref_r†

{
friend class sc_unsigned;

public:
// Copy constructor
sc_unsigned_subref†(const sc_unsigned_subref†& a);

// Assignment operators
sc_unsigned_subref†& operator= (const sc_unsigned_subref_r†& a);
sc_unsigned_subref†& operator= (const sc_unsigned_subref†& a);
sc_unsigned_subref†& operator= (const sc_unsigned& a);
template<class T>
sc_unsigned_subref†& operator = (const sc_generic_base<T>& a);
sc_unsigned_subref†& operator= (const sc_signed_subref_r& a);
sc_unsigned_subref†& operator= (const sc_signed& a);
sc_unsigned_subref†& operator= (const char* a);
sc_unsigned_subref†& operator= (unsigned long a);
sc_unsigned_subref†& operator= (long a);
sc_unsigned_subref†& operator= (unsigned int a);
sc_unsigned_subref†& operator= (int a);
sc_unsigned_subref†& operator= (uint64 a);
sc_unsigned_subref†& operator= (int64 a);
sc_unsigned_subref†& operator= (double a);
sc_unsigned_subref†& operator= (const sc_int_base& a);
sc_unsigned_subref†& operator= (const sc_uint_base& a);

// Other methods
void scan(std::istream& is = std::cin);

protected:
sc_unsigned_subref†();

};

} // namespace sc_dt

7.6.8.3 Constraints on usage

Integer part-select objects shall only be created using the part-select operators of an sc_signed or
sc_unsigned object (or an instance of a class derived from sc_signed or sc_unsigned).

An application shall not explicitly create an instance of any integer part-select class.

An application should not declare a reference or pointer to any integer part-select object.

NOTE—The left-hand index of an arbitrary-precision integer part select may be less than the right-hand index. The bit
order in the part select is then the reverse of that in the original integer.

7.6.8.4 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to lvalue integer part-selects. If the size of a data type or string literal operand differs
.
Copyright © 2005 OSCI. All rights reserved. 227

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
from the integer part-select word length, truncation, zero-extension, or sign-extension shall be used as
described in 7.2.1.

Assignment operators for rvalue integer part-selects shall be declared as private to prevent their use by an
application.

7.6.8.5 Implicit type conversion

sc_signed_subref_r†:: operator sc_unsigned () const;
sc_unsigned_subref_r†:: operator sc_unsigned () const;

Operator sc_unsigned can be used for implicit type conversion from integer part-selects to
sc_unsigned.

NOTE—These operators are used by the output stream operator and by member functions of other data type
classes that are not explicitly overload for arbitrary-precision integer part-selects.

7.6.8.6 Explicit type conversion

const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

Member function to_string shall perform a conversion to an std::string representation as described
in 7.2.10. Calling the to_string function with a single argument is equivalent to calling the to_string
function with two arguments where the second argument is true. Calling the to_string function with
no arguments is equivalent to calling the to_string function with two arguments where the first
argument is SC_DEC and the second argument is true.
228 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.7 Integer concatenations

7.7.1 Description

Class sc_concatref† represents a concatenation of bits from one or more objects whose concatenation base
types are SystemC integers.

7.7.2 Class definition

namespace sc_dt {

class sc_concatref†
: public sc_generic_base<sc_concatref†>, public sc_value_base†

{
public:

// Destructor
virtual ~sc_concatref†();

// Capacity
unsigned int length() const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
double to_double() const;
void to_sc_signed(sc_signed& target) const;
void to_sc_unsigned(sc_unsigned& target) const;

// Implicit conversions
operator uint64() const;
operator const sc_unsigned&() const;

// Unary operators
sc_unsigned operator+ () const;
sc_unsigned operator- () const;
sc_unsigned operator~ () const;

// Explicit conversion to character string
const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

// Assignment operators
const sc_concatref†& operator= (int v);
const sc_concatref†& operator= (unsigned int v);
const sc_concatref†& operator= (long v);
const sc_concatref†& operator= (unsigned long v);
const sc_concatref†& operator= (int64 v);
const sc_concatref†& operator= (uint64 v);
const sc_concatref†& operator= (const sc_concatref†& v);
const sc_concatref†& operator= (const sc_signed& v);
.
Copyright © 2005 OSCI. All rights reserved. 229

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
const sc_concatref†& operator= (const sc_unsigned& v);
const sc_concatref†& operator= (const char* v_p);
const sc_concatref†& operator= (const sc_bv_base& v);
const sc_concatref†& operator= (const sc_lv_base& v);

// Reduce methods
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Other methods
void print(std::ostream& os = std::cout) const;
void scan(std::istream& is);

private:
sc_concatref†(const sc_concatref†&);
~sc_concatref†() { }

};

} // namespace sc_dt

7.7.3 Constraints on usage

Integer concatenation objects shall only be created using the concat function (or operator ,) according to
the rules in 7.2.6.

At least one of the concatenation arguments shall be an object with a SystemC integer concatenation base
type, that is, an instance of a class derived directly or indirectly from class sc_value_base†.

A single concatenation argument (that is, one of the two arguments to the concat function or operator ,)
may be a bool value, a reference to a sc_core::sc_signal<bool> channel, or a reference to a
sc_core::sc_in<bool>, sc_core::sc_inout<bool>, or sc_core::sc_out<bool> port.

An application shall not explicitly create an instance of any integer concatenation class.

An application should not declare a reference or pointer to any integer concatenation object.

7.7.4 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to lvalue integer concatenations. If the size of a data type or string literal operand
differs from the integer concatenation word length, truncation, zero-extension, or sign-extension shall be
used as described in 7.2.1.

.Assignment operators for rvalue integer part-selects shall not be called by an application.

7.7.5 Implicit type conversion

operator uint64 () const;
operator const sc_unsigned& () const;
230 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Operators uint64 and sc_unsigned shall provide implicit unsigned type conversion from an integer
concatenation to a native C++ unsigned integer having exactly 64 bits or a an sc_unsigned object
with a length equal to the total number of bits contained within the objects referenced by the
concatenation.

NOTE—Enables the use of standard C++ and SystemC bitwise logical and arithmetic operators with integer
concatenation objects.

7.7.6 Explicit type conversion

const std::string to_string(sc_numrep numrep = SC_DEC) const;
const std::string to_string(sc_numrep numrep , bool w_prefix) const;

Member function to_string shall convert the object to an std::string representation as described in
7.2.10. Calling the to_string function with a single argument is equivalent to calling the to_string
function with two arguments where the second argument is true. Calling the to_string function with
no arguments is equivalent to calling the to_string function with two arguments where the first
argument is SC_DEC and the second argument is true.
.
Copyright © 2005 OSCI. All rights reserved. 231

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.8 Generic base proxy class

7.8.1 Description

Class template sc_generic_base provides a common proxy base class for application-defined data types that
are required to be converted to a SystemC integer.

7.8.2 Class definition

namespace sc_dt {

template< class T >
class sc_generic_base
{

public:
inline const T* operator-> () const;
inline T* operator-> ();

};

} // namespace sc_dt

7.8.3 Constraints on usage

An application shall not explicitly create an instance of sc_generic_base.

Any application-defined type derived from sc_generic_base shall provide the following public const
member functions:

int length() const;
Member function length shall return the number of bits required to hold the integer value.

uint64 to_uint64() const;
Member function to_uint64 shall return the value as a native C++ unsigned integer having exactly
64 bits.

int64 to_int64() const;
Member function to_int64 shall return the value as a native C++ signed integer having exactly 64
bits.

void to_sc_unsigned(sc_unsigned&) const;
Member function to_sc_unsigned shall return the value as an unsigned integer using the
sc_unsigned argument passed by reference.

void to_sc_signed(sc_signed&) const;
Member function to_sc_signed shall return the value as a signed integer using the sc_signed
argument passed by reference.
232 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9 Logic and arbitrary width vector types

7.9.1 Type definitions

The following enumerated type definition should be used by the logic and arbitrary-width vector type
classes. Its literal values represent (in numerical order) the four possible logic states: logic 0, logic 1, high-
impedance, and unknown, respectively. This type is not intended to be directly used by applications.

namespace sc_dt {

enum sc_logic_value_t
{

Log_0 = 0,
Log_1,
Log_Z,
Log_X

};

} // namespace sc_dt
.
Copyright © 2005 OSCI. All rights reserved. 233

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.9.2 sc_logic

7.9.2.1 Description

Class sc_logic represents a single bit with a value corresponding to any one of the four logic states.
Applications should use the character literals '0', '1', 'Z', and 'X' to represent the states logic 0, logic 1, high-
impedance and unknown, respectively. The lower case character literals 'z' and 'x' are acceptable
alternatives to 'Z' and 'X', respectively. Any other character used as an sc_logic literal shall be interpreted as
the unknown state.

The C++ bool values false and true may be used as arguments to sc_logic constructors and operators. They
shall be interpreted as logic 0 and logic 1, respectively.

Logic operations shall be permitted for sc_logic values following the truth tables shown in Table 12,
Table 13, Table 14, and Table 15.

Table 12—sc_logic AND truth table

'0' '1' 'Z' 'X'

'0' '0' '0' '0' '0'

'1' '0' '1' 'X' 'X'

'Z' '0' 'X' 'X' 'X'

'X' '0' 'X' 'X' 'X'

Table 13—sc_logic OR truth table

'0' '1' 'Z' 'X'

'0' '0' '1' 'X' 'X'

'1' '1' '1' '1' '1'

'Z' 'X' '1' 'X' 'X'

'X' 'X' '1' 'X' 'X'
234 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.2.2 Class definition

namespace sc_dt {

class sc_logic
{

public:
// Constructors
sc_logic();
sc_logic(const sc_logic& a);
sc_logic(sc_logic_value_t v);
explicit sc_logic(bool a);
explicit sc_logic(char a);
explicit sc_logic(int a);

// Destructor
~sc_logic();

// Assignment operators
sc_logic& operator= (const sc_logic& a);
sc_logic& operator= (sc_logic_value_t v);
sc_logic& operator= (bool a);
sc_logic& operator= (char a);
sc_logic& operator= (int a);

// Explicit conversions
sc_logic_value_t value() const;

Table 14—sc_logic exclusive or truth table

'0' '1' 'Z' 'X'

'0' '0' '1' 'X' 'X'

'1' '1' '0' 'X' 'X'

'Z' 'X' 'X' 'X' 'X'

'X' 'X' 'X' 'X' 'X'

Table 15—sc_logic complement truth table

'0' '1' 'Z' 'X'

'1' '0' 'X' 'X'
.
Copyright © 2005 OSCI. All rights reserved. 235

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
char to_char() const;
bool to_bool() const;
bool is_01() const;

void print(std::ostream& os = std::cout) const;
void scan(std::istream& is = std::cin);

private:
// Disabled
explicit sc_logic(const char*);
sc_logic& operator= (const char*);

};

} // namespace sc_dt

7.9.2.3 Constraints on usage

An integer argument to an sc_logic constructor or operator shall be equivalent to the corresponding
sc_logic_value_t enumerated value. It shall be an error if any such integer argument is outside the range 0 to
3.

An sc_logic object may be initialized or assigned from a character literal but not from a string literal.

7.9.2.4 Constructors

sc_logic();
Default constructor sc_logic shall create an sc_logic object with a value of unknown.

sc_logic(const sc_logic& a);
sc_logic(sc_logic_value_t v);
explicit sc_logic(bool a);
explicit sc_logic(char a);
explicit sc_logic(int a);

Constructor sc_logic shall create an sc_logic object with the value specified by the argument.

7.9.2.5 Explicit type conversion

sc_logic_value_t value() const;
Member function value shall convert the sc_logic value to the sc_logic_value_t equivalent.

char to_char() const;
Member function to_var shall convert the sc_logic value to the char equivalent.

bool to_bool() const;
Member function to_bool shall convert the sc_logic value to false or true. It shall be an error to call
this function if the sc_logic value is not logic 0 or logic 1.

bool is_01() const;
236 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Member function is_01 shall return true if the sc_logic value is logic 0 or logic 1; otherwise, the
return value shall be false.

7.9.2.6 Bitwise and comparison operators

Operations specified in Table 16 shall be permitted. The following applies:
— L represents an object of type sc_logic.
— I represents an object of type int, sc_logic, sc_logic_value_t, bool, char, or int.

NOTE—An implementation is required to supply overloaded operators on sc_logic objects to satisfy the requirements
of this clause. It is unspecified whether these operators are members of sc_logic, global operators, or provided in some
other way.

7.9.2.7 sc_logic constant definitions

A constant of type sc_logic shall be defined for each of the four possible sc_logic_value_t states. These
constants should be used by applications to assign values to, or compare values with, other sc_logic objects,
particularly in those cases where an implicit conversion from a C++ char value would be ambiguous.

namespace sc_dt {

Table 16—sc_logic bitwise and comparison operations

Expression Return class Operational semantics

~L const sc_logic sc_logic bitwise complement

L & l const sc_logic sc_logic bitwise and

l & L const sc_logic sc_logic bitwise and

L &= l sc_logic& sc_logic assign bitwise and

L | l const sc_logic sc_logic bitwise or

l | L const sc_logic sc_logic bitwise or

L |= l sc_logic& sc_logic assign bitwise or

L ^ l const sc_logic sc_logic bitwise exclusive or

l ^ L const sc_logic sc_logic bitwise exclusive or

L ^= l sc_logic& sc_logic assign bitwise exclusive or

L == l bool equal

l == L bool equal

L != l bool not equal

l != L bool not equal
.
Copyright © 2005 OSCI. All rights reserved. 237

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
const sc_logic SC_LOGIC_0(Log_0);
const sc_logic SC_LOGIC_1(Log_1);
const sc_logic SC_LOGIC_Z(Log_Z);
const sc_logic SC_LOGIC_X(Log_X);

} // namespace sc_dt

Example:

sc_core::sc_signal<sc_logic> A;
A = '0'; //Error: ambiguous conversion
A = STATIC_CAST<sc_logic>('0'); //Correct but not recommended
A = SC_LOGIC_0; //Recommended representation of logic 0
238 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.3 sc_bv_base

7.9.3.1 Description

Class sc_bv_base represents a finite word length bit vector. It can be treated as an array of bool or an array
of sc_logic_value_t (with the restriction that only the states logic 0 and logic 1 are legal). The word length
shall be specified by a constructor argument or by default, the length context object currently in scope. The
word length of an sc_bv_base object shall be fixed during instantiation and shall not subsequently be
changed.

sc_bv_base is the base class for the sc_bv class template.

7.9.3.2 Class definition

namespace sc_dt {

class sc_bv_base
{

friend class sc_lv_base;

public:
// Constructors
explicit sc_bv_base(int nb = sc_length_param().len());
explicit sc_bv_base(bool a, int nb = sc_length_param().len());
sc_bv_base(const char* a);
sc_bv_base(const char* a , int nb);
template <class X>
sc_bv_base(const sc_subref_r†<X>& a);
template <class T1, class T2>
sc_bv_base(const sc_concref_r†<T1,T2>& a);
sc_bv_base(const sc_lv_base& a);
sc_bv_base(const sc_bv_base& a);

// Destructor
virtual ~sc_bv_base();

// Assignment operators
template <class X>
sc_bv_base& operator= (const sc_subref_r†<X>& a);
template <class T1, class T2>
sc_bv_base& operator= (const sc_concref_r†<T1,T2>& a);
sc_bv_base& operator= (const sc_bv_base& a);
sc_bv_base& operator= (const sc_lv_base& a);
sc_bv_base& operator= (const char* a);
sc_bv_base& operator= (const bool* a);
sc_bv_base& operator= (const sc_logic* a);
sc_bv_base& operator= (const sc_unsigned& a);
sc_bv_base& operator= (const sc_signed& a);
sc_bv_base& operator= (const sc_uint_base& a);
sc_bv_base& operator= (const sc_int_base& a);
sc_bv_base& operator= (unsigned long a);
sc_bv_base& operator= (long a);
sc_bv_base& operator= (unsigned int a);
sc_bv_base& operator= (int a);
.
Copyright © 2005 OSCI. All rights reserved. 239

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_bv_base& operator= (uint64 a);
sc_bv_base& operator= (int64 a);

// Bitwise rotations
sc_bv_base& lrotate(int n);
sc_bv_base& rrotate(int n);

// Bitwise reverse
sc_bv_base& reverse();

// Bit selection
sc_bitref†<sc_bv_base> operator[] (int i);
sc_bitref_r†<sc_bv_base> operator[] (int i) const;

// Part selection
sc_subref†<sc_bv_base> operator() (int hi , int lo);
sc_subref_r†<sc_bv_base> operator() (int hi , int lo) const;

sc_subref†<sc_bv_base> range(int hi , int lo);
sc_subref_r†<sc_bv_base> range(int hi , int lo) const;

// Reduce functions
sc_logic_value_t and_reduce() const;
sc_logic_value_t nand_reduce() const;
sc_logic_value_t or_reduce() const;
sc_logic_value_t nor_reduce() const;
sc_logic_value_t xor_reduce() const;
sc_logic_value_t xnor_reduce() const;

// Common methods
int length() const;

// Explicit conversions to character string
const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
bool is_01() const;

// Other methods
void print(std::ostream& os = std::cout) const;
void scan(std::istream& is = std::cin);

};

} // namespace sc_dt
240 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.3.3 Constraints on usage

Attempting to assign the sc_logic_value_t values high-impedance or unknown to any element of an
sc_bv_base object shall be an error.

The result of assigning an array of bool or an array of sc_logic to an sc_bv_base object having a greater
word length than the number of array elements is undefined.

7.9.3.4 Constructors

explicit sc_bv_base(int nb = sc_length_param().len());
Default constructor sc_bv_base shall create an sc_bv_base object of word length specified by nb
and shall set the initial value of each element to logic 0. This is the default constructor when nb is
not specified (in which case its value is set by the current length context).

explicit sc_bv_base(bool a , int nb = sc_length_param().len());
Constructor sc_bv_base shall create an sc_bv_base object of word length specified by nb. If nb is
not specified the length shall be set by the current length context. The constructor shall set the initial
value of each element to the value of a.

sc_bv_base(const char* a);
Constructor sc_bv_base shall create an sc_bv_base object with an initial value set by the string
literal a. The word length shall be set to the number of characters in the string literal.

sc_bv_base(const char* a , int nb);
Constructor sc_bv_base shall create an sc_bv_base object with an initial value set by the string
literal and word length nb. If the number of characters in the string literal does not match the value
of nb, the initial value shall be truncated or zero extended to match the word length.

template <class X> sc_bv_base(const sc_subref_r†<X>& a);
template <class T1, class T2> sc_bv_base(const sc_concref_r†<T1,T2>& a);
sc_bv_base(const sc_lv_base& a);
sc_bv_base(const sc_bv_base& a);

Constructor sc_bv_base shall create an sc_bv_base object with the same word length and value as
a.

NOTE—An implementation may provide a different set of constructors to create an sc_bv_base object from
an sc_subref_r†<T>, sc_concref_r†<T1,T2>, or sc_lv_base object. For example, by providing a class
template that is used as a common base class for all these types.

7.9.3.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_bv_base, using truncation or zero-extension as described in 7.2.1.

7.9.3.6 Explicit type conversion

const std::string to_string() const;
.
Copyright © 2005 OSCI. All rights reserved. 241

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

Member function to_string shall perform the conversion to an std::string representation as
described in 7.2.10. Calling the to_string function with a single argument is equivalent to calling the
to_string function with two arguments where the second argument is true.
Calling the to_string function with no arguments shall create a binary string with a single '1' or '0'
corresponding to each bit. This string shall not be prefixed by "0b" or a leading zero.

Example:

sc_bv_base B(4); // 4-bit vector
B = "0xf"; // Each bit set to logic 1
std::string S1 = B.to_string(SC_BIN,false); // The contents of S1 will be the string "01111"
std::string S2 = B.to_string(SC_BIN); // The contents of S2 will be the string "0b01111"
std::string S3 = B.to_string(); // The contents of S3 will be the string "1111"

bool is_01() const;
Member function is_01 shall always return true since an sc_bv_base object can only contain
elements with a value of logic 0 or logic 1.
Member functions that return the integer equivalent of the bit representation shall be provided to
satisfy the requirements of 7.2.8.

7.9.3.7 Bitwise and comparison operators

Operations specified in Table 17 and Table 18 are permitted. The following applies:
— B represents an object of type sc_bv_base.
— Vi represents an object of logic vector type sc_bv_base, sc_lv_base, sc_subref_r†<T> or

sc_concref_r†<T1,T2> or integer type int, long, unsigned int, unsigned long, sc_signed,
sc_unsigned, sc_int_base, or sc_uint_base.

— i represents an object of integer type int.
— A represents an array object with elements of type char, bool, or sc_logic.
242 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The operands may also be of any other class that is derived from those given above.

Binary bitwise operators shall return a result with a word length that is equal to the word length of the
longest operand.

Table 17—sc_bv_base bitwise operations

Expression Return class Operational semantics

B & Vi const sc_lv_base sc_bv_base bitwise and

Vi & B const sc_lv_base sc_bv_base bitwise and

B & A const sc_lv_base sc_bv_base bitwise and

A & B const sc_lv_base sc_bv_base bitwise and

B &= Vi sc_bv_base& sc_bv_base assign bitwise and

B &= A sc_bv_base& sc_bv_base assign bitwise and

B | Vi const sc_lv_base sc_bv_base bitwise or

Vi | B const sc_lv_base sc_bv_base bitwise or

B | A const sc_lv_base sc_bv_base bitwise or

A | B const sc_lv_base sc_bv_base bitwise or

B |= Vi sc_bv_base& sc_bv_base assign bitwise or

B |= A sc_bv_base& sc_bv_base assign bitwise or

B ^ Vi const sc_lv_base sc_bv_base bitwise exclusive or

Vi ^ B const sc_lv_base sc_bv_base bitwise exclusive or

B ^ A const sc_lv_base sc_bv_base bitwise exclusive or

A ^ B const sc_lv_base sc_bv_base bitwise exclusive or

B ^= Vi sc_bv_base& sc_bv_base assign bitwise exclusive or

B ^= A sc_bv_base& sc_bv_base assign bitwise exclusive or

B << i const sc_lv_base sc_bv_base left-shift

B <<= i sc_bv_base& sc_bv_base assign left-shift

B >> i const sc_lv_base sc_bv_base right-shift

B >>= i sc_bv_base& sc_bv_base assign right-shift

~B const sc_lv_base sc_bv_base bitwise complement
.
Copyright © 2005 OSCI. All rights reserved. 243

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The left shift operator shall return a result with a word length that is equal to the word length of its
sc_bv_base operand plus the right (integer) operand. Bits added on the right-hand side of the result shall be
set to zero.

The right shift operator returns a result with a word length that is equal to the word length of its sc_bv_base
operand. Bits added on the left-hand side of the result shall be set to zero.

It is an error if the right operand of a shift operator is negative.

sc_bv_base& lrotate(int n);
Member function lrotate shall rotate an sc_bv_base object n places to the left.

sc_bv_base& rrotate(int n);
Member function rrotate shall rotate an sc_bv_base object n places to the right.

sc_bv_base& reverse();
Member function reverse shall reverse the bit order in an sc_bv_base object.

NOTE—An implementation is required to supply overloaded operators on sc_bv_base objects to satisfy the
requirements of this clause. It is unspecified whether these operators are members of sc_bv_base, global operators, or
provided in some other way.

Table 18—sc_bv_base comparison operations

Expression Return type Operational semantics

B == Vi bool equal

Vi == B bool equal

B == A bool equal

A == B bool equal
244 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.4 sc_lv_base

7.9.4.1 Description

Class sc_lv_base represents a finite word length bit vector. It can be treated as an array of sc_logic_value_t
values. The word length shall be specified by a constructor argument or by default, the length context object
currently in scope. The word length of an sc_lv_base object shall be fixed during instantiation and shall not
subsequently be changed.

sc_lv_base is the base class for the sc_lv class template.

7.9.4.2 Class definition

namespace sc_dt {

class sc_lv_base
{

friend class sc_bv_base;

public:
// Constructors
explicit sc_lv_base(int length_ = sc_length_param().len());
explicit sc_lv_base(const sc_logic& a, int length_ = sc_length_param().len());
sc_lv_base(const char* a);
sc_lv_base(const char* a , int length_);
template <class X>
sc_lv_base(const sc_subref_r†<X>& a);
template <class T1, class T2>
sc_lv_base(const sc_concref_r†<T1,T2>& a);
sc_lv_base(const sc_bv_base& a);
sc_lv_base(const sc_lv_base& a);

// Destructor
virtual ~sc_lv_base();

// Assignment operators
template <class X>
sc_lv_base& operator= (const sc_subref_r†<X>& a);
template <class T1, class T2>
sc_lv_base& operator= (const sc_concref_r†<T1,T2>& a);
sc_lv_base& operator= (const sc_bv_base& a);
sc_lv_base& operator= (const sc_lv_base& a);
sc_lv_base& operator= (const char* a);
sc_lv_base& operator= (const bool* a);
sc_lv_base& operator= (const sc_logic* a);
sc_lv_base& operator= (const sc_unsigned& a);
sc_lv_base& operator= (const sc_signed& a);
sc_lv_base& operator= (const sc_uint_base& a);
sc_lv_base& operator= (const sc_int_base& a);
sc_lv_base& operator= (unsigned long a);
sc_lv_base& operator= (long a);
sc_lv_base& operator= (unsigned int a);
sc_lv_base& operator= (int a);
sc_lv_base& operator= (uint64 a);
.
Copyright © 2005 OSCI. All rights reserved. 245

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_lv_base& operator= (int64 a);

// Bitwise rotations
sc_lv_base& lrotate(int n);
sc_lv_base& rrotate(int n);

// Bitwise reverse
sc_lv_base& reverse();

// Bit selection
sc_bitref†<sc_bv_base> operator[] (int i);
sc_bitref_r†<sc_bv_base> operator[] (int i) const;

// Part selection
sc_subref†<sc_lv_base> operator() (int hi , int lo);
sc_subref_r†<sc_lv_base> operator() (int hi , int lo) const;

sc_subref†<sc_lv_base> range(int h i, int lo);
sc_subref_r†<sc_lv_base> range(int hi , int lo) const;

// Reduce functions
sc_logic_value_t and_reduce() const;
sc_logic_value_t nand_reduce() const;
sc_logic_value_t or_reduce() const;
sc_logic_value_t nor_reduce() const;
sc_logic_value_t xor_reduce() const;
sc_logic_value_t xnor_reduce() const;

// Common methods
int length() const;

// Explicit conversions to character string
const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
bool is_01() const;

// Other methods
void print(std::ostream& os = std::cout) const;
void scan(std::istream& is = std::cin);

};

} // namespace sc_dt

7.9.4.3 Constraints on usage

The result of assigning an array of bool or an array of sc_logic to an sc_lv_base object having a greater word
length than the number of array elements is undefined.
246 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.4.4 Constructors

explicit sc_lv_base(int nb = sc_length_param().len());
Constructor sc_lv_base shall create an sc_lv_base object of word length specified by nb shall set
the initial value of each element to logic 0. This is the default constructor when nb is not specified
(in which case its value shall be set by the current length context).

explicit sc_lv_base(bool a, int nb = sc_length_param().len());
Constructor sc_lv_base shall create an sc_lv_base object of word length specified by nb and shall
set the initial value of each element to the value of a. If nb is not specified the length shall be set by
the current length context.

sc_lv_base(const char* a);
Constructor sc_lv_base shall create an sc_lv_base object with an initial value set by the string literal
a. The word length shall be set to the number of characters in the string literal.

sc_lv_base(const char* a , int nb);
Constructor sc_lv_base shall create an sc_lv_base object with an initial value set by the string literal
and word length nb. If the number of characters in the string literal does not match the value of nb,
the initial value shall be truncated or zero extended to match the word length.

template <class X> sc_lv_base(const sc_subref_r†<X>& a);
template <class T1, class T2> sc_lv_base(const sc_concref_r†<T1,T2>& a);

sc_lv_base(const sc_bv_base& a);
Constructor sc_lv_base shall create an sc_lv_base object with the same word length and value as a.

sc_lv_base(const sc_lv_base& a);
Constructor sc_lv_base shall create an sc_lv_base object with the same word length and value as a.

NOTE—An implementation may provide a different set of constructors to create an sc_lv_base object from
an sc_subref_r†<T>, sc_concref_r†, or sc_bv_base object. For example, by providing a class template that
is used as a common base class for all these types.

7.9.4.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_lv_base, using truncation or zero-extension as described in 7.2.1.

7.9.4.6 Explicit type conversion

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

Member function to_string shall perform a conversion to an std::string representation as described
in 7.2.10. Calling the to_string function with a single argument is equivalent to calling the to_string
function with two arguments where the second argument is true. Attempting to call the single or
.
Copyright © 2005 OSCI. All rights reserved. 247

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
double argument to_string function for an sc_lv_base object with one or more elements set to the
high-impedance or unknown state shall be an error.
Calling the to_string function with no arguments shall create a logic value string with a single '1',
'0', 'Z', or 'X' corresponding to each bit. This string shall not be prefixed by "0b" or a leading zero.

Example:

sc_lv_base L(4); // 4-bit vector
L = "0xf"; // Each bit set to logic 1
std::string S1 = L.to_string(SC_BIN,false); // The contents of S1 will be the string "01111"
std::string S2 = L.to_string(SC_BIN); // The contents of S2 will be the string "0b01111"
std::string S3 = L.to_string(); // The contents of S3 will be the string "1111"

bool is_01() const;
Member function is_01 shall return true only when every element of an sc_lv_base object has a
value of logic 0 or logic 1. If any element has the value high-impedance or unknown, it shall return
false.
Member functions that return the integer equivalent of the bit representation shall be provided to
satisfy the requirements of clause 7.2.8. Calling any such integer conversion function for an object
having one or more bits set to the high-impedance or unknown state shall be an error.

7.9.4.7 Bitwise and comparison operators

Operations specified in Table 19 and Table 20 are permitted. The following applies:
— L represents an object of type sc_lv_base.
— Vi represents an object of logic vector type sc_bv_base, sc_lv_base, sc_subref_r†<T> or

sc_concref_r†<T1,T2>, or integer type int, long, unsigned int, unsigned long, sc_signed,
sc_unsigned, sc_int_base, or sc_uint_base.

— i represents an object of integer type int.
— A represents an array object with elements of type char, bool, or sc_logic.
248 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The operands may also be of any other class that is derived from those given above.

Binary bitwise operators shall return a result with a word length that is equal to the word length of the
longest operand.

Table 19—sc_lv_base bitwise operations

Expression Return class Operational semantics

L & Vi const sc_lv_base sc_lv_base bitwise and

Vi & L const sc_lv_base sc_lv_base bitwise and

L & A const sc_lv_base sc_lv_base bitwise and

A & L const sc_lv_base sc_lv_base bitwise and

L &= Vi sc_lv_base& sc_lv_base assign bitwise and

L &= A sc_lv_base& sc_lv_base assign bitwise and

L | Vi const sc_lv_base sc_lv_base bitwise or

Vi | L const sc_lv_base sc_lv_base bitwise or

L | A const sc_lv_base sc_lv_base bitwise or

A | L const sc_lv_base sc_lv_base bitwise or

L |= Vi sc_lv_base& sc_lv_base assign bitwise or

L |= A sc_lv_base& sc_lv_base assign bitwise or

L ^ Vi const sc_lv_base sc_lv_base bitwise exclusive or

Vi ^ L const sc_lv_base sc_lv_base bitwise exclusive or

L ^ A const sc_lv_base sc_lv_base bitwise exclusive or

A ^ L const sc_lv_base sc_lv_base bitwise exclusive or

L ^= Vi sc_lv_base& sc_lv_base assign bitwise exclusive or

L ^= A sc_lv_base& sc_lv_base assign bitwise exclusive or

L << i const sc_lv_base sc_lv_base left-shift

L <<= i sc_lv_base& sc_lv_base assign left-shift

L >> i const sc_lv_base sc_lv_base right-shift

L >>= i sc_lv_base& sc_lv_base assign right-shift

~L const sc_lv_base sc_lv_base bitwise complement
.
Copyright © 2005 OSCI. All rights reserved. 249

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The left shift operator shall return a result with a word length that is equal to the word length of its
sc_lv_base operand plus the right (integer) operand. Bits added on the right-hand side of the result shall be
set to zero.

The right shift operator shall return a result with a word length that is equal to the word length of its
sc_lv_base operand. Bits added on the left-hand side of the result shall be set to zero.

It is an error if the right operand of a shift operator is negative.

sc_lv_base& lrotate(int n);
Member function lrotate shall rotate an sc_lv_base object n places to the left.

sc_lv_base& rrotate(int n);
Member function rrotate shall rotate an sc_lv_base object n places to the right.

sc_lv_base& reverse();
Member function reverse shall reverse the bit order in an sc_lv_base object.

NOTE—An implementation is required to supply overloaded operators on sc_lv_base objects to satisfy the
requirements of this clause. It is unspecified whether these operators are members of sc_lv_base, global operators, or
provided in some other way.

Table 20—sc_lv_base comparison operations

Expression Return type Operational semantics

L == Vi bool equal

Vi == L bool equal

L == A bool equal

A == L bool equal
250 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.5 sc_bv

7.9.5.1 Description

Class template sc_bv represents a finite word length bit vector. It can be treated as an array of bool or an
array of sc_logic_value_t values (with the restriction that only the states logic 0 and logic 1 are legal) The
word length shall be specified by a template argument. All the public methods of its sc_bv_base base class
shall be public members of sc_bv or shall be overridden to implement the same behavior.

7.9.5.2 Class definition

namespace sc_dt {

template <int W>
class sc_bv
: public sc_bv_base
{

public:
// Constructors
sc_bv();
explicit sc_bv(bool init_value);
explicit sc_bv(char init_value);
sc_bv(const char* a);
sc_bv(const bool* a);
sc_bv(const sc_logic* a);
sc_bv(const sc_unsigned& a);
sc_bv(const sc_signed& a);
sc_bv(const sc_uint_base& a);
sc_bv(const sc_int_base& a);
sc_bv(unsigned long a);
sc_bv(long a);
sc_bv(unsigned int a);
sc_bv(int a);
sc_bv(uint64 a);
sc_bv(int64 a);
template <class X>
sc_bv(const sc_subref_r†<X>& a);
template <class T1, class T2>
sc_bv(const sc_concref_r†<T1,T2>& a);
sc_bv(const sc_bv_base& a);
sc_bv(const sc_lv_base& a);
sc_bv(const sc_bv<W>& a);

// Assignment operators
template <class X>
sc_bv<W>& operator= (const sc_subref_r†<X>& a);
template <class T1, class T2>
sc_bv<W>& operator= (const sc_concref_r†<T1,T2>& a);
sc_bv<W>& operator= (const sc_bv_base& a);
sc_bv<W>& operator= (const sc_lv_base& a);
sc_bv<W>& operator= (const sc_bv<W>& a);
sc_bv<W>& operator= (const char* a);
sc_bv<W>& operator= (const bool* a);
sc_bv<W>& operator= (const sc_logic* a);
.
Copyright © 2005 OSCI. All rights reserved. 251

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_bv<W>& operator= (const sc_unsigned& a);
sc_bv<W>& operator= (const sc_signed& a);
sc_bv<W>& operator= (const sc_uint_base& a);
sc_bv<W>& operator= (const sc_int_base& a);
sc_bv<W>& operator= (unsigned long a);
sc_bv<W>& operator= (long a);
sc_bv<W>& operator= (unsigned int a);
sc_bv<W>& operator= (int a);
sc_bv<W>& operator= (uint64 a);
sc_bv<W>& operator= (int64 a);

};

} // namespace sc_dt

7.9.5.3 Constraints on usage

Attempting to assign the sc_logic_value_t values high-impedance or unknown to any element of an sc_bv
object shall be an error.

The result of assigning an array of bool or an array of sc_logic to an sc_bv object having a greater word
length than the number of array elements is undefined.

7.9.5.4 Constructors

sc_bv();
The default constructor sc_bv shall create an sc_bv object of word length specified by the template
argument W and it shall set the initial value of every element to logic 0.

The other constructors shall create an sc_bv object of word length specified by the template argument W
and value corresponding to the constructor argument. If the word length of a data type or string literal
argument differs from the template argument, truncation or zero-extension shall be applied as described in
7.2.1. If the number of elements in an array of bool or array of sc_logic used as the constructor argument is
less than the word length, the initial value of all elements shall be undefined.

NOTE—An implementation may provide a different set of constructors to create an sc_bv object from an
sc_subref_r†<T>, sc_concref_r†<T1,T2>, sc_bv_base, or sc_lv_base object, for example, by providing a class
template that is used as a common base class for all these types.

7.9.5.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_bv, using truncation or zero-extension as described in 7.2.1. The exception is
assignment from an array of bool or an array of sc_logic as described in 7.9.5.4.
252 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.6 sc_lv

7.9.6.1 Description

Class template sc_lv represents a finite word length bit vector. It can be treated as an array of
sc_logic_value_t values. The word length shall be specified by a template argument. All the public methods
of its sc_lv_base base class shall be public members of sc_lv or shall be overridden to implement the same
behavior.

7.9.6.2 Class definition

namespace sc_dt {

template <int W>
class sc_lv
: public sc_lv_base
{

public:
// Constructors
sc_lv();
explicit sc_lv(const sc_logic& init_value);
explicit sc_lv(bool init_value);
explicit sc_lv(char init_value);
sc_lv(const char* a);
sc_lv(const bool* a);
sc_lv(const sc_logic* a);
sc_lv(const sc_unsigned& a);
sc_lv(const sc_signed& a);
sc_lv(const sc_uint_base& a);
sc_lv(const sc_int_base& a);
sc_lv(unsigned long a);
sc_lv(long a);
sc_lv(unsigned int a);
sc_lv(int a);
sc_lv(uint64 a);
sc_lv(int64 a);
template <class X>
sc_lv(const sc_subref_r†<X>& a);

 template <class T1, class T2>
sc_lv(const sc_concref_r†<T1,T2>& a);
sc_lv(const sc_bv_base& a);

 sc_lv(const sc_lv_base& a);
sc_lv(const sc_lv<W>& a);

// Assignment operators
template <class X>
sc_lv<W>& operator= (const sc_subref_r†<X>& a);

 template <class T1, class T2>
 sc_lv<W>& operator= (const sc_concref_r†<T1,T2>& a);
 sc_lv<W>& operator= (const sc_bv_base& a);
 sc_lv<W>& operator= (const sc_lv_base& a);
 sc_lv<W>& operator= (const sc_lv<W>& a);
 sc_lv<W>& operator= (const char* a);
 sc_lv<W>& operator= (const bool* a);
.
Copyright © 2005 OSCI. All rights reserved. 253

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
 sc_lv<W>& operator= (const sc_logic* a);
sc_lv<W>& operator= (const sc_unsigned& a);
sc_lv<W>& operator= (const sc_signed& a);
sc_lv<W>& operator= (const sc_uint_base& a);
sc_lv<W>& operator= (const sc_int_base& a);
sc_lv<W>& operator= (unsigned long a);
sc_lv<W>& operator= (long a);
sc_lv<W>& operator= (unsigned int a);
sc_lv<W>& operator= (int a);
sc_lv<W>& operator= (uint64 a);
sc_lv<W>& operator= (int64 a);

};

} // namespace sc_dt

7.9.6.3 Constraints on usage

The result of assigning an array of bool or an array of sc_logic to an sc_lv object having a greater word
length than the number of array elements is undefined.

7.9.6.4 Constructors

sc_lv();
Default constructor sc_lv shall create an sc_lv object of word length specified by the template
argument W and shall set the initial value of every element to unknown.

The other constructors shall create an sc_lv object of word length specified by the template argument W and
value corresponding to the constructor argument. If the word length of a data type or string literal argument
differs from the template argument, truncation or zero-extension shall be applied as described in 7.2.1. If the
number of elements in an array of bool or array of sc_logic used as the constructor argument is less than the
word length, the initial value of all elements shall be undefined.

NOTE—An implementation may provide a different set of constructors to create an sc_lv object from an
sc_subref_r†<T>, sc_concref_r†<T1,T2>, sc_bv_base, or sc_lv_base object, for example, by providing a class
template that is used as a common base class for all these types.

7.9.6.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to sc_lv, using truncation or zero-extension as described in 7.2.1. The exception is
assignment from an array of bool or an array of sc_logic as described in 7.9.6.4.
254 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.9.7 Bit-selects

7.9.7.1 Description

Class template sc_bitref_r†<T> represents a bit selected from a vector used as an rvalue.

Class template sc_bitref†<T> represents a bit selected from a vector used as an lvalue.

The use of the term vector here includes part-selects and concatenations of bit vectors and logic vectors. The
template parameter is the name of the class accessed by the bit-select.

7.9.7.2 Class definition

namespace sc_dt {

template <class T>
class sc_bitref_r†

{
friend class sc_bv_base;
friend class sc_lv_base;

public:
// Copy constructor
sc_bitref_r†(const sc_bitref_r†<T>& a);

// Bitwise complement
const sc_logic operator~ () const;

// Implicit conversion to sc_logic
operator const sc_logic() const;

// Explicit conversions
bool is_01() const;
bool to_bool() const;
char to_char() const;

// Common methods
int length() const;

// Other methods
void print(std::ostream& os = std::cout) const;

private:
// Disabled
sc_bitref_r†();
sc_bitref_r†<T>& operator= (const sc_bitref_r†<T>&);

};

// ---

template <class T>
class sc_bitref†
: public sc_bitref_r†<T>
{

.
Copyright © 2005 OSCI. All rights reserved. 255

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
friend class sc_bv_base;
friend class sc_lv_base;

public:
// Copy constructor
sc_bitref†(const sc_bitref†<T>& a);

// Assignment operators
sc_bitref†<T>& operator= (const sc_bitref_r†<T>& a);
sc_bitref†<T>& operator= (const sc_bitref†<T>& a);
sc_bitref†<T>& operator= (const sc_logic& a);
sc_bitref†<T>& operator= (sc_logic_value_t v);
sc_bitref†<T>& operator= (bool a);
sc_bitref†<T>& operator= (char a);
sc_bitref†<T>& operator= (int a);

// Bitwise assignment operators
sc_bitref†<T>& operator&= (const sc_bitref_r†<T>& a);
sc_bitref†<T>& operator&= (const sc_logic& a);
sc_bitref†<T>& operator&= (sc_logic_value_t v);
sc_bitref†<T>& operator&= (bool a);
sc_bitref†<T>& operator&= (char a);
sc_bitref†<T>& operator&= (int a);

sc_bitref†<T>& operator|= (const sc_bitref_r†<T>& a);
sc_bitref†<T>& operator|= (const sc_logic& a);
sc_bitref†<T>& operator|= (sc_logic_value_t v);
sc_bitref†<T>& operator|= (bool a);
sc_bitref†<T>& operator|= (char a);
sc_bitref†<T>& operator|= (int a);

sc_bitref†<T>& operator^= (const sc_bitref_r†<T>& a);
sc_bitref†<T>& operator^= (const sc_logic& a);
sc_bitref†<T>& operator^= (sc_logic_value_t v);
sc_bitref†<T>& operator^= (bool a);
sc_bitref†<T>& operator^= (char a);
sc_bitref†<T>& operator^= (int a);

 // Other methods
 void scan(std::istream& is = std::cin);

private:
// Disabled
sc_bitref();

};

} // namespace sc_dt

7.9.7.3 Constraints on usage

Bit-select objects shall only be created using the bit-select operators of an sc_bv_base or sc_lv_base object
(or an instance of a class derived from sc_bv_base or sc_lv_base) or a part-select or concatenation thereof,
as described in 7.2.4.
256 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
An application shall not explicitly create an instance of any bit-select class.

An application should not declare a reference or pointer to any bit-select object.

7.9.7.4 Assignment operators

Overloaded assignment operators for the lvalue bit-select shall provide conversion to sc_logic_value_t
values. The assignment operator for the rvalue bit-select shall be declared as private to prevent its use by an
application.

7.9.7.5 Implicit type conversion

operator const sc_logic() const;
Operator sc_logic shall create an sc_logic object with the same value as the bit-select.

7.9.7.6 Explicit type conversion

char to_char() const;
Member function to_char shall convert the bit-select value to the char equivalent.

bool to_bool() const;
Member function to_bool shall convert the bit-select value to false or true. It shall be an error to call
this function if the sc_logic value is not logic 0 or logic 1.

bool is_01() const;
Member function is_01 shall return true if the sc_logic value is logic 0 or logic 1, otherwise, the
return value shall be false.

7.9.7.7 Bitwise and comparison operators

Operations specified in Table 21 are permitted. The following applies:

B represents an object of type sc_bitref_r†<T> (or any derived class).

Table 21—sc_bitref_r†<T> bitwise and comparison operations

Expression Return class Operational semantics

B & B const sc_logic sc_bitref_r†<T> bitwise and

B | B const sc_logic sc_bitref_r†<T> bitwise or

B ^ B const sc_logic sc_bitref_r†<T> bitwise exclusive or

B == B bool equal

B != B bool not equal
.
Copyright © 2005 OSCI. All rights reserved. 257

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
NOTE—An implementation is required to supply overloaded operators on sc_bitref_r†<T> objects to satisfy the
requirements of this clause. It is unspecified whether these operators are members of sc_bitref_r†<T>, global operators,
or provided in some other way.

7.9.8 Part-Selects

7.9.8.1 Description

Class template sc_subref_r†<T> represents a part-select from a vector used as an rvalue.

Class template sc_subref†<T> represents a part-select from a vector used as an lvalue.

The use of the term vector here includes part-selects and concatenations of bit vectors and logic vectors. The
template parameter is the name of the class accessed by the part-select.

The set of operations that can be performed on a part-select shall be identical to that of its associated vector
(subject to the constraints that apply to rvalue objects).

7.9.8.2 Class definition

namespace sc_dt {

template <class T>
class sc_subref_r†

{
public:

// Copy constructor
sc_subref_r†(const sc_subref_r†<T>& a);

// Bit selection
sc_bitref_r†<sc_subref_r†<T>> operator[] (int i) const;

// Part selection
sc_subref_r†<sc_subref_r†<T>> operator() (int hi , int lo) const;

sc_subref_r†<sc_subref_r†<T>> range(int hi , int lo) const;

// Reduce functions
sc_logic_value_t and_reduce() const;
sc_logic_value_t nand_reduce() const;
sc_logic_value_t or_reduce() const;
sc_logic_value_t nor_reduce() const;
sc_logic_value_t xor_reduce() const;
sc_logic_value_t xnor_reduce() const;

// Common methods
int length() const;

// Explicit conversions to character string
const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

// Explicit conversions
258 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
bool is_01() const;

// Other methods
void print(std::ostream& os = std::cout) const;
bool reversed() const;

private:
// Disabled
sc_subref_r†();
sc_subref_r†<T>& operator= (const sc_subref_r†<T>&);

};

// ---

template <class T>
class sc_subref†
: public sc_subref_r†<T>
{

public:
// Copy constructor
sc_subref†(const sc_subref†<T>& a);

// Assignment operators

template <class T>
sc_subref†<T>& operator= (const sc_subref_r†<T>& a);
template <class T1, class T2>
sc_subref†<T>& operator= (const sc_concref_r†<T1,T2>& a);
sc_subref†<T>& operator= (const sc_bv_base& a);
sc_subref†<T>& operator= (const sc_lv_base& a);
sc_subref†<T>& operator= (const sc_subref_r†<T>& a);
sc_subref†<T>& operator= (const sc_subref†<T>& a);
sc_subref†<T>& operator= (const char* a);
sc_subref†<T>& operator= (const bool* a);
sc_subref†<T>& operator= (const sc_logic* a);
sc_subref†<T>& operator= (const sc_unsigned& a);
sc_subref†<T>& operator= (const sc_signed& a);
sc_subref†<T>& operator= (const sc_uint_base& a);
sc_subref†<T>& operator= (const sc_int_base& a);
sc_subref†<T>& operator= (unsigned long a);
sc_subref†<T>& operator= (long a);
sc_subref†<T>& operator= (unsigned int a);
sc_subref†<T>& operator= (int a);
sc_subref†<T>& operator= (uint64 a);

 sc_subref†<T>& operator= (int64 a);

// Bitwise rotations
sc_subref†<T>& lrotate(int n);
sc_subref†<T>& rrotate(int n);
.
Copyright © 2005 OSCI. All rights reserved. 259

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
// Bitwise reverse
sc_subref†<T>& reverse();

 // Bit selection
 sc_bitref†<sc_subref†<T>> operator[] (int i);

// Part selection
sc_subref†<sc_subref†<T>> operator() (int hi , int lo);

 sc_subref†<sc_subref†<T>> range(int hi , int lo);

 // Other methods
void scan(std::istream& = std::cin);

private:
// Disabled
sc_subref†();

};

} // namespace sc_dt

7.9.8.3 Constraints on usage

Part-select objects shall only be created using the part-select operators of an sc_bv_base or sc_lv_base
object (or an instance of a class derived from sc_bv_base or sc_lv_base) or a part-select or concatenation
thereof, as described in 7.2.5.

An application shall not explicitly create an instance of any part-select class.

An application should not declare a reference or pointer to any part-select object.

An rvalue part-select shall not be used to modify the vector with which it is associated.

7.9.8.4 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to lvalue part-selects. If the size of a data type or string literal operand differs from the
part-select word length, truncation or zero-extension shall be used as described in 7.2.1. If an array of bool
or array of sc_logic is assigned to a part-select and its number of elements is less than the part-select word
length, the value of the part-select shall be undefined.

The default assignment operator for an rvalue part-select is private to prevent its use by an application.

7.9.8.5 Explicit type conversion

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

Member function to_string shall convert to an std::string representation as described in 7.2.10.
Calling the to_string function with a single argument is equivalent to calling the to_string function
with two arguments where the second argument is true. Attempting to call the single or double
argument to_string function for a part-select with one or more elements set to the high-impedance
or unknown state shall be an error.
260 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Calling the to_string function with no arguments shall create a logic value string with a single '1',
'0', 'Z' , or 'X' corresponding to each bit. This string shall not prefixed by "0b" or a leading zero.

bool is_01() const;
Member function is_01 shall return true only when every element of a part-select has a value of
logic 0 or logic 1. If any element has the value high-impedance or unknown, it shall return false.
Member functions that return the integer equivalent of the bit representation shall be provided to
satisfy the requirements of 7.2.8. Calling any such integer conversion function for an object having
one or more bits set to the high-impedance or unknown state shall be an error.

7.9.8.6 Bitwise and comparison operators

Operations specified in Table 22 and Table 25 are permitted for all vector part-selects, operations specified
in Table 23 are permitted for lvalue vector part-selects only. The following applies:

— P represents an lvalue or rvalue vector part-select.
— L represents an lvalue vector part-select.
— Vi represents an object of logic vector type sc_bv_base, sc_lv_base, sc_subref_r†<T>, or

sc_concref_r†<T1,T2>, or integer type int, long, unsigned int, unsigned long, sc_signed,
sc_unsigned, sc_int_base, or sc_uint_base.

— i represents an object of integer type int.
— A represents an array object with elements of type char, bool, or sc_logic.

The operands may also be of any other class that is derived from those given above.

Table 22—sc_subref_r†<T> bitwise operations

Expression Return class Operational semantics

P & Vi const sc_lv_base sc_subref_r†<T> bitwise and

Vi & P const sc_lv_base sc_subref_r†<T> bitwise and

P & A const sc_lv_base sc_subref_r†<T> bitwise and

A & P const sc_lv_base sc_subref_r†<T> bitwise and

P | Vi const sc_lv_base sc_subref_r†<T> bitwise or
.
Copyright © 2005 OSCI. All rights reserved. 261

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Binary bitwise operators shall return a result with a word length that is equal to the word length of the
longest operand.

The left shift operator shall return a result with a word length that is equal to the word length of its part-
select operand plus the right (integer) operand. Bits added on the right-hand side of the result shall be set to
zero.

The right shift operator shall return a result with a word length that is equal to the word length of its part-
select operand. Bits added on the left-hand side of the result shall be set to zero.

Vi | P const sc_lv_base sc_subref_r†<T> bitwise or

P | A const sc_lv_base sc_subref_r†<T> bitwise or

A | P const sc_lv_base sc_subref_r†<T> bitwise or

P ^ Vi const sc_lv_base sc_subref_r†<T> bitwise exclusive or

Vi ^ P const sc_lv_base sc_subref_r†<T> bitwise exclusive or

P ^ A const sc_lv_base sc_subref_r†<T> bitwise exclusive or

A ^ P const sc_lv_base sc_subref_r†<T> bitwise exclusive or

P << i const sc_lv_base sc_subref_r†<T> left-shift

P >> i const sc_lv_base sc_subref_r†<T> right-shift

~P const sc_lv_base sc_subref_r†<T> bitwise complement

Table 23—sc_subref†<T> bitwise operations

Expression Return class Operational semantics

L &= Vi sc_subref_r†<T>& sc_subref_r†<T> assign bitwise and

L &= A sc_subref_r†<T>& sc_subref_r†<T> assign bitwise and

L |= Vi sc_subref_r†<T>& sc_subref_r†<T> assign bitwise or

L |= A sc_subref_r†<T>& sc_subref_r†<T> assign bitwise or

L ^= Vi sc_subref_r†<T>& sc_subref_r†<T> assign bitwise exclusive or

L ^= A sc_subref_r†<T>& sc_subref_r†<T> assign bitwise exclusive or

L <<= i sc_subref_r†<T>& sc_subref_r†<T> assign left-shift

L >>= i sc_subref_r†<T>& sc_subref_r†<T> assign right-shift

Table 22—sc_subref_r†<T> bitwise operations

Expression Return class Operational semantics
262 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
It is an error if the right operand of a shift operator is negative.

sc_subref†<T>& lrotate(int n);
Member function lrotate shall rotate an lvalue part-select n places to the left.

sc_subref†<T>& rrotate(int n);
Member function rrotate shall rotate an lvalue part-select n places to the right.

sc_subref†<T>& reverse();
Member function reverse shall reverse the bit order in an lvalue part-select.

NOTE—An implementation is required to supply overloaded operators on sc_subref_r†<T> and sc_subref†<T> objects
to satisfy the requirements of this clause. It is unspecified whether these operators are members of sc_subref†<T>,
members of sc_subref†<T>, global operators, or provided in some other way.

7.9.8.7 Other methods

bool reversed() const;
Member function reversed shall return true if the elements of a part-select are in the reverse order
to those of its associated vector (if the left-hand index used to form the part-select is less than the
right-hand index); otherwise, the return value shall be false.

Table 24—sc_subref_r†<T> comparison operations

Expression Return type Operational semantics

P == Vi bool equal

Vi == P bool equal

P == A bool equal

A == P bool equal
.
Copyright © 2005 OSCI. All rights reserved. 263

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.9.9 Concatenations

7.9.9.1 Description

Class template sc_concref_r†<T> represents a concatenation of bits from one or more vector used as an
rvalue.

Class template sc_concref†<T> represents a concatenation of bits from one or more vector used as an lvalue.

The use of the term vector here includes part-selects and concatenations of bit vectors and logic vectors. The
template parameters are the class names of the two vectors used to create the concatenation.

The set of operations that can be performed on a concatenation shall be identical to that of its associated
vectors (subject to the constraints that apply to rvalue objects).

7.9.9.2 Class definition

namespace sc_dt {

template <class T1, class T2>
class sc_concref_r†

{
public:

// Copy constructor
sc_concref_r†(const sc_concref_r†<T1,T2>& a);

// Destructor
 virtual ~sc_concref_r†();

// Bit selection
sc_bitref_r†<sc_concref_r†<T1,T2>> operator[] (int i) const;

 // Part selection
sc_subref_r†<sc_concref_r†<T1,T2>> operator() (int hi , int lo) const;

sc_subref_r†<sc_concref_r†<T1,T2>> range(int hi , int lo) const;

// Reduce functions
sc_logic_value_t and_reduce() const;
sc_logic_value_t nand_reduce() const;
sc_logic_value_t or_reduce() const;
sc_logic_value_t nor_reduce() const;
sc_logic_value_t xor_reduce() const;
sc_logic_value_t xnor_reduce() const;

// Common methods
int length() const;

// Explicit conversions to character string
const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

// Explicit conversions
264 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
bool is_01() const;

 // Other methods
 void print(std::ostream& os = std::cout) const;

private:
// Disabled
sc_concref_r();
sc_concref_r†<T1,T2>& operator= (const sc_concref_r†<T1,T2>&);

};

// ---

template <class T1, class T2>
class sc_concref
: public sc_concref_r†<T1,T2>
{

public:
// Copy constructor
sc_concref†(const sc_concref†<T1,T2>& a);

// Assignment operators
template <class T>
sc_concref†<T1,T2>& operator= (const sc_subref_r†<T>& a);
template <class T1, class T2>
sc_concref†<T1,T2>& operator= (const sc_concref_r†<T1,T2>& a);
sc_concref†<T1,T2>& operator= (const sc_bv_base& a);
sc_concref†<T1,T2>& operator= (const sc_lv_base& a);
sc_concref†<T1,T2>& operator= (const sc_concref†<T1,T2>& a);
sc_concref†<T1,T2>& operator= (const char* a);
sc_concref†<T1,T2>& operator= (const bool* a);
sc_concref†<T1,T2>& operator= (const sc_logic* a);
sc_concref†<T1,T2>& operator= (const sc_unsigned& a);
sc_concref†<T1,T2>& operator= (const sc_signed& a);
sc_concref†<T1,T2>& operator= (const sc_uint_base& a);
sc_concref†<T1,T2>& operator= (const sc_int_base& a);
sc_concref†<T1,T2>& operator= (unsigned long a);
sc_concref†<T1,T2>& operator= (long a);
sc_concref†<T1,T2>& operator= (unsigned int a);
sc_concref†<T1,T2>& operator= (int a);
sc_concref†<T1,T2>& operator= (uint64 a);
sc_concref†<T1,T2>& operator= (int64 a);

// Bitwise rotations
sc_concref†<T1,T2>& lrotate(int n);
sc_concref†<T1,T2>& rrotate(int n);

// Bitwise reverse
sc_concref†<T1,T2>& reverse();
.
Copyright © 2005 OSCI. All rights reserved. 265

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
// Bit selection
sc_bitref†<sc_concref†<T1,T2>> operator[] (int i);

// Part selection
sc_subref†<sc_concref†<T1,T2>> operator() (int hi , int lo);

sc_subref†<sc_concref†<T1,T2>> range(int hi , int lo);

// Other methods
void scan(std::istream& = std::cin);

private:
// Disabled
sc_concref();

};

} // namespace sc_dt

7.9.9.3 Constraints on usage

Concatenation objects shall only be created using the concat function (or operator ,) according to the rules
in 7.2.6. The concatenation arguments shall be objects with a common concatenation base type of
sc_bv_base or sc_lv_base (or an instance of a class derived from sc_bv_base or sc_lv_base) or a part-select
or concatenation thereof.

An application shall not explicitly create an instance of any concatenation class.

An application should not declare a reference or pointer to any concatenation object.

An rvalue concatenation shall be created when any argument to the concat function (or operator ,) is an
rvalue. An rvalue concatenation shall not be used to modify any vector with which it is associated.

7.9.9.4 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to lvalue concatenations. If the size of a data type or string literal operand differs from
the concatenation word length, truncation or zero-extension shall be used as described in 7.2.1. If an array of
bool or array of sc_logic is assigned to a concatenation and its number of elements is less than the
concatenation word length, the value of the concatenation shall be undefined.

The default assignment operator for an rvalue concatenation shall be declared as private to prevent its use by
an application.

7.9.9.5 Explicit type conversion

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

Member function to_string shall perform the conversion to an std::string representation as
described in 7.2.10. Calling the to_string function with a single argument is equivalent to calling the
to_string function with two arguments where the second argument is true. Attempting to call the
single or double argument to_string function for a concatenation with one or more elements set to
the high-impedance or unknown state shall be an error.
266 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Calling the to_string function with no arguments shall create a logic value string with a single '1',
'0', 'Z', or 'X' corresponding to each bit. This string shall not prefixed by "0b" or a leading zero.

bool is_01() const;
Member function is_01 shall return true only when every element of a concatenation has a value of
logic 0 or logic 1. If any element has the value high-impedance or unknown, it shall return false.
Member functions that return the integer equivalent of the bit representation shall be provided to
satisfy the requirements of 7.2.8. Calling any such integer conversion function for an object having
one or more bits set to the high-impedance or unknown state shall be an error.

7.9.9.6 Bitwise and comparison operators

Operations specified in Table 25 and Table 27 are permitted for all vector concatenations; operations
specified in Table 26 are permitted for lvalue vector concatenations only. The following applies:

— C represents an lvalue or rvalue vector concatenation.
— L represents an lvalue vector concatenation.
— Vi represents an object of logic vector type sc_bv_base, sc_lv_base, sc_subref_r†<T>, or

sc_concref_r†<T1,T2>, or integer type int, long, unsigned int, unsigned long, sc_signed,
sc_unsigned, sc_int_base, or sc_uint_base.

— i represents an object of integer type int.
— A represents an array object with elements of type char, bool, or sc_logic.

The operands may also be of any other class that is derived from those given above.

Table 25—sc_concref_r†<T1,T2> bitwise operations

Expression Return class Operational semantics

C & Vi const sc_lv_base sc_concref_r†<T1,T2> bitwise and

Vi & C const sc_lv_base sc_concref_r†<T1,T2> bitwise and

C & A const sc_lv_base sc_concref_r†<T1,T2> bitwise and

A & C const sc_lv_base sc_concref_r†<T1,T2> bitwise and

C | Vi const sc_lv_base sc_concref_r†<T1,T2> bitwise or
.
Copyright © 2005 OSCI. All rights reserved. 267

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Binary bitwise operators shall return a result with a word length that is equal to the word length of the
longest operand.

The left shift operator shall return a result with a word length that is equal to the word length of its
concatenation operand plus the right (integer) operand. Bits added on the right-hand side of the result shall
be set to zero.

Vi | C const sc_lv_base sc_concref_r<T1,T2> bitwise or

C | A const sc_lv_base sc_concref_r<T1,T2> bitwise or

A | C const sc_lv_base sc_concref_r<T1,T2> bitwise or

C ^ Vi const sc_lv_base sc_concref_r<T1,T2> bitwise exclusive or

Vi ^ C const sc_lv_base sc_concref_r<T1,T2> bitwise exclusive or

C ^ A const sc_lv_base sc_concref_r<T1,T2> bitwise exclusive or

A ^ C const sc_lv_base sc_concref_r<T1,T2> bitwise exclusive or

C << i const sc_lv_base sc_concref_r<T1,T2> left-shift

C >> i const sc_lv_base sc_concref_r<T1,T2> right-shift

~C const sc_lv_base sc_concref_r<T1,T2> bitwise complement

Table 26—sc_concref†<T1,T2> bitwise operations

Expression Return class Operational semantics

L &= Vi sc_concref†<T1,T2>& sc_concref†<T1,T2> assign bitwise and

L &= A sc_concref†<T1,T2>& sc_concref†<T1,T2> assign bitwise and

L |= Vi sc_concref†<T1,T2>& sc_concref†<T1,T2> assign bitwise or

L |= A sc_concref†<T1,T2>& sc_concref†<T1,T2> assign bitwise or

L ^= Vi sc_concref†<T1,T2>& sc_concref†<T1,T2> assign bitwise exclusive or

L ^= A sc_concref†<T1,T2>& sc_concref†<T1,T2> assign bitwise exclusive or

L <<= i sc_concref†<T1,T2>& sc_concref†<T1,T2> assign left-shift

L >>= i sc_concref†<T1,T2>& sc_concref†<T1,T2> assign right-shift

Table 25—sc_concref_r†<T1,T2> bitwise operations

Expression Return class Operational semantics
268 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The right shift operator shall return a result with a word length that is equal to the word length of its
concatenation operand. Bits added on the left-hand side of the result shall be set to zero.

sc_concref†<T1,T2>& lrotate(int n);
Member function lrotate shall rotate an lvalue part-select n places to the left.

sc_concref†<T1,T2>& rrotate(int n);
Member function rrotate shall rotate an lvalue part-select n places to the right.

sc_concref†<T1,T2>& reverse();
Member function reverse shall reverse the bit order in an lvalue part-select.

NOTE—An implementation is required to supply overloaded operators on sc_concref_r†<T1,T2> and
sc_concref†<T1,T2> objects to satisfy the requirements of this clause. It is unspecified whether these operators are
members of sc_concref_r†<T1,T2>, members of sc_concref†<T1,T2>, global operators, or provided in some other way.

Table 27—sc_concref_r†<T1,T2> comparison operations

Expression Return type Operational semantics

C == Vi bool equal

Vi == C bool equal

C == A bool equal

A == C bool equal
.
Copyright © 2005 OSCI. All rights reserved. 269

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.10 Fixed-point types

This clause describes the fixed-point types and the operations and conventions imposed by these types.

7.10.1 Fixed-point representation

In the SystemC binary fixed-point representation, a number shall be represented by a sequence of bits with a
specified position for the binary-point. Bits to the left of the binary point shall represent the integer part of
the number and bits to the right of the binary point shall represent the fractional part of the number.

A SystemC fixed-point type shall be characterized by the following:
— The word length (wl), which shall be the total number of bits in the number representation.
— The integer word length (iwl), which shall be the number of bits in the integer part (the position of

the binary point relative to the left-most bit).
— The bit encoding (which shall be signed, two’s compliment, or unsigned).

The right-most bit of the number shall be is the least significant bit (LSB) and the left-most bit shall be the
most significant bit (MSB).

The binary point may be located outside of the data bits. That is, the binary point may be some number of bit
positions to the right of the of the LSB or it may be some number of bit positions to the left of the MSB.

The fixed-point representation can be interpreted according to the following three cases:
— wl < iwl

There are (iwl-wl) zeros between the LSB and the binary point. See index 1 in Table 28 for an
example of this case.

— 0 <= iwl <= wl
The binary point is contained within the bit representation. See index 2, 3, 4, and 5 in Table 28 for
examples of this case.

— iwl < 0
There are (-iwl) sign extended bits between the binary point and the MSB. For an unsigned type, the
sign extended bits are zero. For a signed type, the extended bits repeat the MSB. See index 6 and 7 in
Table 28 for examples of this case.

The MSB in the fixed-point representation of a signed type shall be the sign bit. The sign bit may be behind
the binary point.

The range of values for a signed fixed-point format shall be given by the following:

The range of values for a unsigned fixed-point format shall be given by the following:

2–
iwl 1–() 2 iwl 1–() 2–

wl iwl–()–
[,]

0 2 iwl() 2–
wl iwl–()–

[,]
270 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.2 Fixed-point type conversion

Fixed-point type conversion (conversion of a value to a specific fixed-point representation) shall be
performed whenever a value is assigned to a fixed-point type variable (including initialization).

If the magnitude of the value is outside the range of the fixed-point representation, or the value has greater
precision than the fixed-point representation provides, it shall be mapped (converted) to a value that can be
represented. This conversion shall be performed in two steps:

1) If the value is within range but has greater precision (it is between representable values), quan-
tization shall be performed to reduce the precision.

2) If the magnitude of the value is outside the range, overflow handling shall be performed to
reduce the magnitude.

If the target fixed-point representation has greater precision, the additional least-significant bits shall be zero
extended. If the target fixed-point representation has a greater range, sign extension or zero extension shall
be performed for signed and unsigned fixed-point types, respectively, to extend the representation of their
most-significant bits.

Multiple quantization modes (distinct quantization characteristics) and multiple overflow modes (distinct
overflow characteristics) are defined (see 7.10.9.1 and 7.10.9.9).

7.10.3 Fixed-point data types

This clause describes the classes that are provided to represent fixed-point values.

7.10.3.1 Fixed precision fixed-point types

The following fixed-point data types shall be provided:

sc_fixed<wl,iwl,q_mode,o_mode,n_bits>

Table 28—Examples of fixed-point formats

Index wl iwl Fixed-point repre-
sentation*

*x is an arbitrary binary digit, 0, or 1. s is a sign extended digit, 0, or 1,

Range signed Ranged unsigned

1 5 7 xxxxx00. [-64,60] [0,124]

2 5 5 xxxxx. [-16,15] [0,31]

3 5 3 xxx.xx [-4,3.75] [0,7.75]

4 5 1 x.xxxx [-1,0.9375] [0,1.9375]

5 5 0 .xxxxx [-0.5,0.46875] [0,0.96875]

6 5 -2 .ssxxxxx [0.125,0.1171875] [0,0.2421875]

7 1 -1 .sx [-0.25,0] [0,0.25]
.
Copyright © 2005 OSCI. All rights reserved. 271

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_ufixed<wl,iwl,q_mode,o_mode,n_bits>
sc_fix
sc_ufix
sc_fxval

These types shall be parameterized as to the fixed-point representation (wl, iwl) and fixed-point conversion
modes (q_mode, o_mode, n_bits). The declaration of a variable of one of these types shall specify the
values for these parameters. The type parameter values of a variable shall not be modified after the variable
declaration. Any data value assigned to the variable shall be converted to specified representation (with the
specified word length, and binary point location) with the specified quantization and overflow processing
(q_mode, o_mode, n_bits) applied if required.

The fixed precision fixed-point types have a common base class sc_fxnum. An application or
implementation shall not directly create an object of type sc_fxnum. A reference or pointer to class
sc_fxnum may be used to access an object of any type derived from sc_fxnum.

The type sc_fxval is an arbitrary-precision type. A variable of type sc_fxval may store a fixed-point value of
arbitrary width and binary point location. A value assigned to a sc_fxval variable shall be stored without a
loss of precision or magnitude (the value shall not be modified by quantization or overflow handling).

Types sc_fixed, sc_fix, and sc_fxval shall have a signed (two’s compliment) representation. Types
sc_ufixed and sc_ufix have an unsigned representation.

A fixed-point variable that is declared without an initial value shall be uninitialized. Uninitialized variables
may be used wherever the use of an initialized variable is permitted. The result of an operation on an
uninitialized variable shall be undefined.

7.10.3.2 Limited-precision fixed-point types

The following limited-precision versions of the fixed-point types shall be provided:

sc_fixed_fast<wl,iwl,q_mode,o_mode,n_bits>
sc_ufixed_fast<wl,iwl,q_mode,o_mode,n_bits>
sc_fix_fast
sc_ufix_fast
sc_fxval_fast

The limited-precision types shall use the same semantics as the regular fixed-point types. Fixed-point types
and limited-precision types may be mixed freely in expressions. A variable of a limited-precision type shall
be a legal replacement in any expression where a variable of the corresponding fixed-point type is expected.

The limited-precision fixed-point value shall be held in an implementation-dependent native C++ floating-
point type. An implementation shall provide a minimum length of 53 bits to represent the mantissa.

NOTE—For bit-true behavior with the limited-precision types, the word length of the result of any operation or
expression shall not exceed 53 bits.

7.10.4 Fixed-point expressions and operations

Fixed-point operations shall be performed using arbitrary-precision fixed-point values; that is, the evaluation
of a fixed-point operator shall proceed as follows (except as noted below for specific operators):

— The operands shall be converted (promoted) to arbitrary fixed-point values.
272 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
— The operation shall be performed, computing an arbitrary fixed-point result. The result shall be com-
puted so that there is no loss of precision or magnitude (that is, sufficient bits are computed to pre-
cisely represent the result).

The right-hand side of a fixed-point assignment shall be evaluated as an arbitrary fixed-point value that is
converted to the fixed-point representation specified by the target of the assignment.

If all the operands of a fixed-point operation are limited-precision types, a limited-precision operation shall
be performed. This operation shall use limited arbitrary-precision fixed-point values (sc_fxval_fast) and the
result shall be a limited arbitrary-precision fixed-point value.

The right operand of a fixed-point shift operation (the shift amount) shall be of type int. If a fixed-point shift
operation is called with a fixed-point value for the right operand, the fractional part of the value shall be
truncated (no quantization).

The result of the equality and relational operators shall be type bool.

Fixed-point operands of a bitwise operator shall be of a fixed precision type (they may not be arbitrary
precision). Furthermore, both operands of a binary bitwise operator shall have the same sign representation
(both signed or both unsigned). The result of a fixed-point bitwise operation shall be either sc_fix, or sc_ufix
(or sc_fix_fast, sc_ufix_fast), depending on the sign representation of the operands. For binary operators,
the two operands shall be aligned at the binary point. The operands shall be temporarily extended (if
necessary) to have the same integer word length and fractional word length. The result shall have the same
integer and fractional word lengths as the temporarily extended operands.

The remainder operator (%) is not supported for fixed-point types.

The permitted operators are given in Table 29. The following applies:
— A represents a fixed-point object.
— B and C represent appropriate numeric values or objects.
— s1, s2, s3 represent signed fixed-precision fixed-point objects.
— u1, u2, u3 represent unsigned fixed-precision fixed-point objects.

Table 29—Fixed-point arithmetic and bitwise functions

Expression Operational semantics

A = B + C; Addition with assignment

A = B - C; Subtraction with assignment

A = B * C; Multiplication with assignment

A = B / C; Division with assignment

A = B << i; Left shift with assignment

A = B >> i; Right shift with assignment

s1 = s2 & s3; Bitwise and with assignment for signed operands

s1 = s2 | s3; Bitwise or with assignment for signed operands
.
Copyright © 2005 OSCI. All rights reserved. 273

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The operands of arithmetic fixed-point operations may be combinations of the types listed in Table 30,
Table 31, Table 32, and Table 33.

The addition operations specified in Table 30 are permitted for fixed-precision fixed-point objects. The
following applies:

— F, F1, F2 represent objects derived from type sc_fxnum.
— n represents an object of numeric type int, long, unsigned int, unsigned long, double, sc_signed,

sc_unsigned, sc_int_base, sc_uint_base, sc_fxval, sc_fxval_fast, or an object derived from
sc_fxnum_fast or a numeric string literal.

The operands may also be of any other class that is derived from those given above.

The addition operations specified in Table 31 are permitted for arbitrary-precision fixed-point objects. The
following applies:

— V, V1, V2 represent objects of type sc_fxval.
— n represents an object of numeric type int, long, unsigned int, unsigned long, double, sc_signed,

sc_unsigned, sc_int_base, sc_uint_base, sc_fxval_fast, or an object derived from sc_fxnum_fast
or a numeric string literal.

s1 = s2 ^ s3; Bitwise exclusive-or with assignment for signed operands

u1 = u2 & u3; Bitwise and with assignment for unsigned operands

u1 = u2 | u3; Bitwise or with assignment for unsigned operands

u1 = u2 ^ u3; Bitwise exclusive-or with assignment for unsigned operands

Table 30—Fixed-precision fixed-point addition operations

Expression Operational semantics

F = F1 + F2; sc_fxnum addition, sc_fxnum assign

F1 += F2; sc_fxnum assign addition

F1 = F2 + n; sc_fxnum addition, sc_fxnum assign

F1 = n + F2; sc_fxnum addition, sc_fxnum assign

F += n; sc_fxnum assign addition

Table 29—Fixed-point arithmetic and bitwise functions

Expression Operational semantics
274 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The operands may also be of any other class that is derived from those given above.

The addition operations specified in Table 32 are permitted for limited-precision fixed-point objects. The
following applies:

— F, F1, F2 represent objects derived from type sc_fxnum_fast.
— n represents an object of numeric type int, long, unsigned int, unsigned long, double, sc_signed,

sc_unsigned, sc_int_base, sc_uint_base, or sc_fxval_fast, or a numeric string literal.

The operands may also be of any other class that is derived from those given above.

The addition operations specified in Table 33 are permitted for limited arbitrary-precision fixed-point
objects. The following applies:

— V, V1, V2 represent objects of type sc_fxval_fast.
— n represents an object of numeric type int, long, unsigned int, unsigned long, double, sc_signed,

sc_unsigned, sc_int_base, or sc_uint_base, or a numeric string literal.

Table 31—Arbitrary-precision fixed-point addition operations

Expression Operational semantics

V = V1 + V2; sc_fxval addition,
sc_fxval assign

V1 += V2; sc_fxval assign addition

V1 = V2 + n; sc_fxval addition,
sc_fxval assign

V1 = n + V2; sc_fxval addition,
sc_fxval assign

V += n; sc_fxval assign addition

Table 32—Limited-precision fixed-point addition operations

Expression Operational semantics

F = F1 + F2; sc_fxnum_fast addition,
sc_fxnum_fast assign

F1 += F2; sc_fxnum_fast assign addition

F1 = F2 + n; sc_fxnum_fast addition,
sc_fxnum_fast assign

F1 = n + F2; sc_fxnum_fast addition,
sc_fxnum_fast assign

F += n; sc_fxnum_fast assign addition
.
Copyright © 2005 OSCI. All rights reserved. 275

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The operands may also be of any other class that is derived from those given above.

Subtraction, multiplication, and division operations are also permitted with the same combinations of
operand types as listed in Table 30, Table 31, Table 32, and Table 33.

7.10.5 Bit and part selection

Bit and part selection shall be supported for the fixed precision fixed-point types as described in 7.2.4 and
7.2.5. They are not supported for the arbitrary-precision fixed-point types sc_fxval or sc_fxval_fast.

If the left-hand index of a part select is less than the right-hand index, the bit order of the part select shall be
reversed.

A part select may be created with an unspecified range (the range function or operator() is called with no
arguments). In this case, the part select shall have the same word length and same value as its associated
fixed-point object.

7.10.6 Arbitrary fixed-point value limits

In some cases, such as division, using arbitrary precision could lead to infinite word lengths. An
implementation should provide an appropriate mechanism to define the maximum permitted word length of
an arbitrary-precision value and to detect when this maximum word length is reached.

The action taken by an implementation when an arbitrary-precision value reaches its maximum word length
is undefined. The result of any operation that causes an arbitrary-precision value to reach its maximum word
length shall be the implementation-dependent representable value nearest to the ideal (infinite precision)
result.

7.10.7 Fixed-point word length and mode

The default word length, quantization mode, and saturation mode of a fixed-point type shall be set by the
fixed-point type parameter (sc_fxtype_param) in context at the point of construction as described in 7.2.2.
The fixed-point type parameter shall have a field corresponding to the fixed-point representation (wl,.iwl)

Table 33—Limited arbitrary-precision fixed-point addition operations

Expression Operational semantics

V = V1 + V2; sc_fxval_fast addition,
sc_fxval_fast assign

V1 += V2; sc_fxval_fast assign addition

V1 = V2 + n; sc_fxval_fast addition,
sc_fxval_fast assign

V1 = n + V2; sc_fxval_fast addition,
sc_fxval_fast assign

V += n; sc_fxval_fast assign addition
276 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
and fixed-point conversion modes (q_mode, o_mode, n_bits). Default values for these fields shall be
defined according to Table 34.

The behavior of a fixed-point object in arithmetic operations may be set to emulate that of a floating point
variable by the floating point cast switch in context at its point of construction. A floating point cast switch
shall be brought into context by creating a floating point cast context object. The sc_fxcast_switch and
sc_fxcast_context shall be used to create floating point cast switches and floating point cast contexts,
respectively. (See 7.11.5 and 7.11.6.)

A global floating-point cast context stack shall manage floating-point cast contexts using the same semantics
as the length context stack described in 7.2.2.

A floating-point cast switch may be initialized to the value SC_ON or SC_OFF. These shall cause the
arithmetic behavior to be fixed point or floating point, respectively. A default floating point context with the
value SC_ON shall be defined.

Example:

sc_fxtype_params fxt(32,16);
sc_fxtype_context fcxt(fxt);

sc_fix A,B,res; // wl = 32, iwl = 16
A = 10.0;
B = 0.1;
res = A * B; // res = .999908447265625

sc_fxcast_switch fxs(SC_OFF);
sc_fxcast_context fccxt(fxs);
sc_fix C,D; // Floating point behavior
C = 10.0;
D = 0.1;
res = C * D; // res = 1

7.10.7.1 Reading parameter settings

The following functions are defined for every finite-precision fixed-point object and limited-precision fixed-
point object and shall return its current parameter settings (at run-time).

Table 34—Built-in default values

Parameter Value

wl 32

iwl 32

q_mode SC_TRN

o_mode SC_WRAP

n_bits 0
.
Copyright © 2005 OSCI. All rights reserved. 277

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
const sc_fxcast_switch& cast_switch() const;
Member function cast_switch shall return the cast switch parameter.

int iwl() const;
Member function iwl shall return the integer word length parameter.

int n_bits() const;
Member function n_bits shall return the number of saturated bits parameter.

sc_o_mode o_mode() const;
Member function o_mode shall return the overflow mode parameter via the enumerated type
sc_o_mode, defined as follows:

enum sc_o_mode
{

SC_SAT, // Saturation
SC_SAT_ZERO, // Saturation to zero
SC_SAT_SYM, // Symmetrical saturation
SC_WRAP, // Wrap-around (*)
SC_WRAP_SM // Sign magnitude wrap-around (*)

};

sc_q_mode q_mode() const;
Member function q_mode shall return the quantization mode parameter via the enumerated type
sc_q_mode, defined as follows:

enum sc_q_mode
{

SC_RND, // Rounding to plus infinity
SC_RND_ZERO, // Rounding to zero
SC_RND_MIN_INF, // Rounding to minus infinity
SC_RND_INF, // Rounding to infinity
SC_RND_CONV, // Convergent rounding
SC_TRN, // Truncation
SC_TRN_ZERO // Truncation to zero

};

const sc_fxtype_params& type_params() const;
Member function type_params shall return the type parameters.

int wl() const;
Member function wl shall return the total word length parameter.

7.10.7.2 Value attributes

The following functions are defined for every fixed-point object and shall return its current value attributes.
278 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
bool is_neg() const;
Member function is_neg shall return true if the object holds a negative value; otherwise, the return
value shall be false.

bool is_zero() const;
Member function is_zero shall return true if the object holds a zero value; otherwise, the return
value shall be false.

bool overflow_flag() const;
Member function overflow_flag shall return true if the last write action on this objects caused
overflow; otherwise, the return value shall be false.

bool quantization_flag() const;
Member function quantization_flag shall return true if the last write action on this object caused
quantization; otherwise, the return value shall be false.

The following function is defined for every finite-precision fixed-point object and shall return its current
value:

const sc_fxval
value() const;

The following function is defined for every limited-precision fixed-point object and shall return its current
value:

const sc_fxval_fast value() const;

7.10.8 Conversions to character string

Conversion to character string of the fixed-point types and the value types shall be supported by the
to_string method as described in 7.2.10.

The to_string method for fixed-point types may be called with an additional argument to specify the string
format. This argument shall be of enumerated type sc_fmt and shall always be at the right-hand side of the
argument list.

enum sc_fmt { SC_F, SC_E };

The default value for fmt shall be SC_F for the fixed-point types. For type sc_fxval, the default value for
fmt shall be SC_E.

The selected format shall give different character strings only when the binary point is not located within the
wl bits. In that case, either sign extension (MSB side) or zero extension (LSB side) shall be done (SC_F
format), or exponents shall be used (SC_E format).

In conversion to SC_DEC number representation or conversion from an arbitrary-precision variable, only
those characters necessary to uniquely represent the value shall be generated. In converting the value of a
.
Copyright © 2005 OSCI. All rights reserved. 279

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
fixed precision variable to a binary, octal, or hex representation, the number of characters used shall be
determined by the integer and fractional widths (iwl, fwl) of the variable (with sign or zero extension as
needed).

Example:

sc_fixed<7,4> a = -1.5;
a.to_string(SC_DEC); // -1.5
a.to_string(SC_BIN); // 0b1110.100
sc_fxval b = -1.5;
b.to_string(SC_BIN); // 0b10.1
sc_fixed<4,6> c = 20;
a.to_string(SC_BIN,false,SC_F); // 010100
a.to_string(SC_BIN,false,SC_E); // 0101e+2

7.10.8.1 String shortcut methods

Four shortcut methods to the to_string method shall be provided for frequently used combinations of
arguments. The shortcut methods are listed in Table 35.

The shortcut methods shall use the default string formatting.

Example:

sc_fixed<4,2> a = -1;
a.to_dec(); // Returns std::string with value "-1"
a.to_bin(); // Returns std::string with value "0b11.00"

7.10.8.2 Bit pattern string conversion

Assignment from bit pattern strings shall be defined for fixed-point part selects. The result of assigning a bit
pattern string to a fixed-point object (except via a part select) is undefined.

If the number of characters in the bit pattern string is less than the part select word length, the string shall be
zero extended at its left-hand side to the part select word length.

7.10.9 Finite word length effects

The following clauses describe the overflow and quantization modes of SystemC.

Table 35—Shortcut methods

Shortcut method Number representation

to_dec() SC_DEC

to_bin() SC_BIN

to_oct() SC_OCT

to_hex() SC_HEX
280 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.9.1 Overflow modes

Overflow shall occur when the magnitude of a value being assigned to a fixed-precision variable exceeds the
fixed-point representation. In SystemC, specific overflow modes shall be available to control the mapping to
a representable value.

The mutually exclusive overflow modes listed in Table 36 shall be provided. The default overflow mode
shall be SC_WRAP. When using a wrap-around overflow mode, the number of saturated bits (n_bits) shall
by default be set to 0, but can be modified.

In the following clauses, each of the overflow modes is explained in more detail. A figure is given to explain
the behavior graphically. The x-axis shows the input values and the y-axis represents the output values.
Together they determine the overflow mode.

To facilitate the explanation of each overflow mode, the concepts MIN and MAX are used:
— In the case of signed representation, MIN is the lowest (negative) number that may be represented;

MAX is the highest (positive) number that may be represented with a certain number of bits. A value
x shall lie in the range:
-2n-1 (= MIN) <= x <= (2n-1 - 1) (= MAX)
where n indicates the number of bits.

— In the case of unsigned representation, MIN shall equal 0 and MAX shall equal 2n - 1, where n indi-
cates the number of bits.

7.10.9.2 Overflow for signed fixed-point numbers

The following template contains a signed fixed-point number before and after an overflow mode has been
applied and a number of flags which are explained below. The flags between parentheses indicate additional
optional properties of a bit.

Table 36—Overflow modes

Overflow mode Name

Saturation SC_SAT

Saturation to zero SC_SAT_ZERO

Symmetrical saturation SC_SAT_SYM

Wrap-around *

*with 0 or n_bits saturated bits (n_bits > 0). The default
value for n_bits is 0.

SC_WRAP

Sign magnitude wrap-around†

†See Footnote a.

SC_WRAP_SM

x x x x x x x x x x x x x x
x x x x x x x x x x

sD D D D lD sR R(N) R(IN) R R R R R R R R lR

x x x
xx

Before

After:

Flags:
.
Copyright © 2005 OSCI. All rights reserved. 281

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The following flags and symbols are used in the template above and in Table 37:
— x represents a binary digit (0 or 1).
— sD represents a sign bit before overflow handling.
— D represents deleted bits.
— lD represents the least significant deleted bit.
— sR represents the bit on the MSB position of the result number. For the SC_WRAP_SM, 0 and

SC_WRAP_SM, 1 modes, a distinction is made between the original value (sRo) and the new value
(sRn) of this bit.

— N represents the saturated bits. Their number is equal to the n_bits argument minus 1. They are
always taken after the sign bit of the result number. The n_bits argument is only taken into account
for the SC_WRAP and SC_WRAP_SM overflow modes.

— lN represents the least significant saturated bit. This flag is only relevant for the SC_WRAP and
SC_WRAP_SM overflow modes. For the other overflow modes these bits are treated as R-bits. For
the SC_WRAP_SM, n_bits > 1 mode, lNo represents the original value of this bit.

— R represents the remaining bits.
— lR represents the least significant remaining bit.

Overflow shall occur when the value of at least one of the deleted bits (sD, D, lD) is not equal to the original
value of the bit on the MSB position of the result (sRo).

Table 37 shows how a signed fixed-point number shall be cast (in case there is an overflow) for each of the
possible overflow modes. The operators used in the table are “!” for a bitwise negation, and “^” for a bitwise
exclusive-or.

Table 37—Overflow handling for signed fixed-point numbers

Overflow mode Result

Sign bit (sR) Saturated bits (N, lN) Remaining bits (R, lR)

SC_SAT sD ! sD

The result number gets the sign bit of the original number. The remaining bits shall get
the inverse value of the sign bit.

SC_SAT_ZERO 0 0

All bits shall be set to zero.

SC_SAT_SYM sD ! sD,

The result number shall get the sign bit of the original number. The remaining bits shall
get the inverse value of the sign bit, except the least significant remaining bit, which
shall be set to one.

SC_WRAP, (n_bits =) 0 sR x

All bits except for the deleted bits shall be copied to the result.
282 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.9.3 Overflow for unsigned fixed-point numbers

The following template contains an unsigned fixed-point number before and after an overflow mode has
been applied and a number of flags, which are explained below.

The following flags and symbols are used in the template above and in Table 38:
— x represents an binary digit (0 or 1).
— D represents deleted bits.
— lD represents the least significant deleted bit.
— N represents the saturated bits. Their number is equal to the n_bits argument. The n_bits argument is

only taken into account for the SC_WRAP and SC_WRAP_SM overflow modes.
— R represents the remaining bits.

SC_WRAP, (n_bits =) 1 sD x

The result number shall get the sign bit of the original number. The remaining bits shall
be copied from the original number.

SC_WRAP, n_bits > 1 sD ! sD x

The result number shall get the sign bit of the original number. The saturated bits shall
get the inverse value of the sign bit of the original number. The remaining bits shall be
ply copied from the original number.

SC_WRAP_SM,
(n_bits =) 0

lD x ^ sRo ^ sRn

The sign bit of the result number shall get the value of the least significant deleted bit.
The remaining bits shall be exor-ed with the original and the new value of the sign bit
of the result.

SC_WRAP_SM,
(n_bits =) 1

sD x ^ sRo ^ sRn

The result number shall get the sign bit of the original number. The remaining bits shall
be exor-ed with the original and the new value of the sign bit of the result.

SC_WRAP_SM,
n_bits > 1

sD ! sD x ^INo ^ ! sD

The result number shall get the sign bit of the original number. The saturated bits shall
get the inverse value of the sign bit of the original number. The remaining bits shall be
exor-ed with the original value of the least significant saturated bit and the inverse
value of the original sign bit.

Table 37—Overflow handling for signed fixed-point numbers

Overflow mode Result

x x x x x x x x x x x x x x
x x x x x x x x x x

D D D D lD R(N) R(N) R(IN) R R R R R R R R R

x x x
xx

Before

After:

Flags:
.
Copyright © 2005 OSCI. All rights reserved. 283

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Table 38 shows how an unsigned fixed-point number shall be cast in case there is an overflow for each of
the possible overflow modes.

During the conversion from signed to unsigned, sign extension shall occur before overflow handling, while
in the unsigned to signed conversion, zero extension shall occur first.

7.10.9.4 SC_SAT

The SC_SAT overflow mode shall be used to indicate that the output is saturated to MAX in case of
overflow, or to MIN in the case of negative overflow. Figure 1 illustrates the SC_SAT overflow mode for a

Table 38—Overflow handling for unsigned fixed-point numbers

Overflow mode Result

Saturated bits (N) Remaining bits (R)

SC_SAT 1 (overflow) 0 (underflow)

The remaining bits shall be set to 1 (overflow) or 0 (underflow).

SC_SAT_ZERO 0

The remaining bits shall be set to 0.

SC_SAT_SYM 1 (overflow) 0 (underflow)

The remaining bits shall be set to 1 (overflow) or 0 (underflow).

SC_WRAP, (n_bits =) 0 x

All bits except for the deleted bits shall be copied to the result
number.

SC_WRAP, n_bits > 0 1 x

The saturated bits of the result number shall be set to 1. The
remaining bits shall be copied to the result.

SC_WRAP_SM Not defined for unsigned numbers.
284 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
word length of three bits. The x-axis represents the word length before rounding; the y-axis represents the
word length after rounding. The ideal situation is represented by the diagonal dashed line.

Figure 1—Saturation for signed numbers

Examples (signed, 3-bit number):
before saturation: 0110 (6)
after saturation: 011 (3)

There is an overflow because the decimal number 6 is outside the range of values that can be
represented exactly by means of three bits. The result is then rounded to the highest positive
representable number, which is 3.

before saturation: 1011 (-5)
after saturation: 100 (-4)

There is an overflow because the decimal number -5 is outside the range of values that can be
represented exactly by means of three bits. The result is then rounded to the lowest negative
representable number, which is -4.

Example (unsigned, 3-bit number):
before saturation: 01110 (14)
after saturation: 111 (7)

The SC_SAT mode corresponds to the SC_WRAP and SC_WRAP_SM modes with the num-
ber of bits to be saturated equal to the number of kept bits.

7.10.9.5 SC_SAT_ZERO

The SC_SAT_ZERO overflow mode shall be used to indicate that the output is forced to zero in case of an
overflow, that is, if MAX or MIN is exceeded. Figure 2 illustrates the SC_SAT_ZERO overflow mode for a

1
1

2 3 4 5 6

2

3

4

5

-1

-2

-3

-4

-5

-1-2-3-4-5-6

x

y

.
Copyright © 2005 OSCI. All rights reserved. 285

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
word length of three bits. The x-axis represents the word length before rounding; the y-axis represents the
word length after rounding.

Figure 2—Saturation to zero for signed numbers

Examples (signed, 3-bit number):
before saturation to zero: 0110 (6)
after saturation to zero: 000 (0)

There is an overflow because the decimal number 6 is outside the range of values that can be
represented exactly by means of three bits. The result is saturated to zero.

before saturation to zero: 1011 (-5)
after saturation to zero: 000 (0)

There is an overflow because the decimal number -5 is outside the range of values that can be
represented exactly by means of three bits. The result is saturated to zero.

Example (unsigned, 3-bit number):
before saturation to zero: 01110 (14)
after saturation to zero: 000 (0)

7.10.9.6 SC_SAT_SYM

The SC_SAT_SYM overflow mode shall be used to indicate that the output is saturated to MAX in case of
overflow, to -MAX (signed) or MIN (unsigned) in the case of negative overflow. Figure 3 illustrates the
SC_SAT_SYM overflow mode for a word length of three bits. The x-axis represents the word length before

1
1

2 3 4 5 6

2

3

4

5

-1

-2

-3

-4

-5

-1-2-3-4-5-6

x

y

286 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
rounding; the y-axis represents the word length after rounding. The ideal situation is represented by the
diagonal dashed line.

Figure 3—Symmetrical saturation for signed numbers

Examples (signed, 3-bit number):
after symmetrical saturation: 0110 (6)
after symmetrical saturation: 011 (3)

There is an overflow because the decimal number 6 is outside the range of values that can be
represented exactly by means of three bits. The result is then rounded to the highest positive
representable number, which is 3.

after symmetrical saturation: 1011 (-5)
after symmetrical saturation: 101 (-3)

There is an overflow because the decimal number -5 is outside the range of values that can be
represented exactly by means of three bits. The result is then rounded to minus the highest pos-
itive representable number, which is -3.

Example (unsigned, 3-bit number):
after symmetrical saturation: 01110 (14)
after symmetrical saturation: 111 (7)

7.10.9.7 SC_WRAP

The SC_WRAP overflow mode shall be used to indicate that the output is wrapped around in the case of
overflow.

Two different cases are possible:
— SC_WRAP with parameter n_bits = 0
— SC_WRAP with parameter n_bits > 0

SC_WRAP, 0

1
1

2 3 4 5 6

2

3

4

5

-1

-2

-3

-4

-5

-1-2-3-4-5-6

x

y

.
Copyright © 2005 OSCI. All rights reserved. 287

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
This shall be the default overflow mode. All bits except for the deleted bits shall be copied to the result
number. Figure 4 illustrates the SC_WRAP overflow mode for a word length of three bits with the n_bits
parameter set to 0. The x-axis represents the word length before rounding; the y-axis represents the word
length after rounding.

Figure 4—Wrap-around with n_bits = 0 for signed numbers

Examples (signed, 3-bit number):
before wrapping around with 0 bits: 0100 (4)
after wrapping around with 0 bits: 100 (-4)

There is an overflow because the decimal number 4 is outside the range of values that can be
represented exactly by means of three bits. The MSB is truncated and the result becomes nega-
tive: -4.

before wrapping around with 0 bits: 1011 (-5)
after wrapping around with 0 bits: 011 (3)

There is an overflow because the decimal number -5 is outside the range of values that can be
represented exactly by means of three bits. The MSB is truncated and the result becomes posi-
tive: 3

Example (unsigned, 3-bit number):
before wrapping around with 0 bits: 11011 (27)
after wrapping around with 0 bits: 011 (3)

SC_WRAP, n_bits > 0: SC_WRAP, 1

Whenever n_bits is greater than 0, the specified number of bits on the MSB side of the result shall be
saturated with preservation of the original sign; the other bits shall be copied from the original. Positive
numbers shall remain positive; negative numbers shall remain negative. Figure 5 illustrates the SC_WRAP

1
1

2 3 4 5 6

2

3

4

5

-1

-2

-3

-4

-5

-1-2-3-4-5-6

x

y

7 8 9-7-8-9
288 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
overflow mode for a word length of three bits with the n_bits parameter set to 1. The x-axis represents the
word length before rounding; the y-axis represents the word length after rounding.

Figure 5—Wrap-around with n_bits = 1 for signed numbers

Examples (signed, 3-bit number):
before wrapping around with 1 bit: 0101 (5)
after wrapping around with 1 bit: 001 (1)

There is an overflow because the decimal number 5 is outside the range of values that can be
represented exactly by means of three bits. The sign bit is kept, so that positive numbers remain
positive.

before wrapping around with 1 bit: 1011 (-5)
after wrapping around with 1 bit: 111 (-1)

There is an overflow because the decimal number -5 is outside the range of values that can be
represented exactly by means of three bits. The MSB is truncated, but the sign bit is kept, so
that negative numbers remain negative.

Example (unsigned, 5-bit number):
before wrapping around with 3 bits: 0110010 (50)
after wrapping around with 3 bits: 11110 (30)

For this example the SC_WRAP, 3 mode is applied. The result number is five bits wide. The 3
bits at the MSB side are set to 1; the remaining bits are copied.

7.10.9.8 SC_WRAP_SM

The SC_WRAP_SM overflow mode shall be used to indicate that the output is sign-magnitude wrapped
around in the case of overflow. The n_bits parameter shall indicate the number of bits (for example, 1) on
the MSB side of the cast number that are saturated with preservation of the original sign.

Two different cases are possible:
— SC_WRAP_SM with parameter n_bits = 0

1
1

2 3 4 5 6

2

3

4

5

-1

-2

-3

-4

-5

-1-2-3-4-5-6

x

y

7 8 9-7-8-9
.
Copyright © 2005 OSCI. All rights reserved. 289

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
— SC_WRAP_SM with parameter n_bits > 0

SC_WRAP_SM, 0

The MSBs outside the required word length shall be deleted. The sign bit of the result shall get the value of
the least significant of the deleted bits. The other bits shall be inverted in case where the original and the new
values of the most significant of the kept bits differ. Otherwise, the other bits shall be copied from the
original to the result.

Figure 6—Sign Magnitude Wrap-Around with n_bits = 0

Example:

The sequence of operations to cast a decimal number 4 into three bits and use the overflow mode
SC_WRAP_SM, 0, as shown in Figure 6 is as follows:
0100 (4)
The original representation is truncated to be put in a three bit number:
100 (-4)
The new sign bit is 0. This is the value of least significant deleted bit.
Because the original and the new value of the new sign bit differ, the values of the remaining bits are
inverted:
011 (3)

1
1

2 3 4 5 6

2

3

4

5

-1

-2

-3

-4

-5

-1-2-3-4-5-6

x

y

7 8 9-7-8-9
290 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
This principle shall be applied to all numbers that cannot be represented exactly by means of three
bits as shown in Table 39.

SC_WRAP_SM, n_bits > 0

The first n_bits bits on the MSB side of the result number shall be as follows:
— Saturated to MAX in case of a positive number
— Saturated to MIN in case of a negative number

All numbers shall retain their sign.

In case where n_bits equals 1, the other bits shall be copied and exor-ed with the original and the new value
of the sign bit of the result. In the case where n_bits is greater than 1, the remaining bits shall be exor-ed with
the original value of the least significant saturated bit and the inverse value of the original sign bit.

Example:

Table 39—Sign magnitude wrap-around with n_bits = 0 for a three-bit number

Decimal Binary

8 111

7 000

6 001

5 010

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101

-7 110
.
Copyright © 2005 OSCI. All rights reserved. 291

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
SC_WRAP_SM, n_bits > 0: SC_WRAP_SM, 3

The first three bits on the MSB side of the cast number are saturated to MAX or MIN.

If the decimal number 234 is cast into five bits using the overflow mode SC_WRAP_SM, 3, the following
happens:
011101010 (234)

The original representation is truncated to five bits:
01010

The original sign bit is copied to the new MSB (bit position 4, starting from bit position 0):
01010

The bits at position 2, 3, and 4 are saturated; they are converted to the maximum value that can be expressed
with three bits without changing the sign bit:
01110

The original value of the bit on position 2 was 0. The remaining bits at the LSB side (10) are exor-ed with
this value and with the inverse value of the original sign bit, that is, with 0 and 1, respectively.
01101 (13)

Example:

SC_WRAP_SM, n_bits > 0: SC_WRAP_SM, 1

The first bit on the MSB side of the cast number gets the value of the original sign bit. The other bits are
copied and exor-ed with the original and the new value of the sign bit of the result number.

Figure 7—Sign magnitude wrap-around with n_bits = 1

The sequence of operations to cast the decimal number 12 into three bits using the overflow mode
SC_WRAP_SM, 1 (as shown in Figure 7 is as follows:
01100 (12)

1
1

2 3 4 5 6

2

3

4

5

-1

-2

-3

-4

-5

-1-2-3-4-5-6

x

y

7 8 9-7-8-9
292 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The original representation is truncated to three bits.
100

The original sign bit is copied to the new MSB (bit position 2, starting from bit position 0).
000

The two remaining bits at the LSB side are exor-ed with the original (1) and the new value (0) of the new
sign bit.
011

This principle shall be applied to all numbers that cannot be represented exactly by means of three bits as
shown in Table 40.

Table 40—Sign-magnitude wrap-around with n_bits=1 for a three-bit number

Decimal Binary

9 001

8 000

7 000

6 001

5 010

4 011

3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

-5 100

-6 101

-7 110

-8 111

-9 111
.
Copyright © 2005 OSCI. All rights reserved. 293

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.10.9.9 Quantization modes

Quantization shall be applied when the precision of an assigned value exceeds the precision of a fixed-point
variable. In SystemC, specific quantization modes shall be available to control the mapping to a
representable value.

The mutually exclusive quantization modes listed in Table 41 shall be provided. The default quantization
mode shall be SC_TRN.

Quantization is the mapping of value that may not be precisely represented in a specific fixed-point
representation to a value that can be represented (with arbitrary magnitude). If a value can be precisely
represented, quantization shall not change the value. All the rounding modes shall map a value to the nearest
value that is representable. When there are two nearest representable values (the value is halfway between
them), the rounding modes shall provide different criteria for selection between the two. Both of the truncate
modes shall map a positive value to the nearest representable value that is less than the value. SC_TRN
mode shall map a negative value to the nearest representable value that is less than the value, while
SC_TRN_ZERO shall map a negative value to the nearest representable value that is greater than the value.

Each of the following quantization modes is followed by a figure. The input values are given on the x-axis
and the output values on the y-axis. Together they determine the quantization mode. In each figure, the
quantization mode specified by the respective keyword is combined with the ideal characteristic. This ideal
characteristic is represented by the diagonal dashed line.

Before each quantization mode is discussed in detail, an overview is given of how the different quantization
modes deal with quantization for signed and unsigned fixed-point numbers.

Table 41—Quantization modes

Quantization mode Name

Rounding to plus infinity SC_RND

Rounding to zero SC_RND_ZERO

Rounding to minus infinity SC_RND_MIN_INF

Rounding to infinity SC_RND_INF

Convergent rounding SC_RND_CONV

Truncation SC_TRN

Truncation to zero SC_TRN_ZERO
294 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.9.10 Quantization for signed fixed-point numbers

The following template contains a signed fixed-point number in two’s complement representation before
and after a quantization mode has been applied, and a number of flags. These are explained below.

The following flags and symbols are used in the template above and in Table 42:
— x represents a binary digit (0 or 1).
— sR represents a sign bit.
— R represents the remaining bits.
— lR represents the least significant remaining bit.
— mD represents the most significant deleted bit.
— D represents the deleted bits.
— r represents the logical or of the deleted bits except for the mD bit in the template above. When there

are no remaining bits, r is false. This means that r is false when the two nearest numbers are at equal
distance.

Table 42 shows how a signed fixed-point number shall be cast for each of the possible quantization modes in
cases where there is quantization. If the two nearest representable numbers are not at equal distance, the
result shall be the nearest representable number. This shall be found by applying the SC_RND mode, that is,
by adding the most significant of the deleted bits to the remaining bits.

x x x x x x x x x x x x x
x x x xx x x x

sR R R R R R R R lR mD D D D D D

x x
x

Before

After:

Flags:
.
Copyright © 2005 OSCI. All rights reserved. 295

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The second column in Table 42 contains the expression that shall be added to the remaining bits. It shall
evaluate to a one or a zero. The operators used in the table are “!” for a bitwise negation, “|” for a bitwise or,
and “&” for a bitwise and.

7.10.9.11 Quantization for unsigned fixed-point numbers

The following template contains an unsigned fixed-point number before and after a quantization mode has
been applied, and a number of flags. These are explained below.

The following flags and symbols are used in the template above and in Table 43:

Table 42—Quantization handling for signed fixed-point numbers

Quantization mode Expression to be added

SC_RND mD

Add the most significant deleted bit to the remaining bits.

SC_RND_ZERO mD & (sR | r)

If the most significant deleted bit is 1, and either the sign bit or at least one
other deleted bit is 1, add 1 to the remaining bits.

SC_RND_MIN_INF mD & r

If the most significant deleted bit is 1 and at least one other deleted bit is 1,
add 1 to the remaining bits.

SC_RND_INF mD & (! sR | r)

If the most significant deleted bit is 1, and either the inverted value of the
sign bit or at least one other deleted bit is 1, add 1 to the remaining bits.

SC_RND_CONV mD & (lR | r)

If the most significant deleted bit is 1, and either the least significant of the
remaining bits or at least one other deleted bit is 1, add 1 to the remaining
bits.

SC_TRN 0

Copy the remaining bits.

SC_TRN_ZERO sR & (mD | r)

If the sign bit is 1, and either the most significant deleted bit or at least one
other deleted bit is 1, add 1 to the remaining bits.

x x x x x x x x x x x x x
x x x xx x x x

R R R R R R R R lR mD D D D D D

x x
x

Before

After:

Flags:
296 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
— x represents a binary digit (0 or 1).
— R represents the remaining bits.
— lR represents the least significant remaining bit.
— mD represents the most significant deleted bit.
— D represents the deleted bits.
— r represents the logical or of the deleted bits except for the mD bit in the template above. When there

are no remaining bits, r is false. This means that r is false when the two nearest numbers are at equal
distance.

Table 43 shows how an unsigned fixed-point number shall be cast for each of the possible quantization
modes in cases where there is quantization. If the two nearest representable numbers are not at equal
distance, the result shall be the nearest representable number. This shall be found for all the rounding modes
by applying the SC_RND mode, that is, by adding the most significant of the deleted bits to the remaining
bits.

The second column in Table 43 contains the expression that shall be added to the remaining bits. It shall
evaluate to a one or a zero. The “&” operator used in the table represents a bitwise and, and the “|” a bitwise
or.

Table 43—Quantization handling for unsigned fixed-point numbers

Quantization mode Expression to be added

SC_RND mD

Add the most significant deleted bit to the left bits.

SC_RND_ZERO 0

Copy the remaining bits.

SC_RND_MIN_INF 0

Copy the remaining bits.

SC_RND_INF mD

Add the most significant deleted bit to the left bits.

SC_RND_CONV mD & (lR | r)

If the most significant deleted bit is 1, and either the least significant
of the remaining bits or at least one other deleted bit is 1, add 1 to
the remaining bits.

SC_TRN 0

Copy the remaining bits.

SC_TRN_ZERO 0

Copy the remaining bits.
.
Copyright © 2005 OSCI. All rights reserved. 297

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
NOTE—For all rounding modes, overflow can occur. One extra bit on the MSB side is needed to represent the result in
full precision.

7.10.9.12 SC_RND

The result shall be rounded to the nearest representable number by adding the most significant of the deleted
LSBs to the remaining bits. This rule shall be used for all rounding modes when the two nearest
representable numbers are not at equal distance. When the two nearest representable numbers are at equal
distance, this rule implies that there is rounding towards plus infinity as shown in Figure 8.

Figure 8—Rounding to plus infinity

In Figure 8, the symbol q refers to the quantization step, that is, the resolution of the data type.

Example (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type sc_fixed<3,2,SC_RND>.
before rounding to plus infinity: (1.25)
after rounding to plus infinity: 01.1 (1.5)

There is quantization because the decimal number 1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND> number. The most significant of
the deleted LSBs (1) is added to the new LSB.

before rounding to plus infinity: 10.11 (-1.25)
after rounding to plus infinity: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND> number. The most significant of
the deleted LSBs (1) is added to the new LSB.

Example (unsigned):
Numbers of type sc_ufixed<16,8> are assigned to numbers of type sc_ufixed<12,8,SC_RND>.
before rounding to plus infinity: 00100110.01001111 (38.30859375)

q

q

2q 3q

2q

3q

x

y

298 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
after rounding to plus infinity: 00100110.0101 (38.3125)

7.10.9.13 SC_RND_ZERO

If the two nearest representable numbers are not at equal distance, the SC_RND_ZERO mode shall be
applied.

If the two nearest representable numbers are at equal distance, the output shall be rounded towards 0, as
shown in Figure 9. For positive numbers, the redundant bits on the LSB side shall be deleted. For negative
numbers, the most significant of the deleted LSBs shall be added to the remaining bits.

Figure 9—Rounding to Zero

Example (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type sc_fixed<3,2,SC_RND_ZERO>.
before rounding to zero: (1.25)
after rounding to zero: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_ZERO> number. The redundant
bits are omitted.

before rounding to zero: 10.11 (-1.25)
after rounding to zero: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_ZERO> number. The most sig-
nificant of the omitted LSBs (1) is added to the new LSB.

Example (unsigned):
Numbers of type sc_ufixed<16,8> are assigned to numbers of type sc_ufixed<12,8,SC_RND>.
before rounding to zero: 000100110.01001 (38.28125)
after rounding to zero: 000100110.0100 (38.25)

q

q

2q 3q

2q

3q

x

y

.
Copyright © 2005 OSCI. All rights reserved. 299

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.10.9.14 SC_RND_MIN_INF

If the two nearest representable numbers are not at equal distance, the SC_RND_MIN_INF mode shall be
applied.

If the two nearest representable numbers are at equal distance, there shall be rounding towards minus
infinity, as shown in Figure 10 by omitting the redundant bits on the LSB side.

Figure 10—Rounding to minus infinity

Example (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type
sc_fixed<3,2,SC_RND_MIN_INF>.
before rounding to minus infinity: 01.01 (1.25)
after rounding to minus infinity: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_MIN_INF> number. The sur-
plus bits are truncated.

before rounding to minus infinity: 10.11 (-1.25)
after rounding to minus infinity: 10.1 (-1.5)

There is quantization because the decimal number -1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_MIN_INF> number. The sur-
plus bits are truncated.

Example (unsigned):
Numbers of type sc_ufixed<16,8> are assigned to numbers of type sc_ufixed<12,8,SC_RND>.
before rounding to minus infinity: 000100110.01001 (38.28125)
after rounding to minus infinity: 000100110.0100 (38.25)

q

q

2q 3q

2q

3q

x

y

300 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.9.15 SC_RND_INF

Rounding shall be performed if the two nearest representable numbers are at equal distance.

For positive numbers, there shall be rounding towards plus infinity if the LSB of the remaining bits is 1, and
towards minus infinity if the LSB of the remaining bits is 0, as shown in Figure 11.

For negative numbers, there shall be rounding towards minus infinity if the LSB of the remaining bits is 1,
and towards plus infinity if the LSB of the remaining bits is 0, as shown in Figure 11.

Figure 11—Rounding to infinity

Example (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type sc_fixed<3,2,SC_RND_INF>.
before rounding to infinity: 01.01 (1.25)
after rounding to infinity: 01.1 (1.5)

There is quantization because the decimal number 1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_INF> number. The most signifi-
cant of the deleted LSBs (1) is added to the new LSB.

before rounding to infinity: 10.11 (-1.25)
after rounding to infinity: 10.1 (-1.5)

There is quantization because the decimal number -1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_INF> number. The surplus bits
are truncated.

Example (unsigned):
Numbers of type sc_ufixed<16,8> are assigned to numbers of type sc_ufixed<12,8,SC_RND>.
before rounding to infinity: 000100110.01001 (38.28125)
after rounding to infinity: 000100110.0101 (38.3125)

q

q

2q 3q

2q

3q

x

y

.
Copyright © 2005 OSCI. All rights reserved. 301

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.10.9.16 SC_RND_CONV

If the two nearest representable numbers are not at equal distance, the SC_RND_CONV mode shall be
applied.

If the two nearest representable numbers are at equal distance, there shall be rounding towards plus infinity
if the LSB of the remaining bits is 1. There shall be rounding towards minus infinity if the LSB of the
remaining bits is 0. The characteristics are shown in Figure 12.

Figure 12—Convergent rounding

Example (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type sc_fixed<3,2,SC_RND_CONV>.
before convergent rounding: 00.11 (0.75)
after convergent rounding: 01.0 (1)

There is quantization because the decimal number 0.75 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_CONV> number. The surplus
bits are truncated and the result is rounded towards plus infinity.

before convergent rounding: 10.11 (-1.25)
after convergent rounding: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_RND_CONV> number. The surplus
bits are truncated and the result is rounded towards plus infinity.

Example (unsigned):
Numbers of type sc_ufixed<16,8> are assigned to numbers of type sc_ufixed<12,8,SC_RND>.
before convergent rounding: 000100110.01001 (38.28125)
after convergent rounding: 000100110.0100 (38.25)

q

q

2q 3q

2q

3q

x

y

302 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
before convergent rounding: 000100110.01011 (38.34375)
after convergent rounding: 000100110.0110 (38.375)

7.10.9.17 SC_TRN

SC_TRN shall be the default quantization mode. The result shall be rounded towards minus infinity, that is,
the superfluous bits on the LSB side shall be deleted. A quantized number shall be approximated by the first
representable number below its original value within the required bit range.
NOTE—In scientific literature this mode is usually called “value truncation.”

The required characteristics are shown in Figure 13.

Figure 13—Truncation

Example (signed):
Numbers of type sc_fixed<4,2> are assigned to numbers of type sc_fixed<3,2,SC_TRN>.
before truncation: 01.01 (1.25)
after truncation: 01.0 (1)

There is quantization because the decimal number 1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_TRN> number. The LSB is truncated.

before truncation: 10.11 (-1.25)
after truncation: 10.1 (-1.5)

There is quantization because the decimal number -1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_TRN> number. The LSB is truncated.

Example (unsigned):
Numbers of type sc_ufixed<16,8> are assigned to numbers of type sc_ufixed<12,8,SC_RND>.
before truncation: 00100110.01001111 (38.30859375)
after truncation: 00100110.0100 (38.25)

q

q

2q 3q

2q

3q

x

y

.
Copyright © 2005 OSCI. All rights reserved. 303

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.10.9.18 SC_TRN_ZERO

For positive numbers, this quantization mode shall correspond to SC_TRN. For negative numbers, the result
shall be rounded towards zero (SC_RND_ZERO); that is, the superfluous bits on the right-hand side shall be
deleted and the sign bit added to the left LSBs, provided at least one of the deleted bits differs from zero. A
quantized number shall be approximated by the first representable number that is lower in absolute value.
NOTE—In scientific literature this mode is usually called “magnitude truncation.”

The required characteristics are shown in Figure 14.

Figure 14—Truncation to zero

Example (signed):
A number of type sc_fixed<4,2> is assigned to a number of type sc_fixed<3,2,SC_TRN_ZERO>.
before truncation to zero: 10.11 (-1.25)
after truncation to zero: 11.0 (-1)

There is quantization because the decimal number -1.25 is outside the range of values that can
be represented exactly by means of a sc_fixed<3,2,SC_TRN_ZERO> number. The LSB is
truncated and then the sign bit (1) is added at the LSB side.

Example (unsigned):
Numbers of type sc_ufixed<16,8> are assigned to numbers of type sc_ufixed<12,8,SC_RND>.
before truncation to zero: 00100110.01001111 (38.30859375)
after truncation to zero: 00100110.0100 (38.25)

q

q

2q 3q

2q

3q

x

y

304 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.10 sc_fxnum

7.10.10.1 Description

Class sc_fxnum is the base class for fixed precision fixed-point types. It shall be provided in order to define
functions and overloaded operators that will work with any derived class.

7.10.10.2 Class definition

namespace sc_dt {

class sc_fxnum
{

friend class sc_fxval;

friend class sc_fxnum_bitref†;
friend class sc_fxnum_subref†;
friend class sc_fxnum_fast_bitref†;
friend class sc_fxnum_fast_subref†;

public:
// Unary operators
const sc_fxval operator- () const;
const sc_fxval operator+ () const;

// Binary operators
#define DECL_BIN_OP_T(op , tp) \

friend const sc_fxval operator op (const sc_fxnum& , tp); \
friend const sc_fxval operator op (tp , const sc_fxnum&);

#define DECL_BIN_OP_OTHER(op) \
DECL_BIN_OP_T(op , int64) \
DECL_BIN_OP_T(op , uint64) \
DECL_BIN_OP_T(op , const sc_int_base&) \
DECL_BIN_OP_T(op , const sc_uint_base&) \
DECL_BIN_OP_T(op , const sc_signed&) \
DECL_BIN_OP_T(op, const sc_unsigned&)

#define DECL_BIN_OP(op , dummy) \
friend const sc_fxval operator op (const sc_fxnum& , const sc_fxnum&); \
DECL_BIN_OP_T(op , int) \
DECL_BIN_OP_T(op , unsigned int) \
DECL_BIN_OP_T(op , long) \
DECL_BIN_OP_T(op , unsigned long) \
DECL_BIN_OP_T(op , double) \
DECL_BIN_OP_T(op, const char*) \
DECL_BIN_OP_T(op , const sc_fxval&) \
DECL_BIN_OP_T(op , const sc_fxval_fast&) \
DECL_BIN_OP_T(op , const sc_fxnum_fast&) \
DECL_BIN_OP_OTHER(op)

DECL_BIN_OP(* , mult)
DECL_BIN_OP(+ , add)
DECL_BIN_OP(- , sub)
DECL_BIN_OP(/ , div)
.
Copyright © 2005 OSCI. All rights reserved. 305

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
#undef DECL_BIN_OP_T
#undef DECL_BIN_OP_OTHER
#undef DECL_BIN_OP

friend const sc_fxval operator<< (const sc_fxnum& , int);
friend const sc_fxval operator>> (const sc_fxnum& , int);

// Relational (including equality) operators
#define DECL_REL_OP_T(op , tp) \

friend bool operator op (const sc_fxnum& , tp); \
friend bool operator op (tp , const sc_fxnum&);
DECL_REL_OP_T(op , int64) \
DECL_REL_OP_T(op , uint64) \
DECL_REL_OP_T(op , const sc_int_base&) \
DECL_REL_OP_T(op , const sc_uint_base&) \
DECL_REL_OP_T(op , const sc_signed&) \
DECL_REL_OP_T(op , const sc_unsigned&)

#define DECL_REL_OP(op) \
friend bool operator op (const sc_fxnum& , const sc_fxnum&); \
DECL_REL_OP_T(op , int) \
DECL_REL_OP_T(op , unsigned int) \
DECL_REL_OP_T(op , ong) \
DECL_REL_OP_T(op , unsigned long) \
DECL_REL_OP_T(op , double) \
DECL_REL_OP_T(op , const char*) \
DECL_REL_OP_T(op , const sc_fxval&) \
DECL_REL_OP_T(op , const sc_fxval_fast&) \
DECL_REL_OP_T(op , const sc_fxnum_fast&) \
DECL_REL_OP_OTHER(op)

DECL_REL_OP(<)
DECL_REL_OP(<=)
DECL_REL_OP(>)
DECL_REL_OP(>=)
DECL_REL_OP(==)
DECL_REL_OP(!=)

#undef DECL_REL_OP_T
#undef DECL_REL_OP_OTHER
#undef DECL_REL_OP

// Assignment operators
#define DECL_ASN_OP_T(op , tp) \

sc_fxnum& operator op(tp); \
DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
306 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*) \
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(op)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

// Auto-increment and auto-decrement
const sc_fxval operator++ (int);
const sc_fxval operator-- (int);
sc_fxnum& operator++ ();
sc_fxnum& operator-- ();

// Bit selection
const sc_fxnum_bitref† operator[] (int) const;
sc_fxnum_bitref† operator[] (int);

// Part selection
const sc_fxnum_subref† operator() (int , int) const;
sc_fxnum_subref† operator() (int , int);
const sc_fxnum_subref† range(int , int) const;
sc_fxnum_subref† range(int , int);
const sc_fxnum_subref† operator() () const;
sc_fxnum_subref† operator() ();
const sc_fxnum_subref† range() const;
sc_fxnum_subref† range();

// Implicit conversion
operator double() const;

// Explicit conversion to primitive types
short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
float to_float() const;
double to_double() const;
.
Copyright © 2005 OSCI. All rights reserved. 307

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
// Explicit conversion to character string
const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;
const std::string to_string(sc_fmt) const;
const std::string to_string(sc_numrep , sc_fmt) const;
const std::string to_string(sc_numrep , bool , sc_fmt) const;
const std::string to_dec() const;
const std::string to_bin() const;
const std::string to_oct() const;
const std::string to_hex() const;

// Query value
bool is_neg() const;
bool is_zero() const;
bool quantization_flag() const;
bool overflow_flag() const;
const sc_fxval value() const;

// Query parameters
int wl() const;
int iwl() const;
sc_q_mode q_mode() const;
sc_o_mode o_mode() const;
int n_bits() const;
const sc_fxtype_params& type_params() const;
const sc_fxcast_switch& cast_switch() const;

// Print or dump content
void print(std::ostream& = std::cout) const;
void scan(std::istream& = std::cin);
void dump(std::ostream& = std::cout) const;

private:
// Disabled
sc_fxnum();
sc_fxnum(const sc_fxnum&);

};

} // namespace sc_dt

7.10.10.3 Constraints on usage

An application shall not directly create an instance of type sc_fxnum. An application may use a pointer to
sc_fxnum or a reference to sc_fxnum to refer to an object of a class derived from sc_fxnum.

7.10.10.4 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_fxnum, using truncation or sign-extension as described in 7.10.4.

7.10.10.5 Implicit type conversion

operator double() const;
308 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Operator double shall provide implicit type conversion from sc_fxnum to double.

7.10.10.6 Explicit type conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
float to_float() const;
double to_double() const;

These member functions shall perform conversion to C++ numeric types.

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;
const std::string to_string(sc_fmt) const;
const std::string to_string(sc_numrep , sc_fmt) const;
const std::string to_string(sc_numrep , bool , sc_fmt) const;
const std::string to_dec() const;
const std::string to_bin() const;
const std::string to_oct() const;
const std::string to_hex() const;

These member functions shall perform the conversion to an sc_string representation as described in
7.2.10, 7.10.8, and 7.10.8.1.
.
Copyright © 2005 OSCI. All rights reserved. 309

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.10.11 sc_fxval

7.10.11.1 Description

Class sc_fxval is the arbitrary-precision value type. It may hold the value of any of the fixed-point types and
performs the arbitrary-precision fixed-point arithmetic operations. Type casting shall be performed by the
fixed-point types themselves. Limited-precision type sc_fxval_fast and arbitrary-precision type sc_fxval
may be mixed freely.

7.10.11.2 Class definition

namespace sc_dt {

class sc_fxval
{

public:
// Constructors and destructor
sc_fxval();
sc_fxval(int);
sc_fxval(unsigned int);
sc_fxval(long);
sc_fxval(unsigned long);
sc_fxval(double);
sc_fxval(const char*);
sc_fxval(const sc_fxval&);
sc_fxval(const sc_fxval_fast&);
sc_fxval(const sc_fxnum&);
sc_fxval(const sc_fxnum_fast&);
sc_fxval(int64);
sc_fxval(uint64);
sc_fxval(const sc_int_base&);
sc_fxval(const sc_uint_base&);
sc_fxval(const sc_signed&);
sc_fxval(const sc_unsigned&);
 ~sc_fxval();

// Unary operators
const sc_fxval operator- () const;
const sc_fxval& operator+ () const;
friend void neg(sc_fxval& , const sc_fxval&);

// Binary operators
#define DECL_BIN_OP_T(op , tp) \

friend const sc_fxval operator op (const sc_fxval& , tp); \
friend const sc_fxval operator op (tp , const sc_fxval&);

#define DECL_BIN_OP_OTHER(op) \
 DECL_BIN_OP_T(op , int64) \
 DECL_BIN_OP_T(op , uint64) \
 DECL_BIN_OP_T(op , const sc_int_base&) \
 DECL_BIN_OP_T(op , const sc_uint_base&) \
 DECL_BIN_OP_T(op , const sc_signed&) \
 DECL_BIN_OP_T(op , const sc_unsigned&)

#define DECL_BIN_OP(op , dummy) \
friend const sc_fxval operator op (const sc_fxval& , const sc_fxval&); \
310 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
 DECL_BIN_OP_T(op , int) \
 DECL_BIN_OP_T(op , unsigned int) \
 DECL_BIN_OP_T(op , long) \
 DECL_BIN_OP_T(op , unsigned long) \
 DECL_BIN_OP_T(op , double) \
 DECL_BIN_OP_T(op , const char*) \
 DECL_BIN_OP_T(op , const sc_fxval_fast&) \
 DECL_BIN_OP_T(op , const sc_fxnum_fast&) \
 DECL_BIN_OP_OTHER(op)

 DECL_BIN_OP(* , mult)
 DECL_BIN_OP(+ , add)
 DECL_BIN_OP(- , sub)
 DECL_BIN_OP(/ , div)

friend const sc_fxval operator<< (const sc_fxval& , int);
friend const sc_fxval operator>> (const sc_fxval& , int);

// Relational (including equality) operators
#define DECL_REL_OP_T(op , tp) \

friend bool operator op (const sc_fxval& , tp); \
friend bool operator op (tp , const sc_fxval&);

#define DECL_REL_OP_OTHER(op) \
 DECL_REL_OP_T(op , int64) \
 DECL_REL_OP_T(op , uint64) \
 DECL_REL_OP_T(op , const sc_int_base&) \
 DECL_REL_OP_T(op , const sc_uint_base&) \
 DECL_REL_OP_T(op , const sc_signed&) \
 DECL_REL_OP_T(op , const sc_unsigned&)

#define DECL_REL_OP(op) \
 friend bool operator op (const sc_fxval& , const sc_fxval&); \
 DECL_REL_OP_T(op , int) \
 DECL_REL_OP_T(op , unsigned int) \
 DECL_REL_OP_T(op , long) \
 DECL_REL_OP_T(op , unsigned long) \
 DECL_REL_OP_T(op , double) \
 DECL_REL_OP_T(op , const char*) \
 DECL_REL_OP_T(op , const sc_fxval_fast&) \
 DECL_REL_OP_T(op , const sc_fxnum_fast&) \
 DECL_REL_OP_OTHER(op)

 DECL_REL_OP(<)
 DECL_REL_OP(<=)
 DECL_REL_OP(>)
 DECL_REL_OP(>=)
 DECL_REL_OP(==)
 DECL_REL_OP(!=)

// Assignment operators
#define DECL_ASN_OP_T(op , tp) \

sc_fxval& operator op(tp);
#define DECL_ASN_OP_OTHER(op) \

DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
.
Copyright © 2005 OSCI. All rights reserved. 311

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*) \
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(op)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)

DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)

// Auto-increment and auto-decrement
const sc_fxval operator++ (int);
const sc_fxval operator-- (int);
sc_fxval& operator++ ();
sc_fxval& operator-- ();

// Implicit conversion
operator double() const;

// Explicit conversion to primitive types
short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;

 uint64 to_uint64() const;
float to_float() const;
double to_double() const;

 // Explicit conversion to character string
const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;
const std::string to_string(sc_fmt) const;
const std::string to_string(sc_numrep , sc_fmt) const;
const std::string to_string(sc_numrep , bool , sc_fmt) const;
312 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
const std::string to_dec() const;
const std::string to_bin() const;
const std::string to_oct() const;
const std::string to_hex() const;

// Methods
bool is_neg() const;
bool is_zero() const;
bool is_nan() const;
bool is_inf() const;
bool is_normal() const;
bool rounding_flag() const;
void print(std::ostream& = std::cout) const;
void scan(std::istream& = std::cin);
void dump(std::ostream& = std::cout) const;

protected:
void get_type(int& , int& , sc_enc†&) const;
const sc_fxval quantization(const scfx_params†& , bool&) const;
const sc_fxval overflow(const scfx_params†& , bool&) const;

};

} // namespace sc_dt

7.10.11.3 Constraints on usage

A sc_fxval object that is declared without an initial value shall be uninitialized (unless it is declared as static,
in which case it shall be initialized to zero). Uninitialized objects may be used wherever an initialized object
is permitted. The result of an operation on an uninitialized object is undefined.

7.10.11.4 Public constructors

The constructor argument shall be taken as the initial value of the sc_fxval object. The default constructor
shall not initialize the value.

7.10.11.5 Operators

The operators that shall be defined for sc_fxval are given in Table 44.

Operator<< and operator>> define arithmetic shifts that perform sign extension.

Table 44—Operators for sc_fxval

Operator class Operators in class

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>=
.
Copyright © 2005 OSCI. All rights reserved. 313

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The types of the operands shall be as defined in 7.10.4.

7.10.11.6 Implicit type conversion

operator double() const;
Operator double can be used for implicit type conversion to the C++ type double.

7.10.11.7 Explicit type conversion

short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
float to_float() const;
double to_double() const

These member functions shall perform the conversion to the respective C++ numeric types.

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;
const std::string to_string(sc_fmt) const;
const std::string to_string(sc_numrep , sc_fmt) const;
const std::string to_string(sc_numrep , bool , sc_fmt) const;
const std::string to_dec() const;
const std::string to_bin() const;
const std::string to_oct() const;
const std::string to_hex() const;

These member functions shall perform the conversion to an sc_string representation as described in
7.2.10, 7.10.8, and 7.10.8.1.
.
Copyright © 2005 OSCI. All rights reserved. 314

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.12 sc_fxval_fast

7.10.12.1 Description

Type sc_fxval_fast is the fixed precision value type and shall be limited to a mantissa of 53 bits. It may hold
the value of any of the fixed-point types, and shall be used to perform the fixed precision fixed-point
arithmetic operations. Limited-precision type sc_fxval_fast and arbitrary-precision type sc_fxval may be
mixed freely.

7.10.12.2 Class definition

namespace sc_dt {

class sc_fxval_fast
{

public:
sc_fxval_fast();
sc_fxval_fast(int);
sc_fxval_fast(unsigned int);
sc_fxval_fast(long);
sc_fxval_fast(unsigned long);
sc_fxval_fast(double);
sc_fxval_fast(const char*);
sc_fxval_fast(const sc_fxval&);
sc_fxval_fast(const sc_fxval_fast&);
sc_fxval_fast(const sc_fxnum&);
sc_fxval_fast(const sc_fxnum_fast&);
sc_fxval_fast(int64);
sc_fxval_fast(uint64);
sc_fxval_fast(const sc_int_base&);
sc_fxval_fast(const sc_uint_base&);
sc_fxval_fast(const sc_signed&);
sc_fxval_fast(const sc_unsigned&);
~sc_fxval_fast();

// Unary operators
const sc_fxval_fast operator- () const;
const sc_fxval_fast& operator+ () const;

 // Binary operators
#define DECL_BIN_OP_T(op , tp) \

friend const sc_fxval_fast operator op (const sc_fxval_fast& , tp); \
friend const sc_fxval_fast operator op (tp , const sc_fxval_fast&);

#define DECL_BIN_OP_OTHER(op) \
DECL_BIN_OP_T(op , int64) \
DECL_BIN_OP_T(op , uint64) \
DECL_BIN_OP_T(op , const sc_int_base&) \
DECL_BIN_OP_T(op , const sc_uint_base&) \
DECL_BIN_OP_T(op , const sc_signed&) \
DECL_BIN_OP_T(op , const sc_unsigned&)

#define DECL_BIN_OP(op , dummy) \
friend const sc_fxval_fast operator op (const sc_fxval_fast& , const sc_fxval_fast&); \
.
Copyright © 2005 OSCI. All rights reserved. 315

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_BIN_OP_T(op , int) \
DECL_BIN_OP_T(op , unsigned int) \
DECL_BIN_OP_T(op , long) \
DECL_BIN_OP_T(op , unsigned long) \
DECL_BIN_OP_T(op , double) \
DECL_BIN_OP_T(op , const char*) \
DECL_BIN_OP_OTHER(op)

DECL_BIN_OP(* , mult)
DECL_BIN_OP(+ , add)
DECL_BIN_OP(- , sub)
DECL_BIN_OP(/ , div)
friend const sc_fxval_fast operator<< (const sc_fxval_fast& , int);
friend const sc_fxval_fast operator>> (const sc_fxval_fast& , int);

// Relational (including equality) operators
#define DECL_REL_OP_T(op , tp) \

friend bool operator op (const sc_fxval_fast& , tp);\
friend bool operator op (tp , const sc_fxval_fast&);

#define DECL_REL_OP_OTHER(op) \
DECL_REL_OP_T(op , int64) \
DECL_REL_OP_T(op , uint64) \
DECL_REL_OP_T(op , const sc_int_base&) \
DECL_REL_OP_T(op , const sc_uint_base&) \
DECL_REL_OP_T(op , const sc_signed&) \
DECL_REL_OP_T(op , const sc_unsigned&)

#define DECL_REL_OP(op) \
friend bool operator op (const sc_fxval_fast& , const sc_fxval_fast&); \
DECL_REL_OP_T(op , int) \
DECL_REL_OP_T(op , unsigned int) \
DECL_REL_OP_T(op , long) \
DECL_REL_OP_T(op , unsigned long) \
DECL_REL_OP_T(op , double) \
DECL_REL_OP_T(op , const char*) \
DECL_REL_OP_OTHER(op)

DECL_REL_OP(<)
DECL_REL_OP(<=)
DECL_REL_OP(>)
DECL_REL_OP(>=)
DECL_REL_OP(==)
DECL_REL_OP(!=)

// Assignment operators
#define DECL_ASN_OP_T(op , tp) sc_fxval_fast& operator op(tp);
#define DECL_ASN_OP_OTHER(op) \

DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
.
Copyright © 2005 OSCI. All rights reserved. 316

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*) \
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(top)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)

// Auto-increment and auto-decrement
const sc_fxval_fast operator++ (int);
const sc_fxval_fast operator-- (int);
sc_fxval_fast& operator++ ();
sc_fxval_fast& operator-- ();

// Implicit conversion
operator double() const;

// Explicit conversion to primitive types
short to_short() const;
unsigned short to_ushort() const;
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
float to_float() const;
double to_double() const;

// Explicit conversion to character string
const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;
const std::string to_string(sc_fmt) const;
const std::string to_string(sc_numrep , sc_fmt) const;
const std::string to_string(sc_numrep , bool, sc_fmt) const;
const std::string to_dec() const;
const std::string to_bin() const;
const std::string to_oct() const;
const std::string to_hex() const;

// Other methods
bool is_neg() const;
.
Copyright © 2005 OSCI. All rights reserved. 317

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
bool is_zero() const;
bool is_nan() const;
bool is_inf() const;
bool is_normal() const;
bool rounding_flag() const;
void print(std::ostream& = std::cout) const;
void scan(std::istream& = std::cin);
void dump(std::ostream& = std::cout) const;

};

} // namespace sc_dt

7.10.12.3 Constraints on usage

A sc_fxval_fast object that is declared without an initial value shall be uninitialized (unless it is declared as
static, in which case it shall be initialized to zero). Uninitialized objects may be used wherever an initialized
object is permitted. The result of an operation on an uninitialized object is undefined.

7.10.12.4 Public constructors

The constructor argument shall be taken as the initial value of the sc_fxval_fast object. The default
constructor shall not initialize the value.

7.10.12.5 Operators

The operators that shall be defined for sc_fxval_fast are given in Table 45.

NOTE—Operator<< and operator>> define arithmetic shifts, not bitwise shifts. The difference is that no
bits are lost and proper sign extension is done. Hence, these operators are well-defined also for signed types,
such as sc_fxval_fast.

7.10.12.6 Implicit type conversion

operator double() const;
Operator double can be used for implicit type conversion to the C++ type double.

7.10.12.7 Explicit type conversion

short to_short() const;
unsigned short to_ushort() const;

Table 45—Operators for sc_fxval_fast

Operator class Operators in class

Arithmetic * / + - << >> ++ --

Equality == !=

Relational <<= >>=

Assignment = *= /= += -= <<= >>=
.
Copyright © 2005 OSCI. All rights reserved. 318

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;
float to_float() const;
double to_double() const

These member functions shall perform the conversion to the respective C++ numeric types.

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;
const std::string to_string(sc_fmt) const;
const std::string to_string(sc_numrep , sc_fmt) const;
const std::string to_string(sc_numrep , bool, sc_fmt) const;
const std::string to_dec() const;
const std::string to_bin() const;
const std::string to_oct() const;
const std::string to_hex() const;

These member functions shall perform the conversion to an sc_string representation as described in
7.2.10, 7.10.8, and 7.10.8.1.
.
Copyright © 2005 OSCI. All rights reserved. 319

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.13 sc_fix

7.10.13.1 Description

Class sc_fix shall represent a signed (two’s complement) fixed-point value. The fixed-point type parameters
wl, iwl, q_mode, o_mode, and n_bits may be specified as constructor arguments.

7.10.13.2 Class definition

namespace sc_dt {

class sc_fix
: public sc_fxnum
{

public:
// Constructors and destructor
sc_fix();
sc_fix(int , int);
sc_fix(sc_q_mode , sc_o_mod e);
sc_fix(sc_q_mode , sc_o_mode, int);
sc_fix(int , int , sc_q_mode , sc_o_mode);
sc_fix(int , int , sc_q_mode, sc_o_mode, int);
sc_fix(const sc_fxcast_switch&);
sc_fix(int , int , const sc_fxcast_switch&);
sc_fix(sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_fix(sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
sc_fix(int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_fix(int , int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
sc_fix(const sc_fxtype_params&);
sc_fix(const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T(tp) \
sc_fix(tp , int, int); \
sc_fix(tp , sc_q_mode , sc_o_mode); \
sc_fix(tp , sc_q_mode , sc_o_mode, int); \
sc_fix(tp , int , int , sc_q_mode , sc_o_mode); \
sc_fix(tp , int , int , sc_q_mode , sc_o_mode , int); \
sc_fix(tp , const sc_fxcast_switch&); \
sc_fix(tp , int , int , const sc_fxcast_switch&); \
sc_fix(tp , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_fix(tp , sc_q_mode , sc_o_mode , in , const sc_fxcast_switch&); \
sc_fix(tp , int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_fix(tp , int, int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&); \
sc_fix(tp , const sc_fxtype_params&); \
sc_fix(tp , const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
sc_fix(tp); \
DECL_CTORS_T(tp)

#define DECL_CTORS_T_B(tp) \
explicit sc_fix(tp); \
DECL_CTORS_T(tp)

DECL_CTORS_T_A(int)
DECL_CTORS_T_A(unsigned int)
.
Copyright © 2005 OSCI. All rights reserved. 320

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_CTORS_T_A(long)
DECL_CTORS_T_A(unsigned long)
DECL_CTORS_T_A(double)
DECL_CTORS_T_A(const char*)
DECL_CTORS_T_A(const sc_fxval&)
DECL_CTORS_T_A(const sc_fxval_fast&)
DECL_CTORS_T_A(const sc_fxnum&)
DECL_CTORS_T_A(const sc_fxnum_fast&)
DECL_CTORS_T_B(int64)
DECL_CTORS_T_B(uint64)
DECL_CTORS_T_B(const sc_int_base&)
DECL_CTORS_T_B(const sc_uint_base&)
DECL_CTORS_T_B(const sc_signed&)
DECL_CTORS_T_B(const sc_unsigned&)
sc_fix(const sc_fix&);

// Unary bitwise operators
const sc_fix operator~ () const;

// Binary bitwise operators
friend const sc_fix operator& (const sc_fix& , const sc_fix&);
friend const sc_fix operator& (const sc_fix& , const sc_fix_fast&);
friend const sc_fix operator& (const sc_fix_fast& , const sc_fix&);
friend const sc_fix operator| (const sc_fix& , const sc_fix&);
friend const sc_fix operator| (const sc_fix& , const sc_fix_fast&);
friend const sc_fix operator| (const sc_fix_fast& , const sc_fix&);
friend const sc_fix operator^ (const sc_fix& , const sc_fix&);
friend const sc_fix operator^ (const sc_fix& , const sc_fix_fast&);
friend const sc_fix operator^ (const sc_fix_fast& , const sc_fix&);

sc_fix& operator= (const sc_fix&);

#define DECL_ASN_OP_T(op , tp) \
sc_fix& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \
DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*)\
DECL_ASN_OP_T(op , const sc_fxval&)\
DECL_ASN_OP_T(op , const sc_fxval_fast&)\
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(op)
.
Copyright © 2005 OSCI. All rights reserved. 321

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_fix&)
DECL_ASN_OP_T(&= , const sc_fix_fast&)
DECL_ASN_OP_T(|= , const sc_fix&)
DECL_ASN_OP_T(|= , const sc_fix_fast&)
DECL_ASN_OP_T(^= , const sc_fix&)
DECL_ASN_OP_T(^= , const sc_fix_fast&)

const sc_fxval operator++ (int);
const sc_fxval operator-- (int);
sc_fix& operator++ ();
sc_fix& operator-- ();

};

} // namespace sc_dt

7.10.13.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

7.10.13.4 Public constructors

The constructor arguments may specify the fixed-point type parameters (as described in 7.10.1). The default
constructor shall set fixed-point type parameters according to the fixed-point context in scope at the point of
construction. An initial value may additionally be specified as a C++ or SystemC numeric object or as a
string literal. A fixed-point cast switch may also be passed as a constructor argument to set the fixed-point
casting as described in 7.10.7.

7.10.13.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_fix, using truncation or sign-extension as described in 7.10.4.

7.10.13.6 Bitwise operators

Bitwise operators for all combinations of operands of type sc_fix and sc_fix_fast shall be defined as
described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 322

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.14 sc_ufix

7.10.14.1 Description

Class sc_ufix shall represent an unsigned fixed-point value. The fixed-point type parameters wl, iwl,
q_mode, o_mode, and n_bits may be specified as constructor arguments.

7.10.14.2 Class definition

namespace sc_dt {

class sc_ufix
: public sc_fxnum
{

public:
// Constructors
explicit sc_ufix();
sc_ufix(int , int);
sc_ufix(sc_q_mode , sc_o_mode);
sc_ufix(sc_q_mode , sc_o_mode , int);
sc_ufix(int , int , sc_q_mode , sc_o_mode);
sc_ufix(int , int , sc_q_mode , sc_o_mode, int);
explicit sc_ufix(const sc_fxcast_switch&);
sc_ufix(int , int , const sc_fxcast_switch&);
sc_ufix(sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_ufix(sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
sc_ufix(int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_ufix(int , int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
explicit sc_ufix(const sc_fxtype_params&);
sc_ufix(const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T(tp) \
sc_ufix(tp , int , int); \
sc_ufix(tp , sc_q_mode , sc_o_mode); \
sc_ufix(tp , sc_q_mode , sc_o_mode , int); \
sc_ufix(tp , int , int , sc_q_mode , sc_o_mode); \
sc_ufix(tp , int , int , sc_q_mode , sc_o_mode , int); \
sc_ufix(tp , const sc_fxcast_switch&); \
sc_ufix(tp , int , int , const sc_fxcast_switch&); \
sc_ufix(tp , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_ufix(tp , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&); \
sc_ufix(tp , int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_ufix(tp , int , int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&); \
sc_ufix(tp , const sc_fxtype_params&); \
sc_ufix(tp , const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
sc_ufix(tp); \
DECL_CTORS_T(tp)

#define DECL_CTORS_T_B(tp) \
explicit sc_ufix(tp); \
DECL_CTORS_T(tp)

DECL_CTORS_T_A(int)
DECL_CTORS_T_A(unsigned int)
.
Copyright © 2005 OSCI. All rights reserved. 323

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_CTORS_T_A(long)
DECL_CTORS_T_A(unsigned long)
DECL_CTORS_T_A(double)
DECL_CTORS_T_A(const char*)
DECL_CTORS_T_A(const sc_fxval&)
DECL_CTORS_T_A(const sc_fxval_fast&)
DECL_CTORS_T_A(const sc_fxnum&)
DECL_CTORS_T_A(const sc_fxnum_fast&)
DECL_CTORS_T_B(int64)
DECL_CTORS_T_B(uint64)
DECL_CTORS_T_B(const sc_int_base&)
DECL_CTORS_T_B(const sc_uint_base&)
DECL_CTORS_T_B(const sc_signed&)
DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T
#undef DECL_CTORS_T_A
#undef DECL_CTORS_T_B

// Copy constructor
sc_ufix(const sc_ufix&);

// Unary bitwise operators
const sc_ufix operator~ () const;

// Binary bitwise operators
friend const sc_ufix operator& (const sc_ufix& , const sc_ufix&);
friend const sc_ufix operator& (const sc_ufix& , const sc_ufix_fast&);
friend const sc_ufix operator& (const sc_ufix_fast& , const sc_ufix&);
friend const sc_ufix operator| (const sc_ufix& , const sc_ufix&);
friend const sc_ufix operator| (const sc_ufix& , const sc_ufix_fast&);
friend const sc_ufix operator| (const sc_ufix_fast& , const sc_ufix&);
friend const sc_ufix operator^ (const sc_ufix& , const sc_ufix&);
friend const sc_ufix operator^ (const sc_ufix& , const sc_ufix_fast&);
friend const sc_ufix operator^ (const sc_ufix_fast& , const sc_ufix&);

// Assignment operators
sc_ufix& operator= (const sc_ufix&);

#define DECL_ASN_OP_T(op , tp) \
sc_ufix& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \
DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&)\
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
.
Copyright © 2005 OSCI. All rights reserved. 324

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP_T(op , const char*) \
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&)\
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&)\
DECL_ASN_OP_OTHER(op)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_ufix&)
DECL_ASN_OP_T(&= , const sc_ufix_fast&)
DECL_ASN_OP_T(|= , const sc_ufix&)
DECL_ASN_OP_T(|= , const sc_ufix_fast&)
DECL_ASN_OP_T(^= , const sc_ufix&)
DECL_ASN_OP_T(^= , const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

// Auto-increment and auto-decrement
const sc_fxval operator++ (int);
const sc_fxval operator-- (int);
sc_ufix& operator++ ();
sc_ufix& operator-- ();

};

} // namespace sc_dt

7.10.14.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

7.10.14.4 Public constructors

The constructor arguments may specify the fixed-point type parameters (as described in 7.10.1). The default
constructor shall set fixed-point type parameters according to the fixed-point context in scope at the point of
construction. An initial value may additionally be specified as a C++ or SystemC numeric object or as a
string literal. A fixed-point cast switch may also be passed as a constructor argument to set the fixed-point
casting as described in 7.10.7.

7.10.14.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_ufix, using truncation or sign-extension as described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 325

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.14.6 Bitwise operators

Bitwise operators for all combinations of operands of type sc_ufix and sc_ufix_fast shall be defined as
described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 326

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.15 sc_fix_fast

7.10.15.1 Description

Class sc_fix_fast shall represent a signed (two’s complement) fixed-point value with limited precision. The
fixed-point type parameters wl, iwl, q_mode, o_mode, and n_bits may be specified as constructor
arguments.

7.10.15.2 Class definition

namespace sc_dt {

class sc_fix_fast
: public sc_fxnum_fast
{

public:
// Constructors
sc_fix_fast();
sc_fix_fast(int , int);
sc_fix_fast(sc_q_mode , sc_o_mode);
sc_fix_fast(sc_q_mode , sc_o_mode , int);
sc_fix_fast(int , int , sc_q_mode , sc_o_mode);
sc_fix_fast(int , int , sc_q_mode , sc_o_mode , int);
sc_fix_fast(const sc_fxcast_switch&);
sc_fix_fast(int , int , const sc_fxcast_switch&);
sc_fix_fast(sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_fix_fast(sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
sc_fix_fast(int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_fix_fast(int , int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
sc_fix_fast(const sc_fxtype_params&);
sc_fix_fast(const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T(tp) \
sc_fix_fast(tp , int , int); \
sc_fix_fast(tp , sc_q_mode , sc_o_mode); \
sc_fix_fast(tp , sc_q_mode , sc_o_mode , int); \
sc_fix_fast(tp , int , int , sc_q_mode , sc_o_mode); \
sc_fix_fast(tp , int , int , sc_q_mode , sc_o_mode , int); \
sc_fix_fast(tp , const sc_fxcast_switch&); \
sc_fix_fast(tp , int , int , const sc_fxcast_switch&); \
sc_fix_fast(tp , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_fix_fast(tp , sc_q_mod e, sc_o_mode , int , const sc_fxcast_switch&); \
sc_fix_fast(tp , int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_fix_fast(tp , int , int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&); \
sc_fix_fast(tp , const sc_fxtype_params&); \
sc_fix_fast(tp , const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
sc_fix_fast(tp); \
DECL_CTORS_T(tp)

#define DECL_CTORS_T_B(tp) \
explicit sc_fix_fast(tp); \
DECL_CTORS_T(tp)

DECL_CTORS_T_A(int)
.
Copyright © 2005 OSCI. All rights reserved. 327

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_CTORS_T_A(unsigned int)
DECL_CTORS_T_A(long)
DECL_CTORS_T_A(unsigned long)
DECL_CTORS_T_A(double)
DECL_CTORS_T_A(const char*)
DECL_CTORS_T_A(const sc_fxval&)
DECL_CTORS_T_A(const sc_fxval_fast&)
DECL_CTORS_T_A(const sc_fxnum&)
DECL_CTORS_T_A(const sc_fxnum_fast&)
DECL_CTORS_T_B(int64)
DECL_CTORS_T_B(uint64)
DECL_CTORS_T_B(const sc_int_base&)
DECL_CTORS_T_B(const sc_uint_base&)
DECL_CTORS_T_B(const sc_signed&)
DECL_CTORS_T_B(const sc_unsigned&)

// Copy constructor
sc_fix_fast(const sc_fix_fast&);

// Operators
const sc_fix_fast operator~ () const;
friend const sc_fix_fast operator& (const sc_fix_fast& , const sc_fix_fast&);
friend const sc_fix_fast operator^ (const sc_fix_fast& , const sc_fix_fast&);
friend const sc_fix_fast operator| (const sc_fix_fast& , const sc_fix_fast&);
sc_fix_fast& operator= (const sc_fix_fast&);

#define DECL_ASN_OP_T(op , tp) \
sc_fix_fast& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \
DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&)\
DECL_ASN_OP_T(op , const sc_uint_base&)\
DECL_ASN_OP_T(op , const sc_signed&)\
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*)\
DECL_ASN_OP_T(op , const sc_fxval&)\
DECL_ASN_OP_T(op , const sc_fxval_fast&)\
DECL_ASN_OP_T(op , const sc_fxnum&)\
DECL_ASN_OP_T(op , const sc_fxnum_fast&)\
DECL_ASN_OP_OTHER(op)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
.
Copyright © 2005 OSCI. All rights reserved. 328

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_fix&)
DECL_ASN_OP_T(&= , const sc_fix_fast&)
DECL_ASN_OP_T(|= , const sc_fix&)
DECL_ASN_OP_T(|= , const sc_fix_fast&)
DECL_ASN_OP_T(^= , const sc_fix&)
DECL_ASN_OP_T(^= , const sc_fix_fast&)

const sc_fxval_fast operator++ (int);
const sc_fxval_fast operator-- (int);
sc_fix_fast& operator++ ();
sc_fix_fast& operator-- ();

};

} // namespace sc_dt

7.10.15.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

sc_fix_fast shall use double precision (floating-point) values. The mantissa of a double precision value is
limited to 53 bits so bit-true behavior cannot be guaranteed with the limited-precision types.

7.10.15.4 Public constructors

The constructor arguments may specify the fixed-point type parameters (as described in 7.10.1). The default
constructor shall set fixed-point type parameters according to the fixed-point context in scope at the point of
construction. An initial value may additionally be specified as a C++ or SystemC numeric object, or as a
string literal. A fixed-point cast switch may also be passed as a constructor argument to set the fixed-point
casting as described in 7.10.7.

7.10.15.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_fix_fast, using truncation or sign-extension as described in 7.10.4.

7.10.15.6 Bitwise operators

Bitwise operators for operands of type sc_fix_fast shall be defined as described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 329

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.16 sc_ufix_fast

7.10.16.1 Description

Class sc_ufix_fast shall represent an unsigned fixed-point value with limited precision. The fixed-point type
parameters wl, iwl, q_mode, o_mode, and n_bits may be specified as constructor arguments.

7.10.16.2 Class definition

namespace sc_dt {

class sc_ufix_fast
: public sc_fxnum_fast
{

public:
// Constructors
explicit sc_ufix_fast();
sc_ufix_fast(int , int);
sc_ufix_fast(sc_q_mode , sc_o_mode);
sc_ufix_fast(sc_q_mode , sc_o_mode , int);
sc_ufix_fast(int , int , sc_q_mode , sc_o_mode);
sc_ufix_fast(int , int , sc_q_mode , sc_o_mode , int);
explicit sc_ufix_fast(const sc_fxcast_switch&);
sc_ufix_fast(int , int , const sc_fxcast_switch&);
sc_ufix_fast(sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_ufix_fast(sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
sc_ufix_fast(int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&);
sc_ufix_fast(int , int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&);
explicit sc_ufix_fast(const sc_fxtype_params&);
sc_ufix_fast(const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T(tp) \
 sc_ufix_fast(tp , int , int); \
 sc_ufix_fast(tp , sc_q_mode , sc_o_mode); \
 sc_ufix_fast(tp , sc_q_mode , sc_o_mode , int); \

sc_ufix_fast(tp , int , int , sc_q_mode , sc_o_mode); \
sc_ufix_fast(tp , int , int , sc_q_mode , sc_o_mode , int); \
sc_ufix_fast(tp , const sc_fxcast_switch&); \
sc_ufix_fast(tp , int , int , const sc_fxcast_switch&); \
sc_ufix_fast(tp , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_ufix_fast(tp , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&); \
sc_ufix_fast(tp , int , int , sc_q_mode , sc_o_mode , const sc_fxcast_switch&); \
sc_ufix_fast(tp , int , int , sc_q_mode , sc_o_mode , int , const sc_fxcast_switch&); \
sc_ufix_fast(tp , const sc_fxtype_params&); \
sc_ufix_fast(tp , const sc_fxtype_params& , const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
 sc_ufix_fast(tp); \

DECL_CTORS_T(tp)
#define DECL_CTORS_T_B(tp) \

explicit sc_ufix_fast(tp); \
DECL_CTORS_T(tp)

DECL_CTORS_T_A(int)
.
Copyright © 2005 OSCI. All rights reserved. 330

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_CTORS_T_A(unsigned int)
DECL_CTORS_T_A(long)
DECL_CTORS_T_A(unsigned long)
DECL_CTORS_T_A(double)
DECL_CTORS_T_A(const char*)
DECL_CTORS_T_A(const sc_fxval&)
DECL_CTORS_T_A(const sc_fxval_fast&)
DECL_CTORS_T_A(const sc_fxnum&)
DECL_CTORS_T_A(const sc_fxnum_fast&)
DECL_CTORS_T_B(int64)
DECL_CTORS_T_B(uint64)
DECL_CTORS_T_B(const sc_int_base&)
DECL_CTORS_T_B(const sc_uint_base&)
DECL_CTORS_T_B(const sc_signed&)
DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T
#undef DECL_CTORS_T_A
#undef DECL_CTORS_T_B

// Copy constructor
sc_ufix_fast(const sc_ufix_fast&);

// Unary bitwise operators
const sc_ufix_fast operator~ () const;

// Binary bitwise operators
friend const sc_ufix_fast operator& (const sc_ufix_fast& , const sc_ufix_fast&);
friend const sc_ufix_fast operator^ (const sc_ufix_fast& , const sc_ufix_fast&);
friend const sc_ufix_fast operator| (const sc_ufix_fast& , const sc_ufix_fast&);

// Assignment operators
sc_ufix_fast& operator= (const sc_ufix_fast&);
#define DECL_ASN_OP_T(op , tp) \

sc_ufix_fast& operator op (tp);
#define DECL_ASN_OP_OTHER(op) \

DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&)\
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int)\
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*)\
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(op)
.
Copyright © 2005 OSCI. All rights reserved. 331

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_ufix&)
DECL_ASN_OP_T(&= , const sc_ufix_fast&)
DECL_ASN_OP_T(|= , const sc_ufix&)
DECL_ASN_OP_T(|= , const sc_ufix_fast&)
DECL_ASN_OP_T(^= , const sc_ufix&)
DECL_ASN_OP_T(^= , const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

// Auto-increment and auto-decrement
const sc_fxval_fast operator++ (int);
const sc_fxval_fast operator-- (int);
sc_ufix_fast& operator++ ();
sc_ufix_fast& operator-- ();

};

} // namespace sc_dt

7.10.16.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

sc_ufix_fast shall use double precision (floating-point) values. The mantissa of a double precision value is
limited to 53 bits so bit-true behavior cannot be guaranteed with the limited-precision types.

7.10.16.4 Public constructors

The constructor arguments may specify the fixed-point type parameters (as described in 7.10.1). The default
constructor shall set fixed-point type parameters according to the fixed-point context in scope at the point of
construction. An initial value may additionally be specified as a C++ or SystemC numeric object or as a
string literal. A fixed-point cast switch may also be passed as a constructor argument to set the fixed-point
casting as described in 7.10.7.

7.10.16.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_ufix_fast, using truncation or sign-extension as described in 7.10.4.

7.10.16.6 Bitwise operators

Bitwise operators for operands of type sc_ufix_fast shall be defined as described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 332

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.17 sc_fixed

7.10.17.1 Description

Class template sc_fixed shall represent a signed (two’s complement) fixed-point value. The fixed-point type
parameters wl, iwl, q_mode, o_mode, and n_bits shall be specified by the template arguments. All the
public methods of its sc_fix base class shall be public members of sc_fixed or shall be overridden to
implement the same behavior.

7.10.17.2 Class definition

namespace sc_dt {

template <int W, int I,
sc_q_mode Q = SC_DEFAULT_Q_MODE_,
sc_o_mode O = SC_DEFAULT_O_MODE_, int N = SC_DEFAULT_N_BITS_>

class sc_fixed
: public sc_fix
{

public:
// Constructors
sc_fixed();
sc_fixed(const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
sc_fixed(tp); \
sc_fixed(tp , const sc_fxcast_switch&);

#define DECL_CTORS_T_B(tp) \
sc_fixed(tp); \
sc_fixed(tp , const sc_fxcast_switch&);

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)

 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)

 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)
 DECL_CTORS_T_B(const sc_unsigned&)
 sc_fixed(const sc_fixed<W,I,Q,O,N>&);

 // Operators
 sc_fixed& operator= (const sc_fixed<W,I,Q,O,N>&);

#define DECL_ASN_OP_T(op , tp) \
sc_fixed& operator op (tp);
.
Copyright © 2005 OSCI. All rights reserved. 333

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
#define DECL_ASN_OP_OTHER(op) \
DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*) \
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(op)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_fix&)
DECL_ASN_OP_T(&= , const sc_fix_fast&)
DECL_ASN_OP_T(|= , const sc_fix&)
DECL_ASN_OP_T(|= , const sc_fix_fast&)
DECL_ASN_OP_T(^= , const sc_fix&)
DECL_ASN_OP_T(^= , const sc_fix_fast&)

const sc_fxval operator++ (int);
const sc_fxval operator-- (int);
sc_fixed& operator++ ();
sc_fixed& operator-- ();

};

} // namespace sc_dt

7.10.17.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

7.10.17.4 Public constructors

The initial value of an sc_fixed object may be specified as a constructor argument, that is, a C++ or SystemC
numeric object or a string literal. A fixed-point cast switch may also be passed as a constructor argument to
set the fixed-point casting as described in 7.10.7.
.
Copyright © 2005 OSCI. All rights reserved. 334

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.17.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_fixed, using truncation or sign-extension as described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 335

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.18 sc_ufixed

7.10.18.1 Description

Class template sc_ufixed represents an unsigned fixed-point value. The fixed-point type parameters wl, iwl,
q_mode, o_mode, and n_bits shall be specified by the template arguments. All the public methods of its
sc_ufix base class shall be public members of sc_ufixed or shall be overridden to implement the same
behavior.

7.10.18.2 Class definition

namespace sc_dt {

template <int W, int I,
 sc_q_mode Q = SC_DEFAULT_Q_MODE_,
 sc_o_mode O = SC_DEFAULT_O_MODE_, int N = SC_DEFAULT_N_BITS_>

class sc_ufixed
: public sc_ufix
{

public:
// Constructors
explicit sc_ufixed();
explicit sc_ufixed(const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
sc_ufixed(tp); \
sc_ufixed(tp , const sc_fxcast_switch&);

#define DECL_CTORS_T_B(tp) \
explicit sc_ufixed(tp); \
sc_ufixed(tp , const sc_fxcast_switch&);

DECL_CTORS_T_A(int)
DECL_CTORS_T_A(unsigned int)
DECL_CTORS_T_A(long)
DECL_CTORS_T_A(unsigned long)
DECL_CTORS_T_A(double)
DECL_CTORS_T_A(const char*)
DECL_CTORS_T_A(const sc_fxval&)
DECL_CTORS_T_A(const sc_fxval_fast&)
DECL_CTORS_T_A(const sc_fxnum&)
DECL_CTORS_T_A(const sc_fxnum_fast&)
DECL_CTORS_T_B(int64)
DECL_CTORS_T_B(uint64)
DECL_CTORS_T_B(const sc_int_base&)
DECL_CTORS_T_B(const sc_uint_base&)
DECL_CTORS_T_B(const sc_signed&)
DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T_A
#undef DECL_CTORS_T_B

// Copy constructor
sc_ufixed(const sc_ufixed<W,I,Q,O,N>&);
.
Copyright © 2005 OSCI. All rights reserved. 336

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
// Assignment operators
sc_ufixed& operator= (const sc_ufixed<W,I,Q,O,N>&);
#define DECL_ASN_OP_T(op , tp) \

sc_ufixed& operator op (tp);
#define DECL_ASN_OP_OTHER(op) \

DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&)\
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int)\
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*) \
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(op)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_ufix&)
DECL_ASN_OP_T(&= , const sc_ufix_fast&)
DECL_ASN_OP_T(|= , const sc_ufix&)
DECL_ASN_OP_T(|= , const sc_ufix_fast&)
DECL_ASN_OP_T(^= , const sc_ufix&)
DECL_ASN_OP_T(^= , const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

// Auto-increment and auto-decrement
const sc_fxval operator++ (int);
const sc_fxval operator-- (int);
sc_ufixed& operator++ ();
sc_ufixed& operator-- ();

};

} // namespace sc_dt
.
Copyright © 2005 OSCI. All rights reserved. 337

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.18.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

7.10.18.4 Public constructors

The initial value of an sc_ufixed object may be specified as a constructor argument that is a C++ or
SystemC numeric object or a string literal. A fixed-point cast switch may also be passed as a constructor
argument to set the fixed-point casting as described in 7.10.7.

7.10.18.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_ufixed, using truncation or sign-extension as described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 338

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.19 sc_fixed_fast

7.10.19.1 Description

Class template sc_fixed_fast shall represent a signed (two’s complement) fixed-point type with limited
precision. The fixed-point type parameters wl, iwl, q_mode, o_mode, and n_bits shall be specified by the
template arguments. All the public methods of its sc_fix_fast base class shall be public members of
sc_fixed_fast or shall be overridden to implement the same behavior.

7.10.19.2 Class definition

namespace sc_dt {

template <int W, int I,
sc_q_mode Q = SC_DEFAULT_Q_MODE_,
sc_o_mode O = SC_DEFAULT_O_MODE_, int N = SC_DEFAULT_N_BITS_>

class sc_fixed_fast
: public sc_fix_fast
{

public:
// Constructors
sc_fixed_fast();
sc_fixed_fast(const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
sc_fixed_fast(tp); \
sc_fixed_fast(tp , const sc_fxcast_switch&);

#define DECL_CTORS_T_B(tp) \
sc_fixed_fast(tp); \
sc_fixed_fast(tp , const sc_fxcast_switch&);

 DECL_CTORS_T_A(int)
 DECL_CTORS_T_A(unsigned int)
 DECL_CTORS_T_A(long)
 DECL_CTORS_T_A(unsigned long)
 DECL_CTORS_T_A(double)
 DECL_CTORS_T_A(const char*)
 DECL_CTORS_T_A(const sc_fxval&)
 DECL_CTORS_T_A(const sc_fxval_fast&)
 DECL_CTORS_T_A(const sc_fxnum&)
 DECL_CTORS_T_A(const sc_fxnum_fast&)
 DECL_CTORS_T_B(int64)
 DECL_CTORS_T_B(uint64)
 DECL_CTORS_T_B(const sc_int_base&)
 DECL_CTORS_T_B(const sc_uint_base&)
 DECL_CTORS_T_B(const sc_signed&)

 DECL_CTORS_T_B(const sc_unsigned&)

 sc_fixed_fast(const sc_fixed_fast<W,I,Q,O,N>&);

 // Operators
sc_fixed_fast& operator= (const

sc_fixed_fast<W,I,Q,O,N>&);
#define DECL_ASN_OP_T(op , tp) \
.
Copyright © 2005 OSCI. All rights reserved. 339

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_fixed_fast& operator op (tp);
#define DECL_ASN_OP_OTHER(op) \

DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&) \
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int) \
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*) \
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast&) \
DECL_ASN_OP_OTHER(op)
DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_fix&)
DECL_ASN_OP_T(&= , const sc_fix_fast&)
DECL_ASN_OP_T(|= , const sc_fix&)
DECL_ASN_OP_T(|= , const sc_fix_fast&)
DECL_ASN_OP_T(^= , const sc_fix&)
DECL_ASN_OP_T(^= , const sc_fix_fast&)
const sc_fxval_fast operator++ (int);
const sc_fxval_fast operator-- (int);
sc_fixed_fast& operator++ ();
sc_fixed_fast& operator-- ();

};

} // namespace sc_dt

7.10.19.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

sc_fixed_fast shall use double precision (floating-point) values whose mantissa is limited to 53 bits.

7.10.19.4 Public constructors

The initial value of an sc_fixed_fast object may be specified as a constructor argument that is a C++ or
SystemC numeric object or a string literal. A fixed-point cast switch may also be passed as a constructor
argument to set the fixed-point casting as described in 7.10.7.
.
Copyright © 2005 OSCI. All rights reserved. 340

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.19.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_fixed_fast, using truncation or sign-extension as described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 341

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.20 sc_ufixed_fast

7.10.20.1 Description

Class template sc_ufixed_fast shall represent an unsigned fixed-point type with limited precision. The
fixed-point type parameters wl, iwl, q_mode, o_mode, and n_bits shall be specified by the template
arguments. All the public methods of its sc_ufix_fast base class shall be public members of sc_ufixed_fast
or shall be overridden to implement the same behavior.

7.10.20.2 Class definition

namespace sc_dt {

template <int W, int I,
 sc_q_mode Q = SC_DEFAULT_Q_MODE_,
 sc_o_mode O = SC_DEFAULT_O_MODE_, int N = SC_DEFAULT_N_BITS_>

class sc_ufixed_fast
: public sc_ufix_fast
{

public:
// Constructors
explicit sc_ufixed_fast();
explicit sc_ufixed_fast(const sc_fxcast_switch&);

#define DECL_CTORS_T_A(tp) \
sc_ufixed_fast(tp); \
sc_ufixed_fast(tp , const sc_fxcast_switch&);

#define DECL_CTORS_T_B(tp) \
explicit sc_ufixed_fast (tp); \
sc_ufixed_fast(tp , const sc_fxcast_switch&);

DECL_CTORS_T_A(int)
DECL_CTORS_T_A(unsigned int)
DECL_CTORS_T_A(long)
DECL_CTORS_T_A(unsigned long)
DECL_CTORS_T_A(double)
DECL_CTORS_T_A(const char*)
DECL_CTORS_T_A(const sc_fxval&)
DECL_CTORS_T_A(const sc_fxval_fast&)
DECL_CTORS_T_A(const sc_fxnum&)
DECL_CTORS_T_A(const sc_fxnum_fast&)
DECL_CTORS_T_B(int64)
DECL_CTORS_T_B(uint64)
DECL_CTORS_T_B(const sc_int_base&)
DECL_CTORS_T_B(const sc_uint_base&)
DECL_CTORS_T_B(const sc_signed&)
DECL_CTORS_T_B(const sc_unsigned&)

#undef DECL_CTORS_T_A
#undef DECL_CTORS_T_B

// Copy constructor
sc_ufixed_fast(const sc_ufixed_fast<W,I,Q,O,N>&);
.
Copyright © 2005 OSCI. All rights reserved. 342

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
// Assignment operators
sc_ufixed_fast& operator= (const sc_ufixed_fast<W,I,Q,O,N>&);

#define DECL_ASN_OP_T(op , tp) \
sc_ufixed_fast& operator op (tp);

#define DECL_ASN_OP_OTHER(op) \
DECL_ASN_OP_T(op , int64) \
DECL_ASN_OP_T(op , uint64) \
DECL_ASN_OP_T(op , const sc_int_base&) \
DECL_ASN_OP_T(op , const sc_uint_base&) \
DECL_ASN_OP_T(op , const sc_signed&)\
DECL_ASN_OP_T(op , const sc_unsigned&)

#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , int) \
DECL_ASN_OP_T(op , unsigned int)\
DECL_ASN_OP_T(op , long) \
DECL_ASN_OP_T(op , unsigned long) \
DECL_ASN_OP_T(op , double) \
DECL_ASN_OP_T(op , const char*)\
DECL_ASN_OP_T(op , const sc_fxval&) \
DECL_ASN_OP_T(op , const sc_fxval_fast&) \
DECL_ASN_OP_T(op , const sc_fxnum&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast& \
DECL_ASN_OP_OTHER(op)

DECL_ASN_OP(=)
DECL_ASN_OP(*=)
DECL_ASN_OP(/=)
DECL_ASN_OP(+=)
DECL_ASN_OP(-=)
DECL_ASN_OP_T(<<= , int)
DECL_ASN_OP_T(>>= , int)
DECL_ASN_OP_T(&= , const sc_ufix&)
DECL_ASN_OP_T(&= , const sc_ufix_fast&)
DECL_ASN_OP_T(|= , const sc_ufix&)
DECL_ASN_OP_T(|= , const sc_ufix_fast&)
DECL_ASN_OP_T(^= , const sc_ufix&)
DECL_ASN_OP_T(^= , const sc_ufix_fast&)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP_OTHER
#undef DECL_ASN_OP

// Auto-increment and auto-decrement
const sc_fxval_fast operator++ (int);
const sc_fxval_fast operator-- (int);
sc_ufixed_fast& operator++ ();
sc_ufixed_fast& operator-- ();

};

} // namespace sc_dt
.
Copyright © 2005 OSCI. All rights reserved. 343

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.20.3 Constraints on usage

The word length shall be greater than zero. The number of saturated bits, if specified, shall not be less than
zero.

sc_ufixed_fast shall use double precision (floating-point) values whose mantissa is limited to 53 bits.

7.10.20.4 Public constructors

The initial value of an sc_fixed_fast object may be specified as a constructor argument, that is, a C++ or
SystemC numeric object or a string literal. A fixed-point cast switch may also be passed as a constructor
argument to set the fixed-point casting as described in 7.10.7.

7.10.20.5 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
numeric representation to sc_fixed_fast, using truncation or sign-extension as described in 7.10.4.
.
Copyright © 2005 OSCI. All rights reserved. 344

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.21 Bit-selects

7.10.21.1 Description

Class sc_fxnum_bitref† shall represent a bit selected from an sc_fxnum.

Class sc_fxnum_fast_bitref† shall represent a bit selected from an sc_fxnum_fast.

No distinction shall be made between a bit-select used as an lvalue or an rvalue.

7.10.21.2 Class definition

namespace sc_dt {

class sc_fxnum_bitref†
{

friend class sc_fxnum;
friend class sc_fxnum_fast_bitref†;

public:
// Copy constructor
sc_fxnum_bitref†(const sc_fxnum_bitref†&);

// Assignment operators
#define DECL_ASN_OP_T(op , tp) \

sc_fxnum_bitref†& operator op (tp);
#define DECL_ASN_OP(op) \

DECL_ASN_OP_T(op , const sc_fxnum_bitref†&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast_bitref†&) \
DECL_ASN_OP_T(op , bool)

DECL_ASN_OP(=)
DECL_ASN_OP(&=)
DECL_ASN_OP(|=)
DECL_ASN_OP(^=)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP

// Implicit conversion
operator bool() const;

// Print or dump content
void print(std::ostream& = std::cout) const;
void scan(std::istream& = std::cin);
void dump(std::ostream& = std::cout) const;

private:
// Disabled
// Constructors
sc_fxnum_bitref†(sc_fxnum& , int);
sc_fxnum_bitref†();

};
.
Copyright © 2005 OSCI. All rights reserved. 345

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
// ---

class sc_fxnum_fast_bitref†
{

friend class sc_fxnum_fast;
friend class sc_fxnum_bitref†;

public:
// Copy constructor
sc_fxnum_fast_bitref†(const sc_fxnum_fast_bitref†&);

// Assignment operators
#define DECL_ASN_OP_T(op , tp) \

sc_fxnum_fast_bitref†& operator op (tp);
#define DECL_ASN_OP(op) \
DECL_ASN_OP_T(op , const sc_fxnum_bitref†&) \
DECL_ASN_OP_T(op , const sc_fxnum_fast_bitref†&) \

DECL_ASN_OP_T(op , bool)

DECL_ASN_OP(=)
DECL_ASN_OP(&=)
DECL_ASN_OP(|=)
DECL_ASN_OP(^=)

#undef DECL_ASN_OP_T
#undef DECL_ASN_OP

// Implicit conversion
operator bool() const;

// Print or dump content
void print(std::ostream& = std::cout) const;
void scan(std::istream& = std::cin);
void dump(std::ostream& = std::cout) const;

private:
// Disabled
// Constructor
sc_fxnum_fast_bitref†(sc_fxnum_fast& , int);
sc_fxnum_fast_bitref†();

};

} // namespace sc_dt

7.10.21.3 Constraints on usage

Bit-select objects shall only be created using the bit-select operators of an instance of a class derived from
sc_fxnum or sc_fxnum_fast.

An application shall not explicitly create an instance of any bit-select class.

An application should not declare a reference or pointer to any bit-select object.
.
Copyright © 2005 OSCI. All rights reserved. 346

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.21.4 Assignment operators

Overloaded assignment operators shall provide conversion from bool values.

7.10.21.5 Implicit type conversion

operator bool() const;
Operator bool can be used for implicit type conversion from a bit-select to the native C++ bool
representation.
.
Copyright © 2005 OSCI. All rights reserved. 347

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.22 Part-Selects

7.10.22.1 Description

Class sc_fxnum_subref† shall represent a part-select from an sc_fx_num.

Class sc_fxnum_fast_subref† shall represent a part-select from an sc_fxnum_fast.

No distinction shall be made between a part-select used as an lvalue or an rvalue.

7.10.22.2 Class definition

namespace sc_dt {

class sc_fxnum_subref†
{

friend class sc_fxnum;
friend class sc_fxnum_fast_subref†;

public:
// Copy constructor
sc_fxnum_subref†(const sc_fxnum_subref†&);

// Destructor
~sc_fxnum_subref†();

// Assignment operators
#define DECL_ASN_OP_T(tp) \

sc_fxnum_subref†& operator= (tp);

DECL_ASN_OP_T(const sc_fxnum_subref†&)
DECL_ASN_OP_T(const sc_fxnum_fast_subref†&)
DECL_ASN_OP_T(const sc_bv_base&)
DECL_ASN_OP_T(const sc_lv_base&)
DECL_ASN_OP_T(const char*)
DECL_ASN_OP_T(const bool*)
DECL_ASN_OP_T(const sc_signed&)
DECL_ASN_OP_T(const sc_unsigned&)
DECL_ASN_OP_T(const sc_int_base&)
DECL_ASN_OP_T(const sc_uint_base&)
DECL_ASN_OP_T(int64)
DECL_ASN_OP_T(uint64)
DECL_ASN_OP_T(int)
DECL_ASN_OP_T(unsigned int)
DECL_ASN_OP_T(long)
DECL_ASN_OP_T(unsigned long)
DECL_ASN_OP_T(char)

#undef DECL_ASN_OP_T

#define DECL_ASN_OP_T_A(op , tp) \
sc_fxnum_subref†& operator op ## = (tp);

#define DECL_ASN_OP_A(op) \
.
Copyright © 2005 OSCI. All rights reserved. 348

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP_T_A(op , const sc_fxnum_subref†&) \
DECL_ASN_OP_T_A(op , const sc_fxnum_fast_subref†&) \
DECL_ASN_OP_T_A(op , const sc_bv_base&) \
DECL_ASN_OP_T_A(op , const sc_lv_base&)

DECL_ASN_OP_A(&)
DECL_ASN_OP_A(|)
DECL_ASN_OP_A(^)

#undef DECL_ASN_OP_T_A
#undef DECL_ASN_OP_A

// Relational operators
#define DECL_REL_OP_T(op , tp) \

friend bool operator op (const sc_fxnum_subref†& , tp); \
friend bool operator op (tp , const sc_fxnum_subref†&);

#define DECL_REL_OP(op) \
friend bool operator op (const sc_fxnum_subref†& , const sc_fxnum_subref†&); \
friend bool operator op (const sc_fxnum_subref†& , const sc_fxnum_fast_subref†&); \
DECL_REL_OP_T(op , const sc_bv_base&) \
DECL_REL_OP_T(op , const sc_lv_base&) \
DECL_REL_OP_T(op , const char*) \
DECL_REL_OP_T(op , const bool*) \
DECL_REL_OP_T(op , const sc_signed&) \
DECL_REL_OP_T(op , const sc_unsigned&) \
DECL_REL_OP_T(op , int) \
DECL_REL_OP_T(op , unsigned int) \
DECL_REL_OP_T(op , long) \
DECL_REL_OP_T(op , unsigned long)

DECL_REL_OP(==)
DECL_REL_OP(!=)

#undef DECL_REL_OP_T
#undef DECL_REL_OP

// Reduce functions
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Query parameter
int length() const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
.
Copyright © 2005 OSCI. All rights reserved. 349

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
uint64 to_uint64() const;

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

// Implicit conversion
operator sc_bv_base() const;

// Print or dump content
void print(std::ostream& = std::cout) const;
void scan(std::istream& = std::cin);
void dump(std::ostream& = std::cout) const;

private:
// Disabled
// Constructor
sc_fxnum_subref†(sc_fxnum& , int , int);
sc_fxnum_subref†();

};

// ---

class sc_fxnum_fast_subref†
{

friend class sc_fxnum_fast;
friend class sc_fxnum_subref†;

public:
// Copy constructor
sc_fxnum_fast_subref†(const sc_fxnum_fast_subref†&);

// Destructor
~sc_fxnum_fast_subref†();

// Assignment operators
#define DECL_ASN_OP_T(tp) \

sc_fxnum_fast_subref†& operator= (tp);

DECL_ASN_OP_T(const sc_fxnum_subref†&)
DECL_ASN_OP_T(const sc_fxnum_fast_subref†&)
DECL_ASN_OP_T(const sc_bv_base&)
DECL_ASN_OP_T(const sc_lv_base&)
DECL_ASN_OP_T(const char*)
DECL_ASN_OP_T(const bool*)
DECL_ASN_OP_T(const sc_signed&)
DECL_ASN_OP_T((const sc_unsigned&)
DECL_ASN_OP_T(const sc_int_base&)
DECL_ASN_OP_T(const sc_uint_base&)
DECL_ASN_OP_T(int64)
DECL_ASN_OP_T(uint64)
DECL_ASN_OP_T(int)
DECL_ASN_OP_T(unsigned int)
DECL_ASN_OP_T(long)
.
Copyright © 2005 OSCI. All rights reserved. 350

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
DECL_ASN_OP_T(unsigned long)
DECL_ASN_OP_T(char)

#undef DECL_ASN_OP_T

#define DECL_ASN_OP_T_A(op , tp) \
sc_fxnum_fast_subref& operator op ## = (tp);

#define DECL_ASN_OP_A(op) \
DECL_ASN_OP_T_A(op , const sc_fxnum_subref†&) \
DECL_ASN_OP_T_A(op , const sc_fxnum_fast_subref†&) \
DECL_ASN_OP_T_A(op , const sc_bv_base&) \
DECL_ASN_OP_T_A(op , const sc_lv_base&)

DECL_ASN_OP_A(&)
DECL_ASN_OP_A(|)
DECL_ASN_OP_A(^)

#undef DECL_ASN_OP_T_A
#undef DECL_ASN_OP_A

// Relational operators
#define DECL_REL_OP_T(op , tp) \

friend bool operator op (const sc_fxnum_fast_subref†& , tp); \
friend bool operator op (tp , const sc_fxnum_fast_subref†&);

#define DECL_REL_OP(op) \
friend bool operator op (const sc_fxnum_fast_subref†& , const sc_fxnum_fast_subref†&); \
friend bool operator op (const sc_fxnum_fast_subref†& , const sc_fxnum_subref†&); \
DECL_REL_OP_T(op , const sc_bv_base&) \
DECL_REL_OP_T(op , const sc_lv_base&) \
DECL_REL_OP_T(op , const char*) \
DECL_REL_OP_T(op , const bool*) \
DECL_REL_OP_T(op , const sc_signed&) \
DECL_REL_OP_T(op , const sc_unsigned&) \
DECL_REL_OP_T(op , int) \
DECL_REL_OP_T(op , unsigned int) \
DECL_REL_OP_T(op , long) \
DECL_REL_OP_T(op , unsigned long)

DECL_REL_OP(==)
DECL_REL_OP(!=)

#undef DECL_REL_OP_T
#undef DECL_REL_OP

// Reduce functions
bool and_reduce() const;
bool nand_reduce() const;
bool or_reduce() const;
bool nor_reduce() const;
bool xor_reduce() const;
bool xnor_reduce() const;

// Query parameter
.
Copyright © 2005 OSCI. All rights reserved. 351

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
int length() const;

// Explicit conversions
int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

// Implicit conversion
operator sc_bv_base() const;

// Print or dump content
void print(std::ostream& = std::cout) const;
void scan(std::istream& = std::cin);
void dump(std::ostream& = std::cout) const;

private:
// Disabled
// Constructor
sc_fxnum_fast_subref†(sc_fxnum_fast& , int , int);
sc_fxnum_fast_subref†();

};

} // namespace sc_dt

7.10.22.3 Constraints on usage

Fixed-point part-select objects shall only be created using the part-select operators of an instance of a class
derived from sc_fxnum or sc_fxnum_fast.

An application shall not explicitly create an instance of any fixed-point part-select class.

An application should not declare a reference or pointer to any fixed-point part-select object.

No arithmetic operators are provided for fixed-point part-selects.

7.10.22.4 Assignment operators

Overloaded assignment operators shall provide conversion from SystemC data types and the native C++
integer representation to fixed-point part-selects. If the size of a data type or string literal operand differs
from the fixed-point part-select word length, truncation, zero-extension, or sign-extension shall be used as
described in 7.2.1.

7.10.22.5 Bitwise operators

Overloaded bitwise operators shall be provided for fixed-point part-select, bit-vector, and logic-vector
operands.
.
Copyright © 2005 OSCI. All rights reserved. 352

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.10.22.6 Implicit type conversion

sc_fxnum_subref†:: operator sc_bv_base() const;
sc_fxnum_fast_subref†:: operator sc_bv_base() const;

Operator sc_bv_base can be used for implicit type conversion from integer part-selects to the
Systemc bit-vector representation.

7.10.22.7 Explicit type conversion

int to_int() const;
unsigned int to_uint() const;
long to_long() const;
unsigned long to_ulong() const;
int64 to_int64() const;
uint64 to_uint64() const;

These member functions shall perform the conversion to C++ integer types.

const std::string to_string() const;
const std::string to_string(sc_numrep) const;
const std::string to_string(sc_numrep , bool) const;

Member function to_string shall perform the conversion to an sc_string representation as described
in 7.2.10, 7.10.8, and 7.10.8.1.
.
Copyright © 2005 OSCI. All rights reserved. 353

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11 Contexts

This clause describes the classes that are provided to set the contexts for the data types.

7.11.1 sc_length_param

7.11.1.1 Description

Class sc_length_param shall represent a length parameter and shall be used to create a length context as
described in 7.2.2.

7.11.1.2 Class definition

namespace sc_dt {

class sc_length_param
{

public:
sc_length_param();
sc_length_param(int);
sc_length_param(const sc_length_param&);

sc_length_param& operator= (const sc_length_param&);
friend bool operator== (const sc_length_param& , const sc_length_param&);
friend bool operator!= (const sc_length_param& , const sc_length_param&);

int len() const;
void len(int);
const std::string to_string() const;
void print(std::ostream& = std::cout) const;
void dump(std::ostream& = std::cout) const;

};

} // namespace sc_dt

7.11.1.3 Constraints on usage

The length (where specified) shall be greater than zero.

7.11.1.4 Public constructors

sc_length_param();
Default constructor sc_length_param shall create an sc_length_param object with the default
word length of 32.

sc_length_param(int n) ;
Constructor sc_length_param shall create an sc_length_param with n as the word length with n >
0.

sc_length_param(const sc_length_param&);
Constructor sc_length_param shall create a copy of the object given as its argument.
.
Copyright © 2005 OSCI. All rights reserved. 354

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11.1.5 Public methods

int len() const;
Member function len shall return the word length stored in the sc_length_param.

void len(int n);
Member function len shall set the word length of the sc_length_param to n, with n > 0.

const std::string to_string() const;
Member function to_string shall convert the sc_length_param into its string representation.

void print(std::ostream& = std::cout) const;
Member function print shall print the contents to a stream.

7.11.1.6 Public operators

sc_length_param& operator= (const sc_length_param& a)
Operator= shall assign the word length value of a to the left-hand side sc_length_param instance.

friend bool operator== (const sc_length_param& a , sc_length_param& b);
Operator== shall return true if the stored lengths of a and b are equal.

friend bool operator!= (const sc_length_param& a , const sc_length_param& b);
Operator!= shall return true if the stored lengths of a and b are not equal.
.
Copyright © 2005 OSCI. All rights reserved. 355

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11.2 sc_length_context

7.11.2.1 Description

Class sc_length_context shall be used to create a length context for SystemC integer and vector objects.

7.11.2.2 Class definition

namespace sc_dt {

class sc_length_context
{

public:
explicit sc_length_context(const sc_length_param& , sc_context_begin† = SC_NOW);
~sc_length_context();

void begin();
void end();
static const sc_length_param& default_value();
const sc_length_param& value() const;

};

} // namespace sc_dt

7.11.2.3 Public constructor

explicit sc_length_context(const sc_length_param& , sc_context_begin† = SC_NOW);
Constructor sc_length_context shall create an sc_length_context object. The first argument shall
be the length parameter to use. The second argument (if supplied) shall have the value SC_NOW or
SC_LATER.

7.11.2.4 Public member functions

void begin();
Member function begin shall set the current length context as described in 7.2.2.

static const sc_length_param& default_value();
Member function default_value shall return the length parameter currently in context.

void end();
Member function end shall deactivate the length context and shall remove it from the top of the
length context stack as described in 7.2.2.

const sc_length_param& value() const;
Member function value shall return the length parameter.
.
Copyright © 2005 OSCI. All rights reserved. 356

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11.3 sc_fxtype_params

7.11.3.1 Description

Class sc_fxtype_params shall represent a length parameter and shall be used to create a length context for
fixed-point objects as described in 7.2.2.

7.11.3.2 Class definition

namespace sc_dt {

class sc_fxtype_params
{

public:
// Constructors and destructor
sc_fxtype_params();
sc_fxtype_params(int , int);
sc_fxtype_params(sc_q_mode , sc_o_mode, int = 0);
sc_fxtype_params(int , int , sc_q_mode , sc_o_mode , int = 0);
sc_fxtype_params(const sc_fxtype_params&);
sc_fxtype_params(const sc_fxtype_params& , int , int);
sc_fxtype_params(const sc_fxtype_params& , sc_q_mode , sc_o_mode , int = 0);
sc_fxtype_params(sc_without_context);

// Operators
sc_fxtype_params& operator= (const sc_fxtype_params&);
friend bool operator== (const sc_fxtype_params& , const sc_fxtype_params&);
friend bool operator!= (const sc_fxtype_params& , const sc_fxtype_params&);

// Methods
int wl() const;
void wl(int);
int iwl() const;
void iwl(int);
sc_q_mode q_mode() const;
void q_mode(sc_q_mode);
sc_o_mode o_mode() const;
void o_mode(sc_o_mode);
int n_bits() const;
void n_bits(int);
const std::string to_string() const;
void print(std::ostream& = std::cout) const;
void dump(std::ostream& = std::cout) const;

};

} // namespace sc_dt

7.11.3.3 Constraints on usage

The length (where specified) shall be greater than zero.

7.11.3.4 Public constructors

sc_fxtype_params ([int wl , int iwl] [, sc_q_mode q_mode , sc_o_mode o_mode[, int n_bits]]) ;
.
Copyright © 2005 OSCI. All rights reserved. 357

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Constructor sc_fxtype_params shall create an sc_fxtype_params object.
wl shall be the total number of bits in the fixed-point format. wl shall be greater than zero. The
default value for wl shall be obtained from the fixed-point context currently in scope.
iwl shall be the number of integer bits in the fixed-point format. iwl may be positive or negative. The
default value for iwl shall be obtained from the fixed-point context currently in scope.
q_mode shall be the quantization mode to use. Valid values for o_mode are given in 7.10.9.9. The
default value for q_mode shall be obtained from the fixed-point context currently in scope.
o_mode shall be the overflow mode to use. Valid values for o_mode are given in 7.10.9.1. The
default value for o_mode shall be obtained from the fixed-point context currently in scope.
n_bits shall be the number of saturated bits parameter for the selected overflow mode. n_bits shall
be greater than or equal to zero. If the overflow mode is specified, the default value shall be zero. If
the overflow mode is not specified, the default value shall be obtained from the fixed-point context
currently in scope.

7.11.3.5 Public member functions

int iwl() const;
Member function iwl shall return the iwl value.

void iwl(int val);
Member function iwl shall set the iwl value to val.

int n_bits() const;
Member function n_bits shall return the n_bits value.

void n_bits(int);
Member function n_bits shall set the n_bits value to val.

sc_o_mode o_mode() const;
Member function o_mode shall return the o_mode.

void o_mode(sc_o_mode mode);
Member function o_mode shall set the o_mode to mode.

sc_q_mode q_mode() const;
Member function q_mode shall return the q_mode.

void q_mode(sc_q_mode mode);
Member function q_mode shall set the q_mode to mode.

int wl() const;
Member function wl shall return the wl value.

void wl(int val);
Member function wl shall set the wl value to val.
.
Copyright © 2005 OSCI. All rights reserved. 358

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11.3.6 Operators

sc_fxtype_params& operator= (const sc_fxtype_params& param_);
Operator= shall assign the wl, iwl, q_mode, o_mode, and n_bits of param_ of the right hand side
to the left-hand side.

friend bool operator== (const sc_fxtype_params& param_a , const sc_fxtype_params& param_b);
Operator== shall return true if wl, iwl, q_mode, o_mode, and n_bits of param_a are equal to the
corresponding values of param_b; otherwise, it shall return false.

friend bool operator!= (const sc_fxtype_params& , const sc_fxtype_params&)
Operator!= shall return true if wl, iwl, q_mode, o_mode, and n_bits of param_a are not equal to
the corresponding values of param_b, otherwise, it shall return false.
.
Copyright © 2005 OSCI. All rights reserved. 359

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11.4 sc_fxtype_context

7.11.4.1 Description

Class sc_fxtype_context shall be used to create a length context for fixed-point objects.

7.11.4.2 Class definition

namespace sc_dt {

class sc_fxtype_context
{

public:
explicit sc_fxtype_context(const sc_fxtype_params& , sc_context_begin† = SC_NOW);
~sc_fxtype_context();

void begin();
void end();
static const sc_fxtype_params& default_value();
const sc_fxtype_params& value() const;

};

} // namespace sc_dt

7.11.4.3 Public constructor

explicit sc_fxtype_context(const sc_fxtype_params& , sc_context_begin† = SC_NOW);
Constructor sc_fxtype_context shall create an sc_fxtype_context object. The first argument shall
be the fixed-point length parameter to use. The second argument (if supplied) shall have the value
SC_NOW or SC_LATER.

7.11.4.4 Public member functions

void begin();
Member function begin shall set the current length context as described in 7.2.2.

static const sc_fxtype_params& default_value();
Member function default_value shall return the length parameter currently in context.

void end();
Member function end shall deactivate the length context and remove it from the top of the length
context stack as described in 7.2.2.

const sc_fxtype_params& value() const;
Member function value shall return the length parameter.
.
Copyright © 2005 OSCI. All rights reserved. 360

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11.5 sc_fxcast_switch

7.11.5.1 Description

Class sc_fxcast_switch shall be used to set the floating-point cast context as described in 7.10.7.

7.11.5.2 Class definition

namespace sc_dt {

class sc_fxcast_switch
{

public:
// Constructors
sc_fxcast_switch();
sc_fxcast_switch(sc_switch);
sc_fxcast_switch(const sc_fxcast_switch&);

// Operators
sc_fxcast_switch& operator= (const sc_fxcast_switch&);
friend bool operator== (const sc_fxcast_switch& , const sc_fxcast_switch&);
friend bool operator!= (const sc_fxcast_switch& , const sc_fxcast_switch&);

// Methods
const std::string to_string() const;
void print(std::ostream& = std::cout) const;
void dump(std::ostream& = std::cout) const;

};

} // namespace sc_dt

7.11.5.3 Public constructors

sc_fxcast_switch ();
sc_fxcast_switch (sc_switch†);

The argument (if supplied) shall have the value SC_OFF or SC_ON as described in 7.10.7. The
default constructor shall use the floating-point cast context currently in scope.

7.11.5.4 Public member functions

void print(std::ostream& = std::cout) const;
Member function print shall print the sc_fxcast_switch instance value to an output stream.

7.11.5.5 Explicit conversion

const std::string
to_string() const;

Member function to_string shall return the switch state as the character string “SC_OFF” or
“SC_ON”.
.
Copyright © 2005 OSCI. All rights reserved. 361

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.11.5.6 Operators

sc_fxcast_switch& operator= (const sc_fxtype_params& cast_switch);
Operator= shall assign cast_switch is to the left-hand side.

friend bool operator== (const sc_fxcast_switch& switch_a , const sc_fxcast_switch& switch_b) ;
Operator== shall return true if switch_a is equal to switch_b; otherwise, it shall return false.

friend bool operator!= (const sc_fxcast_switch& switch_a , const sc_fxcast_switch& switch_b);
Operator!= shall return true if switch_a is not equal to switch_b; otherwise, it shall return false.

std::ostream& operator<< (std::ostream& os , const sc_fxcast_switch& a)
Operator<< shall print the instance value of a to an output stream os.
362 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
7.11.6 sc_fxcast_context

7.11.6.1 Description

Class sc_fxcast_context shall be used to create a floating-point cast context for fixed-point objects.

7.11.6.2 Class definition

namespace sc_dt {

class sc_fxcast_context
{

public:
explicit sc_fxcast_context(const sc_fxcast_switch& , sc_context_begin† = SC_NOW);
sc_fxcast_context();

void begin();
void end();
static const sc_fxcast_switch& default_value();
const sc_fxcast_switch& value() const;

};

} // namespace sc_dt

7.11.6.3 Public constructor

explicit sc_fxcast_context(const sc_fxcast_switch&, sc_context_begin† = SC_NOW);
Constructor sc_fxcast_context shall create an sc_fxcast_context object. Its first argument shall be
the floating-point cast switch to use. The second argument (if supplied) shall have the value
SC_NOW or SC_LATER.

7.11.6.4 Public member functions

void begin();
Member function begin shall set the current floating-point cast context as described in 7.10.7.

static const sc_fxcast_switch& default_value();
Member function default_value shall return the cast switch currently in context.

void end();
Member function end shall deactivate the floating-point cast context and remove it from the top of
the floating point cast context stack.

const sc_fxcast_switch& value() const;
Member function value shall return the cast switch.
.
Copyright © 2005 OSCI. All rights reserved. 363

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
7.12 Control of string representation

7.12.1 Description

Type sc_num_rep is used to control the formatting of number representations as character strings when
passed as an argument to the to_string member function of a data type object.

7.12.2 Class definition

namespace sc_dt {

enum sc_numrep
{

SC_NOBASE = 0,
SC_BIN = 2,
SC_OCT = 8,
SC_DEC = 10,
SC_HEX = 16,
SC_BIN_US,
SC_BIN_SM,
SC_OCT_US,
SC_OCT_SM,
SC_HEX_US,
SC_HEX_SM,
SC_CSD

};

const std::string to_string(sc_numrep);

}; //namespace sc_dt

7.12.3 Functions

const std::string to_string(sc_numrep);
Function to_string shall return a string consisting of the same sequence of characters as the name of
the corresponding constant value of the enumerated type sc_numrep.

Example:

to_string(SC_HEX) == "SC_HEX" // is true
364 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8. Utility class definitions

8.1 sc_string

8.1.1 Description

Text strings are represented by the standard class std::string. The typedef sc_string exists to provide a
degree of backward compatibility with earlier versions of the SystemC class library.

8.1.2 Definition

namespace sc_core {
typedef std::string sc_string;

}

namespace sc_dt {
typedef std::string sc_string;

}

.
Copyright © 2005 OSCI. All rights reserved. 365

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8.2 Trace files

A trace file records a time-ordered sequence of value changes during simulation. The VCD trace file format
shall be supported.

A VCD trace file can only be created and opened by calling function sc_create_vcd_trace_file. A trace file
may be opened during elaboration or at any time during simulation. Values can only be traced by calling
function sc_trace. A trace file shall be opened before values can be traced to that file, and values shall not be
traced to a given trace file if one or more delta cycles have elapsed since opening the file. A VCD trace file
shall be closed by calling function sc_close_vcd_trace_file. A trace file shall not be closed before the final
delta cycle of simulation.

An implementation may support other trace file formats by providing alternatives to the functions
sc_create_vcd_trace_file and sc_close_vcd_trace file.

The lifetime of a traced object need not extend throughout the entire time the trace file is open.

NOTE—A trace file can be opened at any time, but no mechanism is available to switch off tracing before the end of
simulation.

8.2.1 Class definition and function declarations

namespace sc_core {

class sc_trace_file
{
public:

virtual void set_time_unit(double , sc_time_unit) = 0;
implementation-defined

};

sc_trace_file* sc_create_vcd_trace_file(const char* name);
void sc_close_vcd_trace_file(sc_trace_file* tf);
void sc_write_comment(sc_trace_file* tf , const std::string& comment);
void sc_trace ...

} // namespace sc_core

8.2.2 sc_trace_file

class sc_trace_file
{

public:
virtual void set_time_unit(double , sc_time_unit) = 0;
implementation-defined

};
Class sc_trace_file is the abstract base class from which the classes that provide file handles for
VCD or other implementation-defined trace file formats are derived. An application shall not
construct objects of class sc_trace_file, but may define pointers and references to this type.
Member function set_time_unit shall be overridden in the derived class to set the time unit for the
trace file. The value of the double argument shall be positive and shall be a power of 10. The default
trace file time unit shall be 1 picosecond.
.
Copyright © 2005 OSCI. All rights reserved. 366

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8.2.3 sc_create_vcd_trace_file

sc_trace_file* sc_create_vcd_trace_file(const char* name);
Function sc_create_vcd_trace_file shall create a new file handle object of class sc_trace_file, shall
open a new VCD file associated with the file handle, and shall return a pointer to the file handle. The
file name shall be constructed by appending the character string “.vcd” to the character string passed
as an argument to the function.

8.2.4 sc_close_vcd_trace_file

void sc_close_vcd_trace_file(sc_trace_file* tf);
Function sc_close_vcd_trace_file shall close the VCD file and delete the file handle pointed to by
the argument.

8.2.5 sc_write_comment

void sc_write_comment(sc_trace_file* tf , const std::string& comment);
Function sc_write_comment shall write the string given as the second argument to the trace file
given by the first argument, as a comment, at the simulation time at which the function is called.

8.2.6 sc_trace

void sc_trace(sc_trace_file* , const bool& , const std::string&);
void sc_trace(sc_trace_file* , const bool* , const std::string&);
void sc_trace(sc_trace_file* , const float& , const std::string&);
void sc_trace(sc_trace_file* , const float* , const std::string&);
void sc_trace(sc_trace_file* , const double& , const std::string&);
void sc_trace(sc_trace_file* , const double* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_logic& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_logic* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_int_base& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_int_base* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_uint_base& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_uint_base* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_signed& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_signed* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_unsigned& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_unsigned* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_bv_base& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_bv_base* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_lv_base& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_lv_base* , const std::string&);

void sc_trace(sc_trace_file* , const sc_dt::sc_fxval& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_fxval* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_fxval_fast& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_fxval_fast* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_fxnum& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_fxnum* , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_fxnum_fast& , const std::string&);
void sc_trace(sc_trace_file* , const sc_dt::sc_fxnum_fast* , const std::string&);

void sc_trace(sc_trace_file* , const unsigned char& , const std::string& ,
.
Copyright © 2005 OSCI. All rights reserved. 367

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
int width = 8 * sizeof(unsigned char));

void sc_trace(sc_trace_file* , const unsigned char* , const std::string& ,
int width = 8 * sizeof(unsigned char));

void sc_trace(sc_trace_file* , const unsigned short& , const std::string& ,
int width = 8 * sizeof(unsigned short));

void sc_trace(sc_trace_file* , const unsigned short* , const std::string& ,
 int width = 8 * sizeof(unsigned short));

void sc_trace(sc_trace_file* , const unsigned int& , const std::string& ,
int width = 8 * sizeof(unsigned int));

void sc_trace(sc_trace_file* , const unsigned int* , const std::string& ,
 int width = 8 * sizeof(unsigned int));

void sc_trace(sc_trace_file* , const unsigned long& , const std::string& ,
int width = 8 * sizeof(unsigned long));

void sc_trace(sc_trace_file* , const unsigned long* , const std::string& ,
int width = 8 * sizeof(unsigned long));

void sc_trace(sc_trace_file* , const char& , const std::string& , int width = 8 * sizeof(char));

void sc_trace(sc_trace_file* , const char* , const std::string& , int width = 8 * sizeof(char));

void sc_trace(sc_trace_file* , const short& , const std::string& , int width = 8 * sizeof(short));

void sc_trace(sc_trace_file* , const short* , const std::string& , int width = 8 * sizeof(short));

void sc_trace(sc_trace_file* , const int& , const std::string& , int width = 8 * sizeof(int));

void sc_trace(sc_trace_file* , const int* , const std::string& , int width = 8 * sizeof(int));

void sc_trace(sc_trace_file* , const long& , const std::string& , int width = 8 * sizeof(long));

void sc_trace(sc_trace_file* , const long* , const std::string& , int width = 8 * sizeof(long));

void sc_trace(sc_trace_file* , const sc_dt::int64& , const std::string& , int width = 8 * sizeof(long));

void sc_trace(sc_trace_file* , const sc_dt::int64* , const std::string& , int width = 8 * sizeof(long));

void sc_trace(sc_trace_file* , const sc_dt::uint64& , const std::string& , int width = 8 * sizeof(long));

void sc_trace(sc_trace_file* , const sc_dt::uint64* , const std::string& , int width = 8 * sizeof(long));

template <class T>
void sc_trace(sc_trace_file* , const sc_signal_in_if<T>& , const std::string&);

void sc_trace(sc_trace_file* , const sc_signal_in_if<char>& , const std::string& , int width);

void sc_trace(sc_trace_file* , const sc_signal_in_if<short>& , const std::string& , int width);
368 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
void sc_trace(sc_trace_file* , const sc_signal_in_if<int>& , const std::string& , int width);

void sc_trace(sc_trace_file* , const sc_signal_in_if<long>& , const std::string& , int width);
Function sc_trace shall trace the value passed as the second argument to the trace file passed as the
first argument, using the string passed as the third argument to identify the value in the trace file. All
changes to the value of the second argument that occur between the time the function is called and
the time the trace file is closed shall be recorded in the trace file.

NOTE— The function sc_trace is also overloaded elsewhere in this standard to support additional data types.
(See 6.8.4 and 6.10.5.)
.
Copyright © 2005 OSCI. All rights reserved. 369

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
8.3 sc_report

8.3.1 Description

Class sc_report represents an instance of a report as generated by function sc_report_handler::report.
sc_report objects are accessible to the application if the action SC_CACHE_REPORT is set for a given
severity level and message type. Also, sc_report objects may be caught by the application when thrown by
the report handler. (See 8.4.)

Type sc_severity represents the severity level of a report.

8.3.2 Class definition

namespace sc_core {

enum sc_severity {
SC_INFO = 0 ,
SC_WARNING ,
SC_ERROR ,
SC_FATAL ,
SC_MAX_SEVERITY

};

class sc_report
: public std::exception
{
public:

sc_report(const sc_report&);
sc_report& operator= (const sc_report&);
virtual ~sc_report();

sc_severity get_severity() const;
const char* get_msg_type() const;
const char* get_msg() const;
const char* get_file_name() const;
int get_line_number() const;

const sc_time& get_time() const;
const char* get_process_name() const;

virtual const char* what() const throw();
};

} // namespace sc_core

8.3.3 Constraints on usage

Objects of class sc_report are generated by calling the function sc_report_handler::report. An application
shall not directly create a new object of class sc_report other than by calling the copy constructor. The
individual attributes of an sc_report object may only be set by function sc_report_handler::report.

An implementation shall throw an object of class sc_report from function default_handler of class
sc_report_hander in response to the action SC_THROW. An application may throw an object of class
370 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_report from an application-specific report handler function. An application may catch an sc_report in a
try-block.

8.3.4 sc_severity

There shall be four severity levels. SC_MAX_SEVERITY shall not be a severity level. It shall be an error to
pass the value SC_MAX_SEVERITY to a function requiring an argument of type sc_severity.

The following table describes the intended meanings of the four severity levels. The precise meanings can
be overridden by the class sc_report_handler.

8.3.5 Copy constructor and assignment

sc_report(const sc_report&);
sc_report& operator= (const sc_report&);

The copy constructor and the assignment operator shall each create a deep copy of the sc_report
object passed as an argument.

8.3.6 Member functions

sc_severity get_severity() const;
const char* get_msg_type() const;
const char* get_msg() const;
const char* get_file_name() const;
int get_line_number() const;

Each of these five member functions shall return the corresponding property of the sc_report object.
The properties themselves can only be set by passing their values as arguments to the function
sc_report_handler::report.

const sc_time& get_time() const;
const char* get_process_name() const;

Each of these two member functions shall return the corresponding property of the sc_report object.
The properties themselves shall be set by function sc_report_handler::report according to the
simulation time at which the report was generated and the process instance within which it was
generated.

virtual const char* what() const;
Member function what shall return a text string composed from the severity level, message type,
message, file name, line number, process name, and time of the sc_report object. An
implementation may vary the content of the text string depending upon the severity level.

Severity levels Description

SC_INFO An informative message

SC_WARNING A potential problem

SC_ERROR An actual problem from which an application may be able to recover

SC_FATAL An actual problem from which an application cannot recover
.
Copyright © 2005 OSCI. All rights reserved. 371

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
Example:

try {
...
SC_REPORT_ERROR("msg_type", "msg");
...

} catch (sc_report e) {
std::cout << "Caught " << e.what() << std::endl;

}

372 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8.4 sc_report_handler

8.4.1 Description

Class sc_report_handler provides features for writing out textual reports on the occurrence of exceptional
circumstances and for defining application-specific behavior to be executed when those reports are
generated.

Member function report is the central feature of the reporting mechanism, and by itself is sufficient for the
generation of reports using the default actions and default handler. Other member function of class
sc_report_handler provide for application-specific report handling. Member function report shall be
called by an implementation whenever it needs to report an exceptional circumstance. Member function
report may also be called from SystemC applications created by IP vendors, EDA tool vendors, or end
users. The intention is that the behavior of reports embedded in an implementation or in precompiled
SystemC code distributed as object code may be modified by end users to calling the member functions of
class sc_report_handler.

In order to define application-specific actions to be taken when a report is generated, reports are categorized
according to their severity level and message type. Care should be taken when choosing the message types
passed to function report in order to give the end user adequate control over the definition of actions. It is
recommended that each message type take the following general form:

"/originating_company_or_institution/product_identifier/subcategory/subcategory..."

It is the responsibility of any party who distributes precompiled SystemC code to ensure that any reports that
the end user may need to distinguish for the purpose of setting actions are allocated unique message types.

8.4.2 Class definition

namespace sc_core {

typedef unsigned sc_actions;

enum {
SC_UNSPECIFIED = 0x0000 ,
SC_DO_NOTHING = 0x0001 ,
SC_THROW = 0x0002 ,
SC_LOG = 0x0004 ,
SC_DISPLAY = 0x0008 ,
SC_CACHE_REPORT = 0x0010 ,
SC_INTERRUPT = 0x0020 ,
SC_STOP = 0x0040 ,
SC_ABORT = 0x0080

};

#define SC_DEFAULT_INFO_ACTIONS \
(SC_LOG | SC_DISPLAY)

#define SC_DEFAULT_WARNING_ACTIONS \
(SC_LOG | SC_DISPLAY)

#define SC_DEFAULT_ERROR_ACTIONS \
(SC_LOG | SC_CACHE_REPORT | SC_THROW)
.
Copyright © 2005 OSCI. All rights reserved. 373

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
#define SC_DEFAULT_FATAL_ACTIONS \
(SC_LOG | SC_DISPLAY | SC_CACHE_REPORT | SC_ABORT)

typedef void (* sc_report_handler_proc) (const sc_report& , const sc_actions&);

class sc_report_handler
{
public:

static void report(sc_severity , const char* msg_type , const char* msg , const char* file , int line);

static sc_actions set_actions(sc_severity , sc_actions = SC_UNSPECIFIED);
static sc_actions set_actions(const char * msg_type , sc_actions = SC_UNSPECIFIED);
static sc_actions set_actions(const char * msg_type , sc_severity , sc_actions = SC_UNSPECIFIED);

static int stop_after(sc_severity , int limit = -1);
static int stop_after(const char* msg_type , int limit = -1);
static int stop_after(const char* msg_type , sc_severity , int limit = -1);

static int get_count(sc_severity);
static int get_count(const char* msg_type);
static int get_count(const char* msg_type , sc_severity);

static sc_actions suppress(sc_actions);
static sc_actions suppress();
static sc_actions force(sc_actions);
static sc_actions force();

static void set_handler(sc_report_handler_proc);
static void default_handler(const sc_report& , const sc_actions&);
static sc_actions get_new_action_id();

static sc_report* get_cached_report();
static void clear_cached_report();

static bool set_log_file_name(const char*);
static const char* get_log_file_name();

};

#define SC_REPORT_INFO(id , msg) \
sc_report_handler::report(SC_INFO , id , msg , __FILE__ , __LINE__)

#define SC_REPORT_WARNING(id , msg) \
sc_report_handler::report(SC_WARNING , id , msg , __FILE__ , __LINE__)

#define SC_REPORT_ERROR(id , msg) \
sc_report_handler::report(SC_ERROR , id , msg , __FILE__ , __LINE__)

#define SC_REPORT_FATAL(id , msg) \
sc_report_handler::report(SC_FATAL , id , msg , __FILE__ , __LINE__)

#define sc_assert(expr) \
((void) ((expr) ? 0 : (SC_REPORT_FATAL(implementation-defined , #expr) , 0)))

void sc_interrupt_here(const char* msg_type , sc_severity);
.
Copyright © 2005 OSCI. All rights reserved. 374

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
void sc_stop_here(const char* msg_type , sc_severity);

} // namespace sc_core

8.4.3 Constraints on usage

The member functions of class sc_report_handler can be called at any time during elaboration or
simulation. Actions can be set for a severity level or a message type both before and after the first use of that
severity level or message type as an argument to member function report.

8.4.4 sc_actions

The typedef sc_actions represents a word where each bit in the word represents a distinct action. More than
one bit may be set, in which case all of the corresponding actions shall be executed. The enumeration defines
the set of actions recognized and performed by the default handler. A application-specific report handler set
by calling function set_handler may modify or extend this set of actions.

The value SC_UNSPECIFIED is not an action as such, but serves as the default value for a variable or
argument of type sc_actions, meaning that no action has been set. In contrast, the value SC_DO_NOTHING
is a specific action, and shall inhibit any actions set with a lower precedence according to the rules given in
8.4.6.

Each severity level is associated with a set of default actions chosen to be appropriate for the given name,
but those defaults can be overridden by calling member function set_actions. The default actions shall be
defined by the macros SC_DEFAULT_INFO_ACTIONS, SC_DEFAULT_WARNING_ACTIONS,
SC_DEFAULT_ERROR_ACTIONS, and SC_DEFAULT_FATAL_ACTIONS.

8.4.5 report

static void report(sc_severity , const char* msg_type , const char* msg , const char* file , int line);
Member function report shall generate a report and cause the appropriate actions to be taken as
defined below.
Member function report shall use the severity passed as the first argument and the message type
passed as the second argument to determine the set of actions to be executed as a result of previous
calls to functions set_actions, stop_after, suppress, and force. Member function report shall
create an object of class sc_report initialized using all five argument values, and shall pass this
object to the handler set by the member function set_handler. The object of class sc_report shall
not persist beyond the call to member function report unless the action SC_CACHE_REPORT is
set, in which case the object can be retrieved by calling function get_cached_reports. An
implementation shall maintain a separate cache of sc_report objects for each process instance and a
single global report cache for calls to function report from outside any process. Each such cache
shall store only the most recent report.
Member function report shall be responsible for determining the set of actions to be executed. The
handler function set by function set_handler shall be responsible for executing those actions.
The macros SC_REPORT_INFO, SC_REPORT_WARNING, SC_REPORT_ERROR,
SC_REPORT_FATAL, and sc_assert are provided for convenience when calling member function
report, but there is no obligation on an application to use these macros.

NOTE - Class sc_report may provide a constructor for the exclusive use of class sc_report_handler in
initializing these properties.
.
Copyright © 2005 OSCI. All rights reserved. 375

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
8.4.6 set_actions

static sc_actions set_actions(sc_severity , sc_actions = SC_UNSPECIFIED);
static sc_actions set_actions(const char * msg_type , sc_actions = SC_UNSPECIFIED);
static sc_actions set_actions(const char * msg_type , sc_severity , sc_actions = SC_UNSPECIFIED);

Member function set_actions shall set the actions to be taken by member function report when
report is called with the given severity level and/or message type. In determining which set of
actions to take, the message type shall take precedence over the severity level, and the message type
and severity level combined shall take precedence over the message type and severity level
considered individually. In other words, the three member functions set_actions are listed above in
order of increasing precedence. The actions of any lower precedence match shall be inhibited.
Each call to set_actions shall replace the actions set by the previous call for the given severity,
message type, or severity-message type pair. The value returned from the member function
set_actions shall be the actions set by the previous call to that very same overloading of the function
set_actions for the given severity level, message type, or severity-message type pair. The first call to
function set_actions(sc_severity , sc_actions) shall return the default actions associated with the
given severity level. The first call to one of the remaining two functions for a given message type
shall return the value SC_UNSPECIFIED. Each of the three overloaded functions operates
independently in this respect. Precedence is only relevant when report is called.

Example:

sc_report_handler::set_actions(SC_WARNING, SC_DO_NOTHING);
sc_report_handler::set_actions("/Acme_IP", SC_DISPLAY);
sc_report_handler::set_actions("/Acme_IP", SC_INFO, SC_DISPLAY | SC_CACHE_REPORT);
...
SC_REPORT_WARNING("", "1"); // Silence
SC_REPORT_WARNING("/Acme_IP", "2"); // Written to standard output
SC_REPORT_INFO("/Acme_IP", "3"); // Written to standard output and cached

8.4.7 stop_after

static int stop_after(sc_severity , int limit = -1);
static int stop_after(const char* msg_type , int limit = -1);
static int stop_after(const char* msg_type , sc_severity , int limit = -1);

Member function report shall maintain independent counts of the number of reports generated for
each severity level, each message type and each severity-message type pair. Member function
stop_after shall set a limit on the number of reports that will be generated in each case. Member
function report shall call the function sc_stop when exactly the number of reports given by
argument limit to function stop_after have been generated for the given severity level, message
type, or severity-message type pair.
In determining when to call function sc_stop, the message type shall take precedence over the
severity level, and the message type and severity level combined shall take precedence over the
message type and severity level considered individually. In other words, the three member functions
stop_after are listed above in order of increasing precedence. If function report is called with
combination of severity level and message type that matches more than one limit set by calling
stop_after, only the higher precedence limit shall have any effect.
The appropriate counts shall be initialized to the value 1 the first time function report is called with
a particular severity level, message type, or severity-message type pair, and shall not be modified or
reset when function stop_after is called. All three counts shall be incremented for each call to
function report. When a count for a particular severity-message type pair is incremented, the counts
for the given severity level and the given message type shall be incremented also. If the limit being
376 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
set has already been reached or exceeded by the count at the time stop_after is called, sc_stop shall
not be called immediately but shall be called the next time the given count is incremented.
The default limit is -1, which means that no stop limit is set. Calling function stop_after with a limit
of -1 for a particular severity level, message type, or severity-message type pair shall remove the
stop limit for that particular case.
A limit of 0 shall mean that there is no stop limit for the given severity level, message type, or
severity-message type pair, and moreover an explicit limit of 0 shall override the behavior of any
lower precedence case. However, note that even with an explicit limit of 0, the actions set for the
given case (by calling function sc_action or the default actions) may nonetheless result in function
sc_stop or abort being called or an exception thrown.
Note that if function report is called with a severity level of SC_FATAL, the default behavior in the
absence of any calls to either function set_actions or function stop_after is to execute a set of
actions including SC_ABORT.
The value returned from the member function stop_after shall be the limit set by the previous call to
that very same overloading of the function set_actions for the given severity level, message type or
severity-message type pair, or otherwise the default limit of -1.

Example 1:

sc_report_handler::stop_after(SC_WARNING, 1);
sc_report_handler::stop_after("/Acme_IP", 2);
sc_report_handler::stop_after("/Acme_IP", SC_WARNING, 3);
...
SC_REPORT_WARNING("/Acme_IP", "Overflow");
SC_REPORT_WARNING("/Acme_IP", "Conflict");
SC_REPORT_WARNING("/Acme_IP", "Misuse"); // sc_stop() called

Example 2:

sc_report_handler::stop_after(SC_WARNING, 5);
sc_report_handler::stop_after("/Acme_IP", SC_WARNING, 1);
...
SC_REPORT_WARNING("/Star_IP", "Unexpected");
SC_REPORT_INFO("/Acme_IP", "Invoked");
SC_REPORT_WARNING("/Acme_IP", "Mistimed"); // sc_stop() called

8.4.8 get_count

static int get_count(sc_severity);
static int get_count(const char* msg_type);
static int get_count(const char* msg_type , sc_severity);

Member function get_count shall return the count of the number of reports generated for each
severity level, each message type, and each severity-message type pair as maintained by member
function report. If member function report has not been called for the given severity level, message
type or severity-message type pair, member function get_count shall return the value zero.

8.4.9 suppress and force

static sc_actions suppress(sc_actions);
static sc_actions suppress();

Member function suppress shall suppress the execution of a given set of actions for subsequent calls
to function report. The actions to be suppressed are passed as an argument to function suppress.
.
Copyright © 2005 OSCI. All rights reserved. 377

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
The return value from function suppress shall be the set of set of actions that were suppressed
immediately prior to the call to function suppress. The actions passed as an argument shall replace
entirely the previously suppressed actions, there being only a single, global set of suppressed
actions. By default there are no suppressed actions. If the argument list is empty, the set of
suppressed actions shall be cleared, thus restoring the default behavior.
The suppression of certain actions shall not hinder the execution of any other actions that are not
suppressed.

static sc_actions force(sc_actions);
static sc_actions force();

Member function force shall force the execution of a given set of actions for subsequent calls to
function report. The actions to be forced are passed as an argument to function force. The return
value from function force shall be the set of set of actions that were forced immediately prior to the
call to function force. The actions passed as an argument shall replace entirely the previously forced
actions, there being only a single, global set of forced actions. By default, there are no forced
actions. If the argument list is empty, the set of forced actions shall be cleared, thus restoring the
default behavior.
Forced actions shall be executed in addition to the default actions for the given severity level and in
addition to any actions set by calling function set_actions.
If the same action is both suppressed and forced, the force shall take precedence.

8.4.10 set_handler

typedef void (* sc_report_handler_proc) (const sc_report& , const sc_actions&);
static void set_handler(sc_report_handler_proc);

Member function set_handler shall set the handler function to be called from function report. This
allows an application-specific report handler to be provided.

static void default_handler(const sc_report& , const sc_actions&);
Member function default_handler shall be the default handler, that is, member function
default_handler shall be called from function report in the absence of any call to function
set_handler. Member function default_handler shall perform zero, one or more than one of the
actions set out in the table below as determined by the value of its second argument. In this table, the
composite message shall be a text string composed from the severity level, message type, message,
file name, line number, process name and time of the sc_report object. An implementation may
vary the content of the composite message depending upon the severity level.

Severity levels Description

SC_UNSPECIFIED No action (but function report will execute any lower precedence actions).

SC_DO_NOTHING No action (but causes function report to inhibit lower precedence actions).

SC_THROW Throw the sc_report object.

SC_LOG Write the composite message to the log file as set by function
set_log_file_name.

SC_DISPLAY Write the composite message to standard output.

SC_CACHE_REPORT No action (but causes function report to cache the report).

SC_INTERRUPT Call function sc_interrupt_here, passing the message type and severity level of
the sc_report object as arguments.
.
Copyright © 2005 OSCI. All rights reserved. 378

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
NOTE—To restore the default handler, call set_handler(&sc_report_handler::default_handler);

8.4.11 get_new_action_id

static sc_actions get_new_action_id();
Member function get_new_action_id shall return a value of type sc_actions that represents an
unused action. The returned value shall be a word with exactly one bit set. The intention is that such
a value can be used to extend the set of actions when writing an application-specific report handler.
If there are no more unique values available, the function shall return the value SC_UNSPECIFIED.
An application shall not call function get_new_action_id before the start of elaboration.

8.4.12 sc_interrupt_here and sc_stop_here

void sc_interrupt_here(const char* msg_type , sc_severity);
void sc_stop_here(const char* msg_type , sc_severity);

Functions sc_interrupt_here and sc_stop_here shall be called from member function
default_handler in response to action types SC_INTERRUPT and SC_STOP, respectively. These
two functions may also be called from application-specific report handlers. The intention is that
these two functions serve as a debugging aid by allowing a user to set a breakpoint on or within
either function. To this end, an implementation may choose to implement each of these functions
with a switch statement dependent on the severity parameter such that a user can set a breakpoint
dependent upon the severity level of the report.

8.4.13 get_cached_report and clear_cached_report

static sc_report* get_cached_report();
Member function get_cached_report shall return a pointer to the most recently cached report for
the current process instance if called from a process or the global cache otherwise. Previous reports
shall not be accessible.

static void clear_cached_report();
Member function clear_cached_report shall empty the report cache for the current process instance
if called from a process or the global cache otherwise. A subsequent call to get_cached_report
would return a null pointer until such a time as a further report was cached in the given cache.

8.4.14 set_log_file_name and get_log_file_name

static bool set_log_file_name(const char*);
static const char* get_log_file_name();

Member function set_log_file_name shall set the value of the character string returned from
member function get_log_file_name, and shall have no other effect. The default value for the log
file name is a null pointer. If function set_log_file_name is called with a non-null pointer and there
is no existing log file name, the log file name shall be set by duplicating the string passed as an
argument and the function shall return true. If called with a non-null pointer and there is already a
log file name, function set_log_file_name shall not modify the existing name and shall return false.
If called with a null pointer, any existing log file name shall be deleted and the function shall return
false.

SC_STOP Call function sc_stop_here, passing the message type and severity level of the
sc_report object as arguments, then call function sc_stop.

SC_ABORT Call abort().
.
Copyright © 2005 OSCI. All rights reserved. 379

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Opening, writing, and closing the log file shall be the responsibility of the report handler. Member
function default_handler shall call function get_log_file_name in response to the action SC_LOG.
Function get_log_file_name may also be called from an application-specific report handler.

Example:

sc_report_handler::set_log_file_name("foo"); // returns true
sc_report_handler::get_log_file_name(); // returns "foo"
sc_report_handler::set_log_file_name("bar"); // returns false
sc_report_handler::get_log_file_name(); // returns "foo"
sc_report_handler::set_log_file_name(0); // returns false
sc_report_handler::get_log_file_name(); // returns 0
.
Copyright © 2005 OSCI. All rights reserved. 380

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8.5 sc_exception

8.5.1 Description

Exceptions are represented by the class sc_report. The typedef sc_exception exists to provide a degree of
backward compatibility with earlier versions of the SystemC class library. (See 8.3.)

8.5.2 Definition

namespace sc_core {

typedef std::exception sc_exception;

}

.
Copyright © 2005 OSCI. All rights reserved. 381

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8.6 Utility functions

8.6.1 Function declarations

namespace sc_dt {

template <class T>
const T sc_abs(const T&);

template <class T>
const T sc_max(const T& a , const T& b) { return ((a >= b) ? a : b); }

template <class T>
const T sc_min(const T& a , const T& b) { return ((a <= b) ? a : b); }

}

namespace sc_core {

const char* sc_copyright();
const char* sc_version();
const char* sc_release();

}

8.6.2 sc_abs

template <class T>
const T sc_abs(const T&);

Function sc_abs shall return the absolute value of the argument. This function shall be implemented
by calling the operators bool T::operator>=(const T&) and T T::operator-(), and hence the
template argument can be any SystemC numeric type or any fundamental C++ type.

8.6.3 sc_max

template <class T>
const T sc_max(const T& a , const T& b) { return ((a >= b) ? a : b); }

Function sc_max shall return the greater of the two values passed as arguments as defined above.
NOTE—The template argument shall be a type for which operator>= is defined or for which a user-defined
conversion to such a type is defined, such as any SystemC numeric type or any fundamental C++ type.

8.6.4 sc_min

template <class T>
const T sc_min(const T& a , const T& b) { return ((a <= b) ? a : b); }

Function sc_min shall return the lesser of the two values passed as arguments as defined above.
NOTE—The template argument shall be a type for which operator<= is defined or for which a user-defined
conversion to such a type is defined, such as any SystemC numeric type or any fundamental C++ type.

8.6.5 sc_copyright

const char* sc_copyright();
Function sc_copyright shall return an implementation-defined string. The intent is that this string
contains a legal copyright notice, which an application may print to the console window or to a log
file.
.
Copyright © 2005 OSCI. All rights reserved. 382

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
8.6.6 sc_version

const char* sc_version();
Function sc_version shall return an implementation-defined string. The intent is that this string
contains information concerning the version of the SystemC class library implementation, which an
application may print to the console window or to a log file.

8.6.7 sc_release

const char* sc_release();
Function sc_release shall return an implementation-defined string of the following form:
<major#>.<minor#>.<patch>-<originator>
where <major#> represents the major release number, <minor#> represents the minor release
number, <patch> represents the patch level, and <originator> represents the originator of the
SystemC implementation. The intent is that this string should be machine-readable by any SystemC
application that has an interest in checking the version or release number of the SystemC
implementation.
The character set for each of these four fields shall be as follows:
1) The lowercase letters a-z
2) The uppercase letters A-Z
3) The decimal digits 0-9
4) The underscore character _

Example:

char* release = sc_release(); // release is initialized with the string "2.1_oct_12_04.beta-OSCI"
.
Copyright © 2005 OSCI. All rights reserved. 383

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
.
Copyright © 2005 OSCI. All rights reserved. 384

Annex A

(informative)

Introduction to SystemC

This clause is informative and is intended to aid the reader in the understanding of the structure and intent of
the SystemC class library.

The SystemC class library supports the functional modeling of systems by providing classes to represent the
following:

— The hierarchical decomposition of a system into modules
— The structural connectivity between those modules using ports and exports
— The scheduling and synchronization of concurrent processes using events and sensitivity
— The passing of simulated time
— The separation of computation (processes) from communication (channels)
— The independent refinement of computation and communication using interfaces
— Hardware-oriented data types for modeling digital logic and fixed-point arithmetic

Loosely speaking, SystemC allows a user to write a set of C++ functions (processes) that are executed under
control of a scheduler in an order that mimics the passage of simulated time, and are synchronized and com-
municate in a way that is useful for modeling electronic systems containing hardware and embedded soft-
ware. The processes are encapsulated in a module hierarchy that captures the structural relationships and
connectivity of the system. Inter-process communication uses a mechanism, the interface method call, that
facilities the abstraction and independent refinement of system-level interfaces.

Figure 1—SystemC language architecture

Application

Written by the end user

Methodology- and technology-specific libraries

SystemC verification library, bus models, TLM interfaces

Core language Predefined channels Utilities Data types

Modules
Ports
Processes
Interfaces
Channels
Events

Signal, clock, FIFO,
mutex, semaphore

Vectors, strings,
tracing

4-valued logic type
4-valued logic vectors
Bit vectors
Arbitrary-precision integers
Fixed-point types

Programming language C++
Copyright © 2005 OSCI. All rights reserved. 385

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
The architecture of a SystemC application is shown in Figure 1. The shaded blocks represent the SystemC
class library itself. The layer shown immediately above the SystemC class library represents standard or pro-
prietary C++ libraries associated with specific design or verification methodologies or specific communica-
tion channels, and is outside the scope of this standard.

The classes of the SystemC library fall into four categories: the core language, the data types, the predefined
channels, and the utilities. The core language and the data types may be used independently of one another,
although they are more typically used together.

At the core of SystemC is a simulation engine containing a process scheduler. Processes are executed in
response to the notification of events. Events are notified at specific points in simulated time. In the case of
time-ordered events, the scheduler is deterministic. In the case of events occurring at the same point in sim-
ulation time, the scheduler is non-deterministic. The scheduler is non-preemptive. (See 4.2.1).

The module is the basic structural building block. Systems are represented by a module hierarchy consisting
of a set of modules related by instantiation. A module can contain:

— Ports (See 5.11)
— Exports (See 5.12)
— Channels (See 5.2 and 5.14)
— Processes (See 5.2.10 and 5.2.11)
— Events (See 5.9)
— Instances of other modules (See 4.1.1)
— Other data members
— Other member functions

Modules, ports, exports, channels, interfaces, events, and times are implemented as C++ classes.

The execution of a SystemC application consists of elaboration, during which the module hierarchy is cre-
ated, followed by simulation, during which the scheduler runs. Both elaboration and simulation involve the
execution of code both from the application and from the kernel. The kernel is the part of a SystemC class
library implementation that provides the core functionality for elaboration and the scheduler.

Instances of ports, exports, channels, and modules can only be created during elaboration. Once created dur-
ing elaboration, this hierarchical structure remains fixed for the remainder of elaboration and simulation.
(See Clause 4). Process instances can be created statically during elaboration (see 5.2.9) or dynamically dur-
ing simulation (see 5.5). Modules, channels, ports, exports, and processes are derived from a common base
class sc_object, which provides methods for traversing the module hierarchy. Arbitrary attributes (name-
value pairs) can be attached to instances of sc_object. (See 5.15.)

Instances of ports, exports, channels, and modules can only be created within modules. The only exception
to this rule is top-level modules.

Processes are used to perform computations and hence to model the functionality of a system. Although
notionally concurrent, processes are actually scheduled to execute in sequence. Processes are C++ functions
registered with the kernel during elaboration (static processes) or during simulation (dynamic processes),
and called from the kernel during simulation.

The sensitivity of a process identifies the set of events that would cause the scheduler to execute that process
should those events be notified. Both static and dynamic sensitivity are provided. Static sensitivity is created
during elaboration, whereas dynamic sensitivity is created during the execution of the process itself. A pro-
cess may be sensitive to named events or to events buried within channels or behind ports and located via an
386 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
event finder. Furthermore, dynamic sensitivity may be created with a time-out, meaning that the scheduler
executes the process after a given time interval has elapsed. (See 4.2.1 and 5.2.13 through 5.2.17).

Channels serve to encapsulate the mechanisms via which processes communicate and hence to model the
communication aspects or protocols of a system. Channels can be used for inter-module communication, or
for inter-process communication within a module.

Interfaces provide a means of accessing channels. An interface proper is an abstract class that declares a set
of pure virtual functions (interface methods). A channel is said to implement an interface if it defines all of
the methods (that is, member functions) declared in that interface. The purpose of interfaces is to exploit the
object-oriented type system of C++ in order that channels can be refined independently from the modules
that use them. Specifically, any channel that implements a particular interface can be interchanged with any
other such channel in a context that names that interface type.

The methods defined within a channel are typically called via an interface. A channel may implement more
than one interface, and a single interface may be implemented by more than one channel.

Interface methods implemented in channels may create dynamic sensitivity to events contained within those
same channels. This is a typical coding idiom, and results in a so-called blocking method in which the pro-
cess calling the method is suspended until the given event occurs. Such methods can only be called from cer-
tain kinds of processes known as thread processes. (See 5.2.10 and 5.2.11).

Because processes and channels may be encapsulated within modules, communication between processes
(via channels) may cross boundaries within the module hierarchy. Such boundary crossing is mediated by
ports and exports, which serve to forward method calls from the processes within a module to channels to
which those ports or exports are bound. A port specifies that a particular interface is required by a module,
whereas an export specifies that a particular interface is provided by a module. Ports allow interface method
calls within a module to be independent of the context in which the module is instantiated, in the sense that
the module need have no explicit knowledge of the identity of the channels to which its ports are bound.
Exports allow a single module to provide multiple instances of the same channel.

Ports belonging to specific module instances are bound to channel instances during elaboration. Every port
shall be bound, and the binding cannot be changed subsequently. Exports are bound to channel instances that
lie within or below the module containing the export. Hence each interface method call made via a port or
export is directed to a specific channel instance in the elaborated module hierarchy - the channel instance to
which that port is bound.

Note that ports can only forward method calls up or out of a module, whereas exports can only forward
method calls down or into a module. Such method calls always originate from processes within a module,
and are directed to channels instantiated elsewhere in the module hierarchy.

Ports and exports are instances of a templated class that is parameterized with an interface type. The port or
export can only be bound to a channel that implements that particular interface. (See 5.11 through 5.13).

There are two categories of channel: hierarchical channels and primitive channels. A hierarchical channel is
a module. A primitive channel is derived from a specific base class (sc_prim_channel) and is not a module.
Hence, a hierarchical channel can contain processes and instances of modules, ports, and other channels,
whereas a primitive channel can contain none of these. It is also possible to define channels derived from
neither of these base classes, but every channel implements one or more interfaces.

A primitive channel provides unique access to the update phase of the scheduler, thereby enabling the very
efficient implementation of certain communication schemes. This standard includes a set of predefined
channels, together with associated interfaces and ports, as follows:
Copyright © 2005 OSCI. All rights reserved. 387

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_signal (See 6.4)
sc_buffer (See 6.6)
sc_clock (See 6.7)
sc_signal_resolved (See 6.13)
sc_signal_rv (See 6.17)
sc_fifo (See 6.23)
sc_mutex (See 6.27)
sc_semaphore (See 6.29)
sc_event_queue (See 6.30)

Class sc_signal provides the semantics for creating register transfer level or pin-accurate models of digital
hardware. Class sc_fifo provides the semantics for point-to-point FIFO-based communication appropriate
for models based on networks of communicating processes. Classes sc_mutex and sc_semaphore provide
communication primitives appropriate for software modeling.

This standard includes a set of data types for modeling digital logic and fixed-point arithmetic, as follows:
sc_int<> (See 7.5.4)
sc_uint<> (See 7.5.5)
sc_bigint<> (See 7.6.5)
sc_biguint<> (See 7.6.6)
sc_logic (See 7.9.2)
sc_lv<> (See 7.9.6)
sc_bv<> (See 7.9.5)
sc_fixed<> (See 7.10.17)
sc_ufixed<> (See 7.10.18)

Classes sc_int and sc_uint provide signed and unsigned fixed-precision integers with a word length limited
by the C++ implementation. Classes sc_bigint and sc_biguint provide arbitrary-precision integers. Class
sc_logic provides four-valued logic. Classes sc_bv and sc_lv provide two- and four-valued logic vectors.
Classes sc_fixed and sc_ufixed provide signed and unsigned fixed-point arithmetic.

The classes sc_report and sc_report_handler provide a general mechanism for error handling that is used
by the SystemC class library itself and is also available to the user. Reports can be categorized by severity
and by message type, and customized actions can be set for each category of report, such as writing a mes-
sage, throwing an exception or aborting the program. (See 8.3 and 8.4.)
Copyright © 2005 OSCI. All rights reserved. 388

Annex B

(informative)

Glossary

This glossary contains brief, informal descriptions for a number of terms and phrases used in this standard.
Where appropriate, the complete, formal definition of each term or phrase is given in the main body of the
standard. Each glossary entry contains either the clause number of the definition in the main body of the
standard or an indication that the term is defined in ISO/IEC 14882:1998, Programming languages - C++.

1.1 abstract class: A class that has or inherits at least one pure virtual function that is not overridden by a
non-pure virtual function. (C++ term)

1.2 application: A C++ program, written by an end user, that uses the SystemC class library, that is, uses
classes, calls functions, uses macros, and so forth. An application may use as few or as many features of
C++ as is seen fit, and as few or as many features of SystemC as is seen fit. (See 3.1.2.)

1.3 arbitrary-precision integer: A class that is derived from class sc_signed, class sc_unsigned, or an
instance of such a class. An arbitrary-precision integer represents a signed or unsigned integer value at a
precision limited only by its specified word length. (See 7.1.)

1.4 argument: An expression in the comma-separated list bounded by the parentheses in a function call (or
macro or template instantiation), also known as an actual argument. (See parameter.) (C++ term)

1.5 attach: Of an attribute: To attach an attribute to an object is to associate the attribute with the object by
calling member function add_attribute of class sc_object. (See 5.15.8.)

1.6 base class sub-object: Where an object O has a class type that is derived from a base class, an object
having the base class type is a base class sub-object of the given object O. (See sub-object.) (C++ term)

1.7 binding, bound: An asymmetrical association created during elaboration between a port or export on
the one hand and a channel (or another port or export) on the other. If a port (or export) is bound to a
channel, a process can make an interface method call through the port to a method defined in the channel.
Ports can be bound by name or by position. Exports can only be bound by name. (See Interface Method
Call and 4.1.3.)

1.8 bit-select: A class that references a single bit within a multiple-bit data type or an instance of such a
class. Bit-selects are defined for each SystemC numeric type and vector class. Bit-selects corresponding to
lvalues and rvalues of a particular type are distinct classes. (See 7.2.4.)

1.9 bit vector: A class that is derived from class sc_bv_base, or an instance of such a class. A bit vector
implements a multiple bit data type where each bit is represented by the symbol ‘0’ or ‘1’. (See 7.1.)

1.10 body: Of a function or constructor: A compound statement immediately following the parameter
declarations and constructor initializer (if any) and containing the statements to be executed by the function.
(C++ term)

1.11 buffer: An instance of class sc_buffer, which is a primitive channel derived from class sc_signal. A
buffer differs from a signal in that an event occurs on a buffer whenever a value is written to the buffer,
regardless of whether the write causes a value change. An event only occurs on a signal when the value of
the signal changes. (See 6.6.1.)
Copyright © 2005 OSCI. All rights reserved. 389

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
1.12 call: The term call is taken to mean that a function is called either directly or indirectly by calling an
intermediate function that calls the function in question. (See 3.1.3.)

1.13 callback: A member function overridden within a class in the module hierarchy that is called back by
the kernel at certain fixed points during elaboration and simulation. The callback functions are
before_end_of_elaboration, end_of_elaboration, start_of_simulation, and end_of_simulation. (See 4.4.)

1.14 channel: A class that implements one or more interfaces or an instance of such a class. A channel may
be a hierarchical channel or a primitive channel or, if neither of these, it is strongly recommended that a
channel at least be derived from class sc_object. Channels serve to encapsulate the definition of a
communication mechanism or protocol. (See 3.1.4.)

1.15 child: A child of a given module is an instance that is within that module. (See 3.1.4 and 5.15.1.)

1.16 class template: A pattern for any number of classes whose definitions depend on the template
parameters. The compiler treats every member function of the class as a function template with the same
parameters as the class template. A function template is itself a pattern for any number of functions whose
definitions depend on the template parameters. (C++ term)

1.17 clock: An instance of class sc_clock, which is a predefined primitive channel that models the behavior
of a periodic digital clock signal. Alternatively, a clock can be modelled as an instance of the class
sc_signal<bool>. (See 6.7.1).

1.18 clocked thread process: A thread process that is resumed only on the occurrence of a single explicit
clock edge. A clocked thread process is created using the SC_CTHREAD macro. There are no dynamic
clocked threads. (See 5.2.9 and 5.2.12.)

1.19 complete object: An object that is not a sub-object of any other object. If a complete object is of class
type, it is also called a most derived object. (C++ term)

1.20 concatenation: An object that references the bits within multiple objects as if they were part of a single
aggregate object. (See 7.2.6.)

1.21 contain A given module is said to contain a given instance if the instance is within the module. (See
3.1.4.)

1.22 conversion function: A member function of the form operator type_id that specifies a conversion
from the type of the class to the type type_id. (See user-defined conversion.) (C++ term)

1.23 data member: An object declared within a class definition. A non-static data member is a sub-object of
the class. A static data member is not a sub-object of the class but has static storage duration. Outside of a
constructor or member function of the class or of any derived class, a data member can only be accessed
using the dot . and arrow -> operators. (C++ term)

1.24 declaration: A declaration introduces a name into a C++ program and specifies how the C++ compiler
is to interpret that name. Not all declarations are definitions. For example, a class declaration specifies the
name of the class but not the class members, whilst a function declaration specifies the function parameters
but not the function body. (See definition.) (C++ term)

1.25 definition: The complete specification of a variable, function, type, or template. For example, a class
definition specifies the class name and the class members, whilst a function definition specifies the function
parameters and the function body. (See declaration.) (C++ term)
390 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
1.26 delta cycle: A control loop within the scheduler that consists of one evaluation phase followed by one
update phase. The delta cycle mechanism serves to ensure the deterministic simulation of concurrent
processes by separating and alternating the computation (or evaluation) phase and the communication (or
update) phase. (See 4.2.2.)

1.27 delta notification: A notification created as the result of a call to function notify with a zero time
argument. The event is notified one delta cycle after the call to function notify. (See 4.2.1 and 5.9.4.)

1.28 delta notification phase: The control step within the scheduler during which processes are made
runnable as a result of delta notifications. (See 4.2.1.4.)

1.29 during elaboration, during simulation: The phrases during elaboration and during simulation are
used to indicate that an action may or may not happen at these times. The meaning of these phrases is closely
tied to the elaboration and simulation callbacks. (See 3.1.4 and 4.4.)

1.30 dynamic process: A dynamic process instance is created by calling the function sc_spawn. (See
process, 3.1.4, and 5.5.6.)

1.31 dynamic sensitivity: The dynamic sensitivity of a process is created by the most recent call to the wait
method (in the case of a thread process) or the next_trigger method (in the case of a method process). (See
sensitivity and 4.2.)

1.32 elaboration: The execution of a SystemC application consists of elaboration followed by simulation.
Elaboration consists of the execution of C++ code provided as part of the application together with
execution of the underlying elaboration engine which forms part of the kernel. The module hierarchy is
created during elaboration. (See Clause 4.)

1.33 error: Where this standard uses the term error, the implementation is obliged to use the report handling
mechanism (function report of class sc_report_handler) to generate a diagnostic message. (See 3.3.5.)

1.34 evaluation phase: The control step within the scheduler during which processes are executed. The
evaluation phase is complete when the set of runnable processes is empty. (See delta cycle and 4.2.1.2.)

1.35 event: An object of class sc_event. An event provides the mechanism for synchronization between
processes. The notify method of class sc_event causes an event to be notified at a specific point in time.
(Note that the notification of an event is distinct from an object of type sc_event. The former is a dynamic
occurrence at a unique point in time, the latter an object which can be notified many times during its
lifetime.) (See notification, 3.1.4, and 5.9.)

1.36 event list: A list of events, separated by either operator& or operator|, and passed as an argument to
either the wait or the next_trigger method. (See 5.8.)

1.37 export: An instance of class sc_export. An export specifies an interface provided by a module. During
simulation, a port forwards method calls to the channel to which the export was bound. An export forwards
method calls down and into a module instance. (See 3.1.4 and 5.12.)

1.38 fifo: An instance of class sc_fifo, which is a primitive channel that models a first-in-first-out buffer.
Alternatively, a fifo can be modelled as a module. (See 6.23.)

1.39 fixed-point type: A class that is derived from class sc_fxnum, or an instance of such a class. A fixed-
point type represents a signed or unsigned floating point value at a precision limited only by its specified
word length, integer word length, quantization mode, and overflow mode. (See 7.1.)
Copyright © 2005 OSCI. All rights reserved. 391

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
1.40 fixed-precision integer: A class that is derived from class sc_int_base, class sc_uint_base, or an
instance of such a class. A fixed-precision integer represents a signed or unsigned integer value at a
precision limited by its underlying native C++ representation and its specified word length. (See 7.1.)

1.41 hierarchical channel: A class that is derived from class sc_module and that implements one or more
interfaces; or more informally, an instance of such a class. A hierarchical channel is used when a channel
requires its own ports, processes or module instances. (See channel, 3.1.4, and 5.2.22.)

1.42 hierarchical name: The unique name of an instance within the module hierarchy. The hierarchical
name is composed from the string names of the parent-child chain of module instances starting from a top-
level module, and terminating with the string name of the instance being named. The string names are
concatenated and separated with the dot character. (See 5.3.4 and 5.15.4.)

1.43 immediate notification: A notification created as the result of a call to function with an empty
argument list. Any process sensitive to the event becomes runnable immediately. (See 4.2.1 and 5.9.4.)

1.44 implementation: A specific concrete implementation of the full SystemC class library, only the public
interface of which need be exposed to the application (for example, parts may be precompiled and
distributed as object code by a tool vendor). (See kernel and 3.1.2.)

1.45 implement: A channel is said to implement an interface if the channel provides a definition for every
pure virtual function declared in the interface. (See 5.13.1.)

1.46 implicit conversion: A C++ language mechanism whereby a standard conversion or a user-defined
conversion is called implicitly under certain circumstances. User-defined conversions are only applied
implicitly where they are unambiguous, and at most one user-defined conversion is applied implicitly to a
given value. (See user-defined conversion.) (C++ term)

1.47 initialization phase: The first phase of the scheduler, during which every process is executed once
until it suspends or returns. (See 4.2.1.1.)

1.48 initializer list: The part of the C++ syntax for a constructor definition that is used to initialize base
class sub-objects and data members. (Related to the C++ term mem-initializer-list)

1.49 instance: A particular case of a given category. For example, a module instance is an object of a class
derived from class sc_module. Within the definition of the core language, an instance is typically an object
of a class derived from class sc_object, and has a unique hierarchical name. (See 3.1.4.)

1.50 instantiation: The act of creating an instance. For example, a module instantiation creates a new object
of a class derived from class sc_module. (See 4.1.1.)

1.51 integer: A fixed-precision integer or an arbitrary-precision integer. (See 7.2.1.)

1.52 interface: A class derived from class sc_interface. An interface proper is an interface, and in the
object-oriented sense a channel is also an interface. However, a channel is not an interface proper. (See
3.1.4.)

1.53 interface proper: An abstract class derived from class sc_interface but not derived from class
sc_object. An interface proper declares the set of methods to be implemented within a channel and to be
called via a port. An interface proper contains pure virtual function declarations, but typically contains no
function definitions and no data members. (See 3.1.4 and 5.13.1.)

1.54 Interface Method Call (IMC): An interface method is a member function declared within an
interface. An interface method call is a call to an interface method. The IMC paradigm provides a level of
Copyright © 2005 OSCI. All rights reserved. 392

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
indirection between a method call and the implementation of the method within a channel such that one
channel can be substituted with another without affecting the caller. (See 4.1.3 and 5.11.1.)

1.55 kernel: The kernel is the core of any SystemC implementation, and includes the underlying elaboration
and simulation engines. The kernel honors the semantics defined by this standard, but may also contain
implementation-specific functionality outside the scope of this standard. (See implementation and Clause
4.)

1.56 lifetime: The lifetime of an object starts when storage is allocated and the constructor call has
completed, if any. The lifetime of an object ends when storage is released or immediately before the
destructor is called, if any. (C++ term)

1.57 limited-precision fixed-point type: A class that is derived from class sc_fxnum_fast, or an instance of
such a class. A limited-precision fixed-point type represents a signed or unsigned floating point value at a
precision limited by its underlying native C++ floating point representation and its specified word length,
integer word length, quantization mode, and overflow mode. (See 7.1.)

1.58 logic vector: A class that is derived from class sc_lv_base, or an instance of such a class. A logic
vector implements a multiple bit data type where each bit is represented by a four-valued logic symbol '0',
'1', 'X'’, or 'Z'. (See 7.1.)

1.59 lvalue: An object reference whose address can be taken. The left-hand operand of the built-in
assignment operator must be a non-const lvalue. (C++ term)

1.60 member function: A function declared within a class definition, excluding friend functions. Outside of
a constructor or member function of the class or of any derived class, a non-static member function can only
be accessed using the dot . and arrow -> operators. (See method.) (C++ term)

1.61 method: The term method is used in the context of object-oriented programming to mean a function
that implements the behavior of a class, and is synonymous with the C++ term member function. In
SystemC, the term method is used in the context of an interface method call. Throughout this standard the
term member function is used when defining C++ classes (for conformance with the C++ standard), and the
term method is used in more informal contexts and when discussing interface method calls.

1.62 method process: A process that executes in the thread of the scheduler, and is called (or triggered) by
the scheduler at times determined by its sensitivity. A static method process is created using the
SC_METHOD macro, a dynamic method process by calling the function sc_spawn. (See 5.2.9 and 5.2.10.)

1.63 module: A class that is derived from class sc_module; or more informally, an instance of such a class.
A SystemC application is composed of modules, each module instance representing a hierarchical boundary.
A module can contain instances of ports, processes, primitive channels, and other modules. (See 3.1.4 and
5.2.)

1.64 module hierarchy: The set of all instances created during elaboration and linked together using the
mechanisms of module instantiation, port instantiation, primitive channel instantiation, process instantiation,
and port binding. The module hierarchy is a subset of the object hierarchy. (See 3.1.4 and Clause 4.)

1.65 multiport: A port which may be bound to more than one channel or port instance. A multiport is used
when an application wishes to bind a port to a set of addressable channels and the number of channels is not
known until elaboration. (See 4.1.3 and 5.11.3.)

1.66 mutex: An instance of class sc_mutex, which is a primitive channel that models a mutual exclusion
communication mechanism. (See 6.27.1.)
Copyright © 2005 OSCI. All rights reserved. 393

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
1.67 non-abstract class: A class that is not an abstract class. (C++ term)

1.68 notification: The act of scheduling the occurrence of an event as performed by the notify method of
class sc_event. There are three kinds of notification: immediate notification, delta notification, and timed
notification. (See event, 4.2.1, and 5.9.4.)

1.69 notified: An event is said to be notified at the control step of the scheduler in which the event is
removed from the set of pending events and any processes that are currently sensitive to that event are made
runnable. Informally, the event occurs precisely at the point when it is notified. (See 4.2.)

1.70 numeric type: An arbitrary-precision integer, a fixed-precision integer, a fixed-point type, or a limited-
precision fixed-point type. (See 7.1.)

1.71 object: A region of storage. Every object has a type and a lifetime. An object created by a definition
has a name, whereas an object created by a new expression is anonymous. (C++ term)

1.72 object hierarchy: The set of all objects of class sc_object. Each object has a unique hierarchical name.
Objects that do not belong to the module hierarchy may be created and destroyed dynamically during
simulation. (See 3.1.4 and 5.15.1.)

1.73 occurrence: Of an event: informally, the occurrence of an event is synonymous with the event being
notified. Except in the case of immediate notification, a call to the notify method of class sc_event will
cause the event to occur in a later delta cycle or at a later point in simulation time. Of a time-out: a time-out
occurs when the specified time interval has elapsed. (See 5.9.1.)

1.74 overload: Two or more functions with the same name declared in the same scope and that differ in the
number or type of their parameters are said to be overloaded. (C++ term)

1.75 override: If a member function in a derived class has the same name and parameter list as a member
function in a base class, the function in the derived class is said to override the function in the base class.
(C++ term)

1.76 parameter: An object declared as part of a function declaration or definition (or macro definition or
template parameter), also known as a formal parameter. (See argument.) (C++ term)

1.77 parent: A parent of a given instance is a module that has the given instance as a child. (See 3.1.4 and
5.15.1.)

1.78 part-select: A class that references a contiguous subset of bits within a multiple-bit data type or an
instance of such a class. Part-selects are defined for each SystemC numeric and vector class. Part-selects
corresponding to lvalues and rvalues of a particular type are distinct classes. (See 7.2.5.)

1.79 pending: Of an event; a pending event is an event for which a notification has been posted; that is, the
notify method has been called, but the event has not yet been notified.

1.80 port: A class that is derived from class sc_port; or more informally, an instance of such a class. A port
is the primary mechanism for allowing communication across the boundary of a module. A port specifies an
interface required by a module. During simulation, a port forwards method calls made from a process within
a module to the channel to which the port was bound when the module was instantiated. A port forwards
method calls up and out of a module instance. (See 3.1.4 and 5.11.)

1.81 portless channel access: Calling the member functions of a channel directly and not via a port or
export. (See 5.11.1.)
Copyright © 2005 OSCI. All rights reserved. 394

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
1.82 primitive channel: A class that is derived from class sc_prim_channel and implements one or more
interfaces; or more informally, an instance of such a class. A primitive channel has access to the update
phase of the scheduler, but cannot contain ports, processes, or module instances. (See 3.1.4 and 5.14.)

1.83 process: A process instance belongs to an implementation-defined class derived from class sc_object.
Each process instance has an associated function that represents the behavior of the process. A process may
be a static process or a dynamic process. The process is the primary means of describing a computation. (See
dynamic process, static process, and 3.1.4.)

1.84 process handle: A process handle provides safe access to an underlying static or dynamic process
instance. A process handle can be valid or invalid. A process handle continues to exist in the invalid state
even after the associated process instance has been destroyed. (See 3.1.4 and 5.6.)

1.85 proxy class: A class whose only purpose is to extend the readability of certain statements that would
otherwise be restricted by the semantics of C++. An example is to allow an sc_int variable to be used as if it
was a C++ array of bool. Proxy classes are only intended to be used for the temporary (unnamed) value
returned by a function. A proxy class constructor shall not be called explicitly by an application to create a
named object. (See 7.2.4.)

1.86 resolved signal: An instance of class sc_signal_resolved or sc_signal_rv, which are signal channels
that may be written to by more than one process, with conflicting values being resolved within the channel.
(See 6.13.1.)

1.87 resume: Of a thread or clocked thread process: the scheduler causes a thread process to resume
execution from the executable statement immediately following the wait method at which it was suspended,
dependent upon the sensitivity of the process. (See 5.2.11.)

1.88 rvalue: A value that does not necessarily have any storage or address. An rvalue of fundamental type
can only appear on the right-hand side of an assignment. (C++ term)

1.89 scheduled: An event can be scheduled to occur, or a process can be scheduled to be triggered or
resumed, either in a later delta cycle or at a later simulation time. These actions are performed by the
scheduler as a result of an application calling the notify, next_trigger or wait methods with appropriate
arguments.

1.90 scheduler: The part of the kernel that controls simulation, and is thus concerned with advancing time,
making processes runnable as events are notified, executing processes, and updating primitive channels.
(See Clause 4.)

1.91 sensitivity: A process can be made sensitive to a set of events such that the process will resume or
trigger when one of those events is notified. The sensitivity of a process is determined either by its static
sensitivity or by the dynamic sensitivity created by the most recent call to the wait method (in the case of a
thread process) or the next_trigger method (in the case of a method process). (See 4.2.)

1.92 signal: An instance of class sc_signal, which is a primitive channel intended to model relevant aspects
of the behavior of a simple wire as appropriate for digital hardware simulation. (See 3.1.4 and 6.4.)

1.93 simulation: The execution of a SystemC application consists of elaboration followed by simulation.
Simulation consists of the execution of the scheduler together with the execution of user-defined processes
under the control of that same scheduler. (See Clause 4.)

1.94 specialized port: A class derived from template class sc_port which passes a particular type as the first
argument to template sc_port, and which provides convenience functions for accessing ports of that specific
type. (See 6.8.)
Copyright © 2005 OSCI. All rights reserved. 395

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
1.95 statement: A specific category of C++ language construct that is executed in sequence, such as the if
statement, switch statement, for statement, and return statement. A C++ expression followed by a semicolon
is also a statement. (C++ term)

1.96 static process: A static process instance is created by using one of the three macros SC_METHOD,
SC_THREAD, or SC_CTHREAD during elaboration. (See process, 3.1.4, and 4.1.2.)

1.97 static sensitivity: The static sensitivity list of a static process is created by using the data member
sensitive of class sc_module after creating the process and before creating any subsequent static processes.
The static sensitivity of a dynamic process is created using class sc_spawn_options. (See sensitivity, static
process, dynamic process, and 4.2.)

1.98 string name: A name passed as an argument to the constructor of an instance to provide an identity for
that object within the module hierarchy. The string names of instances having a common parent module will
be unique within that module, and that module only. (See hierarchical name, 5.3, and 5.15.4.)

1.99 sub-object: An object contained within another object. A sub-object of a class may be a data member
of that class or a base class sub-object. (C++ term)

1.100 terminated: A thread or clocked thread process is said to be terminated when the associated function
executes to completion or executes a return statement and thus control returns to the kernel. Calling function
wait does not terminate a thread process. A method process can never be terminated. (See thread process,
clocked thread process, method process, 5.2.11, and 5.6.5.)

1.101 thread process: A process that executes in its own thread, and is called once only by the scheduler
during initialization. A thread process may be suspended by the execution of a wait method, in which case it
will be resumed under the control of the scheduler. A static thread process is created using the
SC_THREAD macro, a dynamic thread process by calling the function sc_spawn. (See static process,
dynamic process, 5.2.9, and 5.2.11.)

1.102 time-out: A time-out results from a call to the wait or next_trigger method with a time-valued
argument. The process that called the method will resume or trigger after the specific time has elapsed,
unless it has already resumed or triggered as a result of an event being notified. (See 4.2 and 4.2.1.)

1.103 timed notification: A notification created as the result of a call to function notify with a non-zero time
argument. (See 4.2.1 and 5.9.4.)

1.104 timed notification phase: The control step within the scheduler during which processes are made
runnable as a result of times notifications. (See 4.2.1.5.)

1.105 top-level: A top-level module or a top-level object is one that is not instantiated within any other
module or process. Top-level modules are either instantiated within sc_main, or in the absence of sc_main,
are identified using an implementation-specific mechanism. (See 3.1.4 and 5.15.1.)

1.106 trigger: The triggering of a method process is the calling by the scheduler of the member function
associated with the process instance and is dependent on the sensitivity of the method process instance. The
sensitivity of a method process is determined either by its static sensitivity or by the dynamic sensitivity
created by the most recent call to the next_trigger method. (See method process and 5.2.10.)

1.107 update phase: The control step within the scheduler during which the values of primitive channels
are updated. The update phase consists of executing the update method for every primitive channel that
called the request_update method during the immediately preceding evaluation phase. (See 4.2.1.3.)
396 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
1.108 undefined: Where this standard states that a behavior or a result is undefined, this standard places no
obligations on the implementation in the given circumstances. In particular, the implementation may or may
not generate an error. (See 3.3.5.)

1.109 user: The creator of an application, as distinct from an implementor, who creates an implementation.
A user may be a person or an automated process such as a computer program. (See 3.1.2.)

1.110 user-defined conversion: Either a conversion function or a non-explicit constructor with exactly one
parameter. (See conversion function and implicit conversion.) (C++ term)

1.111 vector: (See bit vector, logic vector, and 7.1.)

1.112 within: A given instance is within a module if the constructor of the instance is called from the
constructor of the module, and also provided that the instance is not within a nested module. (See 3.1.4.)
Copyright © 2005 OSCI. All rights reserved. 397

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
398 Copyright © 2005 OSCI. All rights reserved.

Annex C

(informative)

Deprecated features

This annex contains a list of deprecated features. A deprecated feature is a feature that was present in ver-
sion 2.0.1 of the OSCI open source proof-of-concept SystemC implementation but is not part of this stan-
dard. Deprecated features may or may not remain in the OSCI implementation in the future. The user is
strongly discouraged from using deprecated features since an implementation is not obliged to support such
features. An implementation may issue a warning on the first occurrence of each deprecated feature, but is
not obliged to do so.

1) Functions sc_cycle and sc_initialize (Use sc_start instead.)
2) Class sc_simcontext (Replaced by functions sc_delta_count, sc_is_running,

sc_get_top_level_objects, sc_find_object, and member functions get_child_objects and
get_parent_object)

3) Type sc_process_b (Replaced by class sc_process_handle)
4) Function sc_get_curr_process_handle (Replaced by function

sc_get_current_process_handle)
5) Member function notify_delayed of class sc_event (Use notify(SC_ZERO_TIME) instead.)
6) Non-member function notify (Use member function notify of class sc_event instead.)
7) Member function timed_out of classes sc_module and sc_prim_channel
8) operator, and operator<< of class sc_module for positional port binding (Use operator()

instead.)
9) operator() of class sc_module for positional port binding when called more than once per

module instance (Use named port binding instead.)
10) Constructors of class sc_port that bind the port at the time of construction of the port object
11) operator() of class sc_sensitive (Use operator<< instead.)
12) Classes sc_sensitive_pos and sc_sensitive_neg and the corresponding data members of class

sc_module (Use the event finders pos and neg instead.)
13) Member function end_module of class sc_module
14) Default time units and all the associated functions and constructors, including:

i) Function sc_simulation_time
ii) Function sc_set_default_time_unit
iii) Function sc_get_default_time_unit
iv) Function sc_start(double)
v) Constructor sc_clock(const char*, double, double, double, bool)

15) Member function trace of classes sc_object, sc_signal, sc_clock, and sc_fifo (Use sc_trace
instead.)

16) Member function add_trace of classes sc_in and sc_inout (Use sc_trace instead.)
17) Member function get_data_ref of classes sc_signal and sc_clock (Use member function read

instead.)
18) Member function get_new_value of class sc_signal
19) Typedefs sc_inout_clk and sc_out_clk (Use sc_out<bool> instead.)
20) Typedef sc_signal_out_if
21) Constant SC_DEFAULT_STACK_SIZE (Function set_stack_size is not deprecated.)
Copyright © 2005 OSCI. All rights reserved. 399

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
22) Constant SC_MAX_NUM_DELTA_CYCLES
23) Constant SYSTEMC_VERSION (Function sc_version is not deprecated.)
24) Support for the wif and isdb trace file formats (The vcd trace file format is not deprecated.)
25) Function sc_trace_delta_cycles
26) Function sc_trace for writing enumeration literals to the trace file (Other sc_trace functions

are not deprecated.)
27) Type sc_bit (Use type bool instead.)
28) Global and local watching for clocked threads (Use function reset_signal_is instead.)
29) The reporting mechanism based on integer ids and the corresponding member functions of

class sc_report, namely register_id, get_message, is_suppressed, suppress_id,
suppress_infos, suppress_warnings, make_warnings_errors, and get_id. (Replaced by a
reporting mechanism using string message types)
400 Copyright © 2005 OSCI. All rights reserved.

Annex D

(informative)

Changes between the different SystemC versions

D.1 Significant changes made between SystemC version 2.0.1 and version
2.1 Beta Oct 12 2004

1) Added the callback functions before_end_of_elaboration, start_of_simulation, and
end_of_simulation.

2) Added the functions sc_start_of_simulation_invoked and sc_end_of_simulation_invoked.
3) Added the function sc_main_main.
4) Added the functions sc_argc and sc_argv.
5) Added the function sc_stop_mode.
6) Added function sc_delta_count.
7) Added class sc_process_handle.
8) Added function sc_spawn and class sc_spawn_options.
9) Added macros SC_FORK and SC_JOIN.
10) Added classes sc_export_base and sc_export.
11) Added type sc_severity and typedef sc_actions.
12) Modified the classes sc_report and sc_report_handler.
13) Added functions sc_interrupt_here and sc_stop_here.
14) Added classes sc_event_queue_if and sc_event_queue.
15) Changed base class of class sc_clock from sc_module to sc_signal<bool>.
16) Added function reset_signal_is to class sc_module.
17) Added the function sc_release.
18) Added classes sc_generic_base and sc_value_base.
19) Removed restrictions concerning the mixing of data types in concatenations.
20) The process macros (SC_METHOD, SC_THREAD, and SC_CTHREAD) can register the

same function multiple times in the same scope without C++ compiler errors or SystemC name
clashes.

21) Changed the return type of function write of classes sc_inout and sc_out to void.

D.2 Changes made between SystemC version 2.1 Beta Oct 12 2004 and this
standard

1) The pure virtual function set_time_unit of class sc_trace_file replaces the member functions
sc_set_vcd_time_unit and sc_set_wif_time_unit of classes vcd_trace_file and
wif_trace_file, respectively.

2) Added the member functions start_time and posedge_first of class sc_clock.
3) Added member functions valid, name, proc_kind, get_child_object, get_parent_object,

dynamic, terminated, operator==, operator!= to the class sc_process_handle.
4) Removed member function wait() from class sc_process_handle.
Copyright © 2005 OSCI. All rights reserved. 401

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
5) Added member function wait(sc_process_handle&) to classes sc_module and
sc_prim_channel, and as a non-member function.

6) Defined function wait(int) for thread as well as for clocked thread process, and added member
function wait(int) to class sc_prim_channel, and as a non-member function.

7) Added function sc_get_current_process_handle.
8) Removed functions sc_get_curr_process_handle, sc_get_last_created_process_handle, and

sc_get_curr_process_kind.
9) Added member function kind to class sc_event_queue and changed the default constructor

name seed to "event_queue".
10) Added member functions get_parent_object and get_child_objects to class sc_object.
11) Changed the behavior of sc_object constructors and sc_gen_unique_name such that every

sc_object is registered in the object hierarchy and has a unique hierarchical name of the form
seed_N.

12) Added functions sc_find_object and sc_get_top_level_objects.
13) Added function sc_is_running.
14) Disabled copy constructor and assignment operator of class sc_spawn_options.
15) Removed the constructors of class sc_export that bind the export at the time of construction.
16) Added member function const IF* operator-> () const to class sc_export.
17) Made constructor sc_export(const char*) explicit.
18) Each export shall be bound exactly once.
19) Rename function sc_main_main to sc_elab_and_sim.
20) Stop mode SC_STOP_IMMEDIATE does not execute the update phase before stopping.
21) A call to function sc_spawn during what would have been the final update phase causes the

spawned process to run in the next evaluation phase, potentially causing simulation to continue.
22) Changed the behavior of sc_report_handler::stop_after(SC_FATAL,-1) such that sc_stop is

not called on the first fatal error. (Note that simulation may still abort due to the default
actions.)

23) Changed the type of the first parameter to functions sc_stop_here and sc_interrupt_here from
int to const char*.

24) Removed all forms of the second argument to macro SC_CTHREAD except for
sc_event_finder.

25) Changed the prototypes of functions print and dump to virtual void print/dump(ostream&
= cout) const; for class sc_object and derived classes, and to void print/dump(ostream& =
cout) const; for all other classes.

26) Added member functions get_count to class sc_report_handler.
27) Removed the member functions initialize and release of class sc_report_handler.
28) Removed the class sc_pvector, and changed the return type of function get_child_objects

from sc_pvector to std::vector.
29) Removed the class sc_string, changed all occurrences of sc_string to std::string, and added

typedef std::string sc_string.
30) Put every declaration in one of the two namespaces sc_core and sc_dt.
31) Added a new header file "systemc" that does not introduce any names into the global

namespace besides sc_core and sc_dt.
32) Derived class sc_report from std::exception.
33) Changed the default_handler to throw an sc_report object.
34) Removed the class sc_exception and added typedef std::exception sc_exception.
402 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Copyright © 2005 OSCI. All rights reserved. 403

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
404 Copyright © 2005 OSCI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
Index

A
abstract class, glossary 389
add_attribute, member function

class sc_object 90
and_reduce reduction operator 169
application

definition 3
glossary 389

arbitrary-precision integer
definition 162
glossary 389
overview 140
type classes 201

argument, glossary 389
attach, glossary 389
attr_cltn, member function

class sc_object 91

B
base class subobject, glossary 389
basename, member function

class sc_object 88
before_end_of_elaboration, member function 20

class sc_clock 114
class sc_export 78
class sc_module 42
class sc_port 73
class sc_prim_channel 84

begin, member function
class sc_attr_cltn 94
class sc_fxcast_context 363
class sc_fxtype_context 360
class sc_length_context 356

binary fixed-point representation 270
bind, member function

class sc_export 75, 76
class sc_in 116
class sc_port 69

binding
export binding 12
glossary 389
named binding 41
port binding 12
positional binding 41

bit concatenation classes
for vectors 264

bit vector
definition 162
glossary 389

bit-select
glossary 389
Copyright © 2005 OS
bit-select classes
arbitrary-precision integers 220
fixed precision integers 192
fixed-point types 276
introduction 166
vectors 255

body, glossary 389
Boost, support for the free C++ library 53
buffer

definition 109
glossary 389

C
C++ header file 25
C++, relationship with SystemC 1
call

definition 3
glossary 390

callback 20
glossary 390

called from
definition 3

can, usage 3
cancel, member function

class sc_event 63
cancel_all, member function

class sc_event_queue 160
cast_switch, member function

limited-precision fixed-point classes 278
channel

glossary 390
hierarchical 4
instance 72
interface proper 79
ordered set of channel instances 70
port binding 41
primitive 4, 82
pure virtual functions 96
trace 116

child
definition 4
glossary 390

class template, glossary 390
classes

sc_attr_base 92
sc_attr_cltn 94
sc_attribute 93
sc_bigint 216
sc_biguint 218
sc_bitref_r 255
sc_buffer 109
sc_bv 251
sc_bv_base 239
CI. All rights reserved. 405

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_clock 112
sc_concatref 229
sc_concref 264
sc_concref_r 264
sc_event 62
sc_event_and_list 61
sc_event_finder 59
sc_event_finder_t 59
sc_event_or_list 61
sc_fifo 144
sc_fifo_in 149
sc_fifo_in_if 140
sc_fifo_out 150
sc_fifo_out_if 142
sc_fix 320
sc_fix_fast 272, 327
sc_fixed 271, 333
sc_fixed_fast 272, 339
sc_fxcast_context 363
sc_fxcast_switch 361
sc_fxnum 272, 305
sc_fxnum_bitref 345
sc_fxnum_fast_bitref 345
sc_fxnum_fast_subref 348
sc_fxnum_subref 348
sc_fxtype_context 360
sc_fxtype_params 357
sc_fxval 310
sc_fxval_fast 315
sc_generic_base 232
sc_in 115
sc_in_resolved 130
sc_in_rv 136
sc_inout 120
sc_inout_resolved 131
sc_inout_rv 137
sc_int_base 176
sc_int_bitref 192
sc_int_bitref_r 192
sc_int_subref 196
sc_int_subref_r 196
sc_interface 79
sc_length_context 356
sc_length_param 354
sc_logic 234
sc_lv 253
sc_lv_base 245
sc_module 27
sc_module_name 45
sc_mutex 154
sc_mutex_if 153
sc_object 86
sc_out 126
sc_out_resolved 133
406 Copyright © 2005 OS
sc_out_rv 139
sc_port_base 67
sc_prim_channel 14, 82
sc_process_handle 55
sc_semaphore 157
sc_semaphore_if 156
sc_sensitive 48
sc_signal 100
sc_signal<bool> 106
sc_signal<sc_logic> 106
sc_signal_in_if 96
sc_signal_in_if<bool> 97
sc_signal_in_if<sc_logic> 97
sc_signal_inout_if 99
sc_signal_resolved 127
sc_signal_rv 134
sc_signed 202
sc_signed_bitref 220
sc_signed_bitref_r 220
sc_signed_subref 224
sc_signed_subref_r 224
sc_spawn_options 50
sc_subref 258
sc_subref_r 258
sc_time 64
sc_trace_file 366
sc_ufix 272, 323
sc_ufix_fast 330
sc_ufixed 272, 336
sc_ufixed_fast 272, 342
sc_uint 189
sc_uint_base 181
sc_uint_bitref 192
sc_uint_bitref_r 192
sc_uint_subref 196
sc_uint_subref_r 196
sc_unsigned 209
sc_unsigned_bitref 220
sc_unsigned_bitref_r 220
sc_unsigned_subref 224
sc_unsigned_subref_r 224
sc_value_base 173
scint 186

clock
class sc_clock 112
glossary 390

clocked thread process 34
glossary 390
introduction 32

complete object, glossary 390
concat function 167
concat_clear_data, member function

class sc_value_base 173
concat_get_ctrl, member function
CI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
class sc_value_base 173
concat_get_data, member function

class sc_value_base 174
concat_get_uint64, member function

class sc_value_base 174
concat_length, member function

class sc_value_base 174
concat_set, member function

class sc_value_base 174
concatenation

glossary 390
introduction 167

concatenation base type 167
const

SC_LOGIC_0 238
SC_LOGIC_1 238
SC_LOGIC_X 238
SC_LOGIC_Z 238
SC_ZERO_TIME 65

contain
definition 4
glossary 390

contributors to the LRM ii
conversion function, glossary 390

D
dagger symbol, usage 5
data member, glossary 390
data type classes 162
data_read, member function

class sc_fifo_out 150
data_read_event, member function

class sc_fifo 147
class sc_fifo_out 150
class sc_fifo_out_if 143

data_written, member function
sc_fifo_in 149

data_written_event, member function
class sc_fifo 147
class sc_fifo_in 149
class sc_fifo_in_if 141

declaration, glossary 390
default_event, member function

class sc_event_queue 160
class sc_in 116
class sc_inout 121
class sc_interface 48, 80
class sc_signal 103

default_value, member function
class sc_fxcast_context 363
class sc_fxtype_context 360
class sc_length_context 356

definition, glossary 390
Copyright © 2005 OS
delta cycle
definition 16
glossary 391
sc_signal.write 103
sc_signal_inout_if.write 99

delta notification 16
definition 14
glossary 391
notify and cancel 62

delta notification phase
glossary 391
overview 16

derived from, definition 3
disabled, usage 5
dont_initialize, member function

class sc_module 21, 36
class sc_spawn_options 51
semantics 15

double, member function
class sc_fxval 314

dump, member function
class sc_fifo 148
class sc_object 89
class sc_signal 104

during elaboration, glossary 391
during simulation, glossary 391
duty_cycle, member function 113

class sc_clock 113
dynamic process 14, 15

definition 4
glossary 391
sc_object 86
sc_process_handle 55
sc_spawn 52

dynamic sensitivity 14
glossary 391
next_trigger 37
wait 39

dynamic, member function
class sc_process_handle 57

E
elaboration 10

callback functions 20
glossary 391
instantiation 10
keeping track of module hierarchy 46
port binding 13
port instantiation 68
running 17
sc_main 18
sc_set_time_resolution 65
simulation time resolution 13
CI. All rights reserved. 407

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
ellipsis, usage 5
end, member function

class sc_attr_cltn 95
class sc_fxcast_context 363
class sc_fxtype_context 360
class sc_length_context 356

end_of_elaboration, member function 21
class sc_export 78
class sc_in 116
class sc_in_resolved 130
class sc_in_rv 136
class sc_inout 122
class sc_inout_resolved 131
class sc_inout_rv 137
class sc_module 42
class sc_port 73
class sc_prim_channel 84

end_of_simulation, member function 22
class sc_export 78
class sc_module 42
class sc_port 73
class sc_prim_channel 84

enum types
sc_curr_proc_kind_return 55
sc_fint 279
sc_logic_value_t 233
sc_num_rep 364
sc_numrep 171
sc_o_mode 278
sc_q_mode 278
sc_stop_mode 22
sc_time_unit 64

error 8
glossary 391

evaluation phase
definition 15
glossary 391
sc_spawn 52
sc_stop 23
update 84

event 15
definition 4, 62
glossary 391
simulation 14

event finder 7, 59
class sc_fifo_in 149
class sc_fifo_out 150
class sc_in 116, 119
class sc_inout 121
class sc_inout and sc_inout 125

event list
class sc_event 63
class sc_event_and_list 61
class sc_event_or_list 61
408 Copyright © 2005 OS
glossary 391
event, member function

class sc_in 116
class sc_inout 121
class sc_signal 103
class sc_signal_in_if 96

execution stack 33, 37
export

class sc_export 74
definition 3
glossary 391

export binding 12

F
fifo

class sc_fifo 144
glossary 391
interfaces 97

fifo interfaces 97
file

header files 25
trace file 367

fixed-point type 270
context object 165
definition 162
glossary 391

fixed-precision integer
definition 162
glossary 392

G
get_attribute, member function

class sc_object 91
get_child_objects, member function 7

class sc_module 42
class sc_object 89
class sc_process_handle 57

get_interface, member function
class sc_export 77
class sc_port 73

get_parent_object, member function 7
class sc_object 90
class sc_process_handle 57

get_value, member function
class sc_semaphore 158

H
hierarchical channel

class sc_event_queue 159
class sc_object 87
definition 4
glossary 392

hierarchical name 87, 88
CI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
class sc_module_name 45
glossary 392

I
immediate notification

definition 14
glossary 392
notify and cancel 62

implement, glossary 392
implementation

definition 3
glossary 392

implementation-defined, definition 5
implicit conversion, glossary 392
initialization phase 15, 21, 36, 51
initialization, glossary 392
initialize, member function

class sc_inout 121
initializer list, glossary 392
instance, glossary 392
instantiation 10

glossary 392
int_type, type definition 175
int64, type definition 175
integer part-select objects 199
integer, glossary 392
interface

definition 3
glossary 392
sc_interface 79

Interface Method Call (IMC)
class sc_port 67
glossary 392
port and export binding 13
sc_module 29

interface proper
definition 3
glossary 392
sc_fifo_in_if 140
sc_fifo_out_if 142
sc_interface 79
sc_mutex_if 153
sc_port 68
sc_semaphore_if 156
sc_signal_in_if 96
sc_signal_inout_if 99

is_01, member function
bit concatenation classes 267
bit-select classes 257
class sc_bv_base 242
class sc_logic 236
class sc_lv_base 248
part-select classes 261
Copyright © 2005 OS
is_neg, member function
fixed-point classes 279

is_zero, member function
fixed-point classes 279

iterator, attributes 94
iwl, member function

class sc_fxtype_params 358
limited-precision fixed-point classes 278

K
kernel 10

glossary 393
kind, member function 88

class sc_buffer 110
class sc_clock 114
class sc_export 75
class sc_fifo 148
class sc_fifo_in 149
class sc_fifo_out 150
class sc_in 116
class sc_in_resolved 130
class sc_in_rv 136
class sc_inout 121
class sc_inout_resolved 131
class sc_inout_rv 137
class sc_module 29
class sc_out 126
class sc_out_resolved 133
class sc_out_rv 139
class sc_port 69
class sc_prim_channel 83
class sc_semaphore 158
class sc_signal 104
class sc_signal_resolved 129
class sc_signal_rv 135

L
len, member function

class sc_length_param 355
length context classes

introduction 165
length, member function

class sc_generic_base 232
lifetime

glossary 393
of objects 6

limited-precision fixed-point type
definition 162
glossary 393

lock, member function
class sc_mutex 155

logic vector, definition 162
logic vector, glossary 393
CI. All rights reserved. 409

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
lrotate, member function
class sc_bv_base 244
class sc_concref 269
class sc_lv_base 250
part-select classes 263

lvalue, glossary 393

M
macros

sc_bind 53
sc_cref 53
SC_CTHREAD 29, 31
SC_CTOR 28, 30, 45
SC_FORK 54
SC_HAS_PROCESS 29, 31
SC_JOIN 54
SC_METHOD 12, 29, 31
SC_MODULE 28, 29
sc_ref 53
SC_THREAD 12, 29, 31

may, usage 3
member function, glossary 393
method process, glossary 393
method, glossary 393
module

class sc_module 27
definition 3
glossary 393

module hierarchy 10
abnormal usage 69
callbacks 20
class sc_prim_channel 83
definition 4
elaboration 46
glossary 393

multiport
class sc_port 72
definition 13
glossary 393
sc_port template parameter 68

mutex
glossary 393
sc_mutex class 154

N
n_bits, member function

class sc_fxtype_params 358
limited-precision fixed-point classes 278

name, member function
class sc_attr_base 92
class sc_object 88
class sc_process_handle 56

namespace 8, 25
410 Copyright © 2005 OS
sc_core 17
sc_dt 162

nand_reduce reduction operator 169
nb_read, member function

class sc_fifo 146
class sc_fifo_in 149
class sc_fifo_in_if 141

nb_write, member function
class sc_fifo 146
class sc_fifo_out 150
class sc_fifo_out_if 142

negedge, member function
class sc_signal 108
class sc_signal_in_if 98

negedge_event, member function
class sc_signal 107
class sc_signal_in_if 98

next_trigger, member function 32
class sc_module 15, 37, 61
class sc_prim_channel 15, 84

non-abstract class, glossary 394
nor 169
nor_reduce reduction operator 169
notes, usage 9
notification

delta notification 63
glossary 394
immediate 62
timed notification 63

notified, glossary 394
notify, member function 62

class sc_event 14, 15, 84
delta notification phase 16

num_attributes, member function
class sc_object 91

num_available, member function
class sc_fifo 147
class sc_fifo_in 149
class sc_fifo_in_if 141

num_free, member function
class sc_fifo 147
class sc_fifo_out 150
class sc_fifo_out_if 143

numeric type
definition 162
glossary 394

O
o_mode, member function

class sc_fxtype_params 358
limited-precision fixed-point classes 278

object
class sc_object 86
CI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
glossary 394
object hierarchy

class sc_object 86
definition 4
glossary 394
hierarchical instance name 88

occurrence, glossary 394
operations, addition

arbitrary-precision fixed-point classes 275, 276
fixed-precision fixed-point classes 274
limited-precision fixed-point classes 275

operations, arithmetic
class sc_int 188
class sc_int_base 179
class sc_signed 205
class sc_uint 191
class sc_uint_base 184
class sc_unsigned 212
fixed-point classes 273

operations, bitwise
class sc_bitref_r 257
class sc_bv_base 243
class sc_concref 268
class sc_concref_r 267
class sc_int 188
class sc_int_base 179
class sc_logic 237
class sc_lv_base 249
class sc_signed 207
class sc_subref 262
class sc_subref_r 261
class sc_uint 191
class sc_uint_base 184
class sc_unsigned 214
fixed-point classes 273

operations, comparison
class sc_bitref_r 257
class sc_bv_base 244
class sc_concref_r 269
class sc_int_base 179
class sc_logic 237
class sc_lv_base 250
class sc_signed 208
class sc_subref_r 263
class sc_uint_base 184
class sc_unsigned 215

operator bool
bit-select classes 194
class sc_fxnum_bitref 347
class sc_fxnum_fast_bitref 347

operator double
class sc_fxnum 308
class sc_fxval_fast 318

operator int_type
Copyright © 2005 OS
class sc_int_base 178
class sc_int_subref_r 200

operator sc_bv_base
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353

operator sc_logic
bit-select classes 257

operator sc_unsigned
class sc_signed 231
class sc_signed_subref_r 228
class sc_unsigned_subref_r 228

operator uint_type
class sc_uint_base 183
class sc_uint_subref_r 200

operator uint64
bit-select classes 222
class sc_unsigned 231

operator!
bit-select classes 195, 223

operator!–
class sc_process_handle 56

operator!=
class sc_fxcast_switch 362
class sc_fxtype_params 359
class sc_length_param 355

operator&
class sc_event 61

operator()
class sc_in 116
class sc_inout 121
class sc_module, port binding 41
class sc_module_name 46
class sc_port 69
class sc_signal 103
part-select classes 167

operator<<
class ostream 104, 145
class sc_sensitive 48
SystemC data types 170

operator=
class sc_buffer 110
class sc_fifo 146
class sc_fxcast_switch 362
class sc_fxtype_params 359
class sc_inout 121
class sc_length_param 355
class sc_process_handle 56
class sc_signal 103
class sc_signal_resolved 128, 129

operator==
class sc_fxcast_switch 362
class sc_fxtype_params 359
class sc_length_param 355
class sc_process_handle 56
CI. All rights reserved. 411

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
operator>
class sc_port 70

operator>>
SystemC data types 170

operator[]
bit-select classes 166
class sc_port 71

operator|
class sc_event 61

operator‚
concatenation 167

operator˜
bit-select classes 195, 223

or_reduce reduction operator 169
overflow modes 281
overflow_flag

fixed-point classes 279
overload, glossary 394
override, glossary 394

P
parameter, glossary 394
parent

definition 4
glossary 394

part-select classes
arbitrary-precision integers 224
definition 166
fixed-point types 276
fixed-precision integers 196
glossary 394
vectors 258

pending, glossary 394
period, member function

class sc_clock 113
port 67

binding 12, 122
definition 3
glossary 394
named binding 41
port binding 41
positional binding 41

portless channel access 67
glossary 394

posedge, member function
class sc_signal 108
class sc_signal_in_if 98

posedge_event, member function
class sc_signal 107
class sc_signal_in_if 98

posedge_first, member function
class sc_clock 113, 114

positional binding 41
412 Copyright © 2005 OS
post, member function
class sc_semaphore 158

primitive channel
class sc_buffer 109
class sc_clock 112
class sc_signal 100
definition 4
glossary 395
sc_prim_channel 82
sc_signal 106

print, member function 169
class sc_fifo 147
class sc_fxcast_switch 361
class sc_length_param 355
class sc_object 89
class sc_signal 103
class sc_time 65

proc_kind, member function
class sc_process_handle 56

process 4
associating 32
clocked thread 32
dynamic sensitivity 37
glossary 395
method 32
resumed 33
sensitivity 14
static sensitivity 35, 48
synchronization 62
triggered 32

process handle
class sc_process_handle 55
definition 4
glossary 395

process instance 4, 55, 86
proxy class 166

glossary 395

Q
q_mode, member function

class sc_fxtype_params 358
limited-precision fixed-point classes 278

quantization modes, definition 294
quantization_flag, member function

fixed-point classes 279

R
range, member function

numeric types and vectors 166
read, member function

class sc_fifo 146
class sc_fifo_in 149
class sc_fifo_in_if 141
CI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
class sc_in 116
class sc_inout 121
class sc_signal 102
class sc_signal_in_if 96

reduction operators 169
register_port, member function

class sc_fifo 145
class sc_interface 80
class sc_signal 102
class sc_signal_resolved 129

remove_all_attributes, member function
class sc_object 91

remove_attribute, member function
class sc_object 91

request_update, member function
class sc_prim_channel 15, 83
scheduling algorithm 14

reset_signal_is, member function
class sc_module 34

resolved signal
definition 127
glossary 395

resume 13, 15, 33
glossary 395

reverse, member function
class sc_bv_base 244
class sc_concref 269
class sc_lv_base 250
part-select classes 263

reversed, member function
part-select classes 263

rounding modes 294
rrotate, member function

class sc_bv_base 244
class sc_concref 269
class sc_lv_base 250
part-select classes 263

rvalue, glossary 395

S
sc_abs function 382
sc_argc function 18
sc_argv function 18
sc_attr_base class 92
sc_attr_cltn class 94
sc_attribute class 93
sc_behavior typedef 29, 44
sc_bigint class template 216
sc_biguint class template 218
sc_bind, macro 53
sc_bitref class template 255
sc_bitref_r class template 255
sc_buffer class 109
Copyright © 2005 OS
derived from sc_signal 105
sc_bv class template 251
sc_bv_base class 239
sc_channel typedef 29, 44
sc_clock class 112
sc_close_vcd_trace_file function 367
sc_concatref class 229
sc_concref class template 264
sc_concref_r class template 264
sc_copyright function 382
sc_core namespace 17
sc_create_vcd_trace_file function 367
sc_cref, macro 53
SC_CTHREAD, macro 12, 29, 31
SC_CTOR, macro 28, 30, 45
sc_curr_proc_kind, enum type 55
sc_delta_count function 24
sc_elab_and_sim function 18
sc_end_of_simulation_invoked function 20
sc_event class 14, 62
sc_event_and_list class 61
sc_event_finder class 49, 59, 121
sc_event_finder_t class 59
sc_event_or_list class 61
sc_fifo class 144
sc_fifo_in class 149
sc_fifo_in_if class 140
sc_fifo_out class 150
sc_fifo_out_if class 142
sc_find_object function 90
sc_fix class 272, 320
sc_fix_fast class 272, 327
sc_fixed class 271
sc_fixed class template 333
sc_fixed_fast class 272, 339
sc_fmt, enum type 279
SC_FORK, macro 54
sc_fxcast_context class 363
sc_fxcast_switch class 361
sc_fxnum class 272, 305
sc_fxnum_bitref class 345
sc_fxnum_fast_bitref class 345
sc_fxnum_fast_subref class 348
sc_fxnum_subref class 348
sc_fxtype_context class 360
sc_fxtype_params class 357
sc_fxval class 272, 310
sc_fxval_fast class 272, 315
sc_gen_unique_name function 29, 43
sc_generic_base class 232
sc_get_current_process_handle function 57
sc_get_time_resolution function 65
sc_get_top_level_objects function 90
SC_HAS_PROCESS, macro 29, 31
CI. All rights reserved. 413

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
sc_in class 115
specialized port 105

sc_in_clk typedef 114
sc_in_resolved class 130
sc_in_rv class 136
sc_inout class 120

specialized port 105
sc_inout_resolved class 131
sc_inout_rv class 137
sc_int class template 186
sc_int_base class 176
sc_int_bitref class 192
sc_int_bitref_r class 192
sc_int_subref class 196
sc_int_subref_r class 196
sc_interface class 79
sc_is_running function 24
SC_JOIN, macro 54
sc_length_context class 356
sc_length_param class 354
sc_logic class 234
SC_LOGIC_0 const 238
SC_LOGIC_1 const 238
sc_logic_value_t, enum type 233
SC_LOGIC_X const 238
SC_LOGIC_Z const 238
sc_lv class template 253
sc_lv_base class 245
sc_main function 18

calling sc_start 19
sc_max function 382
SC_METHOD, macro 12, 29, 31
sc_min function 382
sc_module class

definition 27
member sensitive 48
use of sc_module_name 45

SC_MODULE, macro 28, 29
sc_module_name class

definition 45
module instantiation 11
usage in sc_module constructor 29

sc_mutex class 154
sc_mutex_if class 153
sc_num_rep, enum type 364
sc_numrep, enum type 171
sc_o_mode, enum type 278
sc_object class

definition 86
usage of sc_module_name 46

sc_out class 126
specialized port 105

sc_out_resolved class 133
sc_out_rv class 139
414 Copyright © 2005 OS
sc_port class
definition 68
positional port binding 41

sc_port_base class 67
sc_prim_channel class 14

definition 82
module hierarchy 46

sc_process_handle class 55
sc_q_mode, enum type 278
sc_ref, macro 53
SC_RND quantization mode 298
SC_RND_CONV quantization mode 302
SC_RND_INF quantization mode 301
SC_RND_MIN_INF quantization mode 300
SC_RND_ZERO quantization mode 299
SC_SAT overflow mode 284
SC_SAT_SYM overflow mode 286
SC_SAT_ZERO overflow mode 285
sc_semaphore class 157
sc_semaphore_if class 156
sc_sensitive class

data member of sc_module 35
module instantiation 11

sc_sensitive class definition 48
sc_set_time_resolution function 13, 65
sc_signal class 100
sc_signal<bool> class 106
sc_signal<sc_logic> class 106
sc_signal_in_if class 96
sc_signal_in_if<bool> class 97
sc_signal_in_if<sc_logic> class 97
sc_signal_inout_if class 99
sc_signal_resolved class 127

multiple writers 105
sc_signal_rv class 134
sc_signed class 202
sc_signed_bitref class 220
sc_signed_bitref_r class 220
sc_signed_subref class 224
sc_signed_subref_r class 224
sc_spawn function 50, 52
sc_spawn_options class 50
sc_start function 18, 19
sc_start_of_simulation_invoked function 20
sc_stop function 23

impact on clock 113
sc_stop_mode, enum type 22
sc_string typedef 365
sc_subref class template 258
sc_subref_r class template 258
SC_THREAD, macro 12, 29, 31
sc_time class 14, 64
sc_time_stamp function 24
sc_time_unit, enum type 64
CI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
sc_trace function 116, 121, 367, 369
sc_trace_file class 366
SC_TRN quantization mode 303
SC_TRN_ZERO quantization mode 304
sc_ufix class 272, 323
sc_ufix_fast class 272, 330
sc_ufixed class 272
sc_ufixed class template 336
sc_ufixed_fast class 272
sc_ufixed_fast class template 342
sc_uint class template 189
sc_uint_base class 181
sc_uint_bitref class 192
sc_uint_bitref_r class 192
sc_uint_subref class 196
sc_uint_subref_r class 196
sc_unsigned class 209
sc_unsigned_bitref class 220
sc_unsigned_bitref_r class 220
sc_unsigned_subref class 224
sc_unsigned_subref_r class 224
sc_value_base class 173
sc_version function 383
SC_WRAP overflow mode 287
SC_WRAP_SM overflow mode 289
sc_write_comment function 367
SC_ZERO_TIME const 65
scan, member function

SystemC data types 169
scheduled, glossary 395
scheduler

behavior 13
glossary 395

sensitive data member
class sc_module 35

sensitivity 31, 32, 33, 35, 37, 39, 48, 51
glossary 395

set_sensitivity, member function
class sc_spawn_options 51

set_stack_size, member function
class sc_module 37
class sc_spawn_options 51

set_time_unit, member function
class sc_trace_file 366

shall, usage 3
should, usage 3
sign extension 164
signal 4, 100, 101

glossary 395
resolved 127, 128

simulation 13
glossary 395

simulation time 24
single-bit logic types, definition 162
Copyright © 2005 OS
size, member function
class sc_port 70

slots, fifo 144
spawn_method, member function

class sc_spawn_options 51
specialized port, glossary 395
start time 113
start_of_simulation, member function 21

class sc_export 78
class sc_module 42
class sc_port 73
class sc_prim_channel 84

start_time, member function
class sc_clock 113

statement, glossary 396
static process 12, 31

definition 4
glossary 396
static sensitivity 35

static process instance, definition 12
static sensitivity

definition 14
glossary 396

string literal 171
string name 29, 30, 43, 45, 83

glossary 396
sub-object, glossary 396
SystemC class library 25
systemc.h, C++ header file 25

T
terminated 32, 33, 55

glossary 396
terminated, member function

class sc_process_handle 57
terminology 3
thread process 31, 32

glossary 396
time resolution 13, 65
timed notification 14, 63, 160

definition 15
glossary 396

timed notification phase
definition 16
glossary 396

time-out
definition 15
elapsed time interval 14
glossary 396
timed notification phase 16

to_bin, member function
class sc_fxnum 309
class sc_fxval 314
CI. All rights reserved. 415

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
class sc_fxval_fast 319
to_bool, member function

bit-select classes 257
class sc_logic 236

to_char, member function
bit-select classes 257
class sc_logic 236

to_dec, member function
class sc_fxnum 309
class sc_fxval 314
class sc_fxval_fast 319

to_double, member function
class sc_fxnum 309
class sc_fxval 314
class sc_fxval_fast 319
class sc_time 65

to_float, member function
class sc_fxnum 309
class sc_fxval 314
class sc_fxval_fast 319

to_hex, member function
class sc_fxnum 309
class sc_fxval 314
class sc_fxval_fast 319

to_int, member function
class sc_fxnum 309
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353
class sc_fxval 314
class sc_fxval_fast 319
SystemC data types 169

to_int64, member function
class sc_fxnum 309
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353
class sc_fxval 314
class sc_fxval_fast 319
class sc_generic_base 232
SystemC data types 169

to_long, member function
class sc_fxnum 309
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353
class sc_fxval 314
class sc_fxval_fast 319
SystemC data types 169

to_oct, member function
class sc_fxnum 309
class sc_fxval 314
class sc_fxval_fast 319

to_sc_signed, member function
class sc_generic_base 232

to_sc_unsigned, member function
class sc_generic_base 232
416 Copyright © 2005 OS
to_seconds, member function
class sc_time 65

to_short, member function
class sc_fxnum 309
class sc_fxval 314
class sc_fxval_fast 318

to_string function 364
to_string, member function

bit concatenation classes 266
class sc_bv_base 241
class sc_fxcast_switch 361
class sc_fxnum 309
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353
class sc_fxval 314
class sc_fxval_fast 319
class sc_int_base 179
class sc_length_param 355
class sc_lv_base 247
class sc_signed 204
class sc_time 65
class sc_uint_base 184
class sc_unsigned 211, 231
fixed-point classes 279
part-select classes 200, 228, 260
SystemC numeric types 172

to_uint, member function
class sc_fxnum 309
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353
class sc_fxval 314
class sc_fxval_fast 319
SystemC data types 169

to_uint64, member function
class sc_fxnum 309
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353
class sc_fxval 314
class sc_fxval_fast 319
class sc_generic_base 232
SystemC data types 169

to_ulong, member function
class sc_fxnum 309
class sc_fxnum_fast_subref 353
class sc_fxnum_subref 353
class sc_fxval 314
class sc_fxval_fast 319
SystemC data types 169

to_ushort, member function
class sc_fxnum 309
class sc_fxval 314
class sc_fxval_fast 318

top-level module 4
top-level, glossary 396
CI. All rights reserved.

DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL April 25 2005
trace file 366
trigger, glossary 396
triggered, method process 32
trylock, member function

class sc_mutex 155
trywait, member function

class sc_semaphore 158
type of a port

definition 41
template parameters 68

type_params, member function
limited-precision fixed-point classes 278

U
uint_type, type definition 175
uint64, type definition 175
undefined 8

glossary 397
unlock, member function

class sc_mutex 155
update phase

definition 16
glossary 396

update request 14, 20, 83, 103
update, member function 16

class sc_buffer 110
class sc_fifo 147
class sc_prim_channel 15, 84
class sc_signal 103
class sc_signal_resolved 128, 129

user, glossary 397
user-defined conversion, glossary 397

V
valid, member function

class sc_process_handle 56
value, member function

class sc_fxcast_context 363
class sc_fxtype_context 360
class sc_length_context 356
class sc_logic 236
class sc_time 65
fixed-point classes 279

value_changed, member function
class sc_in 116
class sc_inout 121

value_changed_event, member function
class sc_in 116
class sc_inout 121
class sc_signal 103
class sc_signal_in_if 96

VCD file 366, 367
vector
Copyright © 2005 OS
glossary 397
usage 162

W
wait, member function

class sc_module 15, 33, 39, 61
class sc_prim_channel 15, 33, 84
class sc_semaphore 158
delta notification phase 16

within, glossary 397
wl, member function

class sc_fxtype_params 358
limited-precision fixed-point classes 278

write, member function 99
class sc_buffer 110
class sc_clock 113
class sc_fifo 146
class sc_fifo_out 150
class sc_fifo_out_if 142
class sc_inout 121
class sc_signal 103
class sc_signal_resolved 128, 129
class sc_signal_rv 134

X
xnor_reduce

reduction operator 169
xor_reduce

reduction operator 169

Z
zero extension 164
CI. All rights reserved. 417

April 25 2005 DRAFT STANDARD SYSTEMC LANGUAGE REFERENCE MANUAL
418 Copyright © 2005 OS
CI. All rights reserved.

	Introduction
	Contents
	1. Overview
	1.1 Scope
	1.2 Subsets
	1.3 Relationship with C++
	1.4 Guidance for readers

	2. References
	3. Terminology and conventions used in this standard
	3.1 Terminology
	3.1.1 Shall, should, may, can
	3.1.2 Implementation, application
	3.1.3 Call, called from, derived from
	3.1.4 Specific technical terms

	3.2 Syntactic conventions
	3.2.1 Implementation-defined
	3.2.2 Disabled
	3.2.3 Ellipsis (...)
	3.2.4 Class names
	3.2.5 Embolded text

	3.3 Semantic conventions
	3.3.1 Class definitions and the inheritance hierarchy
	3.3.2 Function definitions and side-effects
	3.3.3 Functions whose return type is a reference or a pointer
	3.3.3.1 Functions that return *this or an actual argument
	3.3.3.2 Functions that return char*
	3.3.3.3 Functions that return a reference or pointer to an object in the module hierarchy
	3.3.3.4 Functions that return a reference or pointer to a transient object
	3.3.3.5 Functions sc_time_stamp and sc_signal::read

	3.3.4 Namespaces and internal naming
	3.3.5 Non-compliant applications and errors

	3.4 Notes and examples

	4. Elaboration and simulation semantics
	4.1 Elaboration
	4.1.1 Instantiation
	4.1.2 Static process creation
	4.1.3 Port binding and export binding
	4.1.4 Setting the time resolution

	4.2 Simulation
	4.2.1 The scheduling algorithm
	4.2.1.1 Initialization phase
	4.2.1.2 Evaluation phase
	4.2.1.3 Update phase
	4.2.1.4 Delta notification phase
	4.2.1.5 Timed notification phase

	4.2.2 Cycles in the scheduling algorithm

	4.3 Running elaboration and simulation
	4.3.1 Function declarations
	4.3.2 Function sc_elab_and_sim
	4.3.3 Functions sc_argc and sc_argv
	4.3.4 Running under application control using functions sc_main and sc_start
	4.3.4.1 Function sc_main
	4.3.4.2 Function sc_start

	4.3.5 Running under control of the kernel

	4.4 Elaboration and simulation callbacks
	4.4.1 before_end_of_elaboration
	4.4.2 end_of_elaboration
	4.4.3 start_of_simulation
	4.4.4 end_of_simulation

	4.5 Other functions related to the scheduler
	4.5.1 Function declarations
	4.5.2 Function sc_stop, sc_set_stop_mode, and sc_get_stop_mode
	4.5.3 Function sc_time_stamp
	4.5.4 Function sc_delta_count
	4.5.5 Function sc_is_running

	5. Core language class definitions
	5.1 Class header files
	5.1.1 "systemc"
	5.1.2 "systemc.h"

	5.2 sc_module
	5.2.1 Description
	5.2.2 Class definition
	5.2.3 Constraints on usage
	5.2.4 kind
	5.2.5 SC_MODULE
	5.2.6 Constructors
	5.2.7 SC_CTOR
	5.2.8 SC_HAS_PROCESS
	5.2.9 SC_METHOD, SC_THREAD, SC_CTHREAD
	5.2.10 Method process
	5.2.11 Thread and clocked thread processes
	5.2.12 Clocked thread processes and reset_signal_is
	5.2.13 sensitive
	5.2.14 dont_initialize
	5.2.15 set_stack_size
	5.2.16 next_trigger
	5.2.17 wait
	5.2.18 Positional port binding
	5.2.19 before_end_of_elaboration, end_of_elaboration, start_of_simulation, end_of_simulation
	5.2.20 get_child_objects
	5.2.21 sc_gen_unique_name
	5.2.22 sc_behavior and sc_channel

	5.3 sc_module_name
	5.3.1 Description
	5.3.2 Class definition
	5.3.3 Constraints on usage
	5.3.4 Module hierarchy
	5.3.5 Member functions

	5.4 sc_sensitive†
	5.4.1 Description
	5.4.2 Class definition
	5.4.3 Constraints on usage
	5.4.4 operator<<

	5.5 sc_spawn_options and sc_spawn
	5.5.1 Description
	5.5.2 Class definition
	5.5.3 Constraints on usage
	5.5.4 Constructors
	5.5.5 Member functions
	5.5.6 sc_spawn
	5.5.7 SC_FORK and SC_JOIN

	5.6 sc_process_handle
	5.6.1 Description
	5.6.2 Class definition
	5.6.3 Constraints on usage
	5.6.4 Constructors
	5.6.5 Member functions
	5.6.6 sc_get_current_process_handle

	5.7 sc_event_finder and sc_event_finder_t
	5.7.1 Description
	5.7.2 Class definition
	5.7.3 Constraints on usage

	5.8 sc_event_and_list† and sc_event_or_list†
	5.8.1 Description
	5.8.2 Class definition
	5.8.3 Constraints on usage
	5.8.4 Event lists

	5.9 sc_event
	5.9.1 Description
	5.9.2 Class definition
	5.9.3 Constraints on usage
	5.9.4 notify and cancel
	5.9.5 Event lists
	5.9.6 Multiple event notifications

	5.10 sc_time
	5.10.1 Description
	5.10.2 Class definition
	5.10.3 Time resolution
	5.10.4 Functions and operators
	5.10.5 SC_ZERO_TIME

	5.11 sc_port
	5.11.1 Description
	5.11.2 Class definition
	5.11.3 Template parameters
	5.11.4 Constraints on usage
	5.11.5 Constructors
	5.11.6 kind
	5.11.7 Named port binding
	5.11.8 Member functions for bound ports and port-to-port binding
	5.11.8.1 size
	5.11.8.2 operator->
	5.11.8.3 operator[]
	5.11.8.4 get_interface

	5.11.9 before_end_of_elaboration, end_of_elaboration, start_of_simulation, end_of_simulation

	5.12 sc_export
	5.12.1 Description
	5.12.2 Class definition
	5.12.3 Template parameters
	5.12.4 Constraints on usage
	5.12.5 Constructors
	5.12.6 kind
	5.12.7 Export binding
	5.12.8 Member functions for bound exports and export-to-export binding
	5.12.8.1 operator-> and operator IF&
	5.12.8.2 get_interface

	5.12.9 before_end_of_elaboration, end_of_elaboration, start_of_simulation, end_of_simulation

	5.13 sc_interface
	5.13.1 Description
	5.13.2 Class definition
	5.13.3 Constraints on usage
	5.13.4 register_port
	5.13.5 default_event

	5.14 sc_prim_channel
	5.14.1 Description
	5.14.2 Class definition
	5.14.3 Constraints on usage
	5.14.4 Constructors
	5.14.5 kind
	5.14.6 request_update and update
	5.14.7 next_trigger and wait
	5.14.8 before_end_of_elaboration, end_of_elaboration, start_of_simulation, end_of_simulation

	5.15 sc_object
	5.15.1 Description
	5.15.2 Class definition
	5.15.3 Constraints on usage
	5.15.4 Constructors and hierarchical names
	5.15.5 name, basename, and kind
	5.15.6 print and dump
	5.15.7 Functions for object hierarchy traversal
	5.15.8 Member functions for attributes

	5.16 sc_attr_base
	5.16.1 Description
	5.16.2 Class definition
	5.16.3 Member functions

	5.17 sc_attribute
	5.17.1 Description
	5.17.2 Class definition
	5.17.3 Template parameters
	5.17.4 Member functions and data members

	5.18 sc_attr_cltn
	5.18.1 Description
	5.18.2 Class definition
	5.18.3 Constraints on usage
	5.18.4 Iterators

	6. Predefined channel class definitions
	6.1 sc_signal_in_if
	6.1.1 Description
	6.1.2 Class definition
	6.1.3 Member functions

	6.2 sc_signal_in_if<bool> and sc_signal_in_if<sc_dt::sc_logic>
	6.2.1 Description
	6.2.2 Class definition
	6.2.3 Member functions

	6.3 sc_signal_inout_if
	6.3.1 Description
	6.3.2 Class definition
	6.3.3 write

	6.4 sc_signal
	6.4.1 Description
	6.4.2 Class definition
	6.4.3 Template parameter T
	6.4.4 Reading and writing signals
	6.4.5 Constructors
	6.4.6 register_port
	6.4.7 Member functions for reading
	6.4.8 Member functions for writing
	6.4.9 Member functions for events
	6.4.10 Diagnostic member functions
	6.4.11 Operator<<

	6.5 sc_signal<bool> and sc_signal<sc_dt::sc_logic>
	6.5.1 Description
	6.5.2 Class definition
	6.5.3 Member functions

	6.6 sc_buffer
	6.6.1 Description
	6.6.2 Class definition
	6.6.3 Constructors
	6.6.4 Member functions

	6.7 sc_clock
	6.7.1 Description
	6.7.2 Class definition
	6.7.3 Characteristic properties
	6.7.4 Constructors
	6.7.5 write
	6.7.6 Diagnostic member functions
	6.7.7 before_end_of_elaboration
	6.7.8 sc_in_clk

	6.8 sc_in
	6.8.1 Description
	6.8.2 Class definition
	6.8.3 Member functions
	6.8.4 Function sc_trace
	6.8.5 end_of_elaboration

	6.9 sc_in<bool> and sc_in<sc_dt::sc_logic>
	6.9.1 Description
	6.9.2 Class definition
	6.9.3 Member functions

	6.10 sc_inout
	6.10.1 Description
	6.10.2 Class definition
	6.10.3 Member functions
	6.10.4 initialize
	6.10.5 Function sc_trace
	6.10.6 end_of_elaboration
	6.10.7 Binding

	6.11 sc_inout<bool> and sc_inout<sc_dt::sc_logic>
	6.11.1 Description
	6.11.2 Class definition
	6.11.3 Member functions

	6.12 sc_out
	6.12.1 Description
	6.12.2 Class definition
	6.12.3 Member functions

	6.13 sc_signal_resolved
	6.13.1 Description
	6.13.2 Class definition
	6.13.3 Constructors
	6.13.4 Resolution semantics
	6.13.5 Member functions

	6.14 sc_in_resolved
	6.14.1 Description
	6.14.2 Class definition
	6.14.3 Member functions

	6.15 sc_inout_resolved
	6.15.1 Description
	6.15.2 Class definition
	6.15.3 Member functions

	6.16 sc_out_resolved
	6.16.1 Description
	6.16.2 Class definition
	6.16.3 Member functions

	6.17 sc_signal_rv
	6.17.1 Description
	6.17.2 Class definition
	6.17.3 Semantics and member functions

	6.18 sc_in_rv
	6.18.1 Description
	6.18.2 Class definition
	6.18.3 Member functions

	6.19 sc_inout_rv
	6.19.1 Description
	6.19.2 Class definition
	6.19.3 Member functions

	6.20 sc_out_rv
	6.20.1 Description
	6.20.2 Class definition
	6.20.3 Member functions

	6.21 sc_fifo_in_if
	6.21.1 Description
	6.21.2 Class definition
	6.21.3 Member functions

	6.22 sc_fifo_out_if
	6.22.1 Description
	6.22.2 Class definition
	6.22.3 Member functions

	6.23 sc_fifo
	6.23.1 Description
	6.23.2 Class definition
	6.23.3 Template parameter T
	6.23.4 Constructors
	6.23.5 register_port
	6.23.6 Member functions for reading
	6.23.7 Member functions for writing
	6.23.8 The update phase
	6.23.9 Member functions for events
	6.23.10 Member functions for available values and free slots
	6.23.11 Diagnostic member functions
	6.23.12 Operator<<

	6.24 sc_fifo_in
	6.24.1 Description
	6.24.2 Class definition
	6.24.3 Member functions

	6.25 sc_fifo_out
	6.25.1 Description
	6.25.2 Class definition
	6.25.3 Member functions

	6.26 sc_mutex_if
	6.26.1 Description
	6.26.2 Class definition
	6.26.3 Member functions

	6.27 sc_mutex
	6.27.1 Description
	6.27.2 Class definition
	6.27.3 Constructors
	6.27.4 Member functions

	6.28 sc_semaphore_if
	6.28.1 Description
	6.28.2 Class definition
	6.28.3 Member functions

	6.29 sc_semaphore
	6.29.1 Description
	6.29.2 Class definition
	6.29.3 Constructors
	6.29.4 Member functions

	6.30 sc_event_queue
	6.30.1 Description
	6.30.2 Class definition
	6.30.3 Constraints on usage
	6.30.4 Constructors
	6.30.5 kind
	6.30.6 Member functions

	7. Data types
	7.1 Introduction
	7.2 Common characteristics
	7.2.1 Initialization and assignment operators
	7.2.2 Base class default word length
	7.2.3 Word length
	7.2.4 Bit-select
	7.2.5 Part-select
	7.2.6 Concatenation
	7.2.7 Reduction operators
	7.2.8 Integer conversion
	7.2.9 String input and output
	7.2.10 Conversion of application-defined types in integer expressions

	7.3 String literals
	7.4 sc_value_base†
	7.4.1 Description
	7.4.1.1 Class definition
	7.4.1.2 Constraints on usage
	7.4.1.3 Member functions

	7.5 Fixed-precision integer types
	7.5.1 Type definitions
	7.5.2 sc_int_base
	7.5.2.1 Description
	7.5.2.2 Class definition
	7.5.2.3 Constraints on usage
	7.5.2.4 Constructors
	7.5.2.5 Assignment operators
	7.5.2.6 Implicit type conversion
	7.5.2.7 Explicit type conversion
	7.5.2.8 Arithmetic, bitwise, and comparison operators

	7.5.3 sc_uint_base
	7.5.3.1 Description
	7.5.3.2 Class definition
	7.5.3.3 Constraints on usage
	7.5.3.4 Constructors
	7.5.3.5 Assignment operators
	7.5.3.6 Implicit type conversion
	7.5.3.7 Explicit type conversion
	7.5.3.8 Arithmetic, bitwise, and comparison operators

	7.5.4 sc_int
	7.5.4.1 Description
	7.5.4.2 Class definition
	7.5.4.3 Constraints on usage
	7.5.4.4 Constructors
	7.5.4.5 Assignment operators
	7.5.4.6 Arithmetic and bitwise operators

	7.5.5 sc_uint
	7.5.5.1 Description
	7.5.5.2 Class definition
	7.5.5.3 Constraints on usage
	7.5.5.4 Constructors
	7.5.5.5 Assignment operators
	7.5.5.6 Arithmetic and bitwise operators

	7.5.6 Bit-selects
	7.5.6.1 Description
	7.5.6.2 Class definition
	7.5.6.3 Constraints on usage
	7.5.6.4 Assignment operators
	7.5.6.5 Implicit type conversion

	7.5.7 Part-Selects
	7.5.7.1 Description
	7.5.7.2 Class definition
	7.5.7.3 Constraints on usage
	7.5.7.4 Assignment operators
	7.5.7.5 Implicit type conversion
	7.5.7.6 Explicit type conversion

	7.6 Arbitrary-precision integer types
	7.6.1 Type definitions
	7.6.2 Constraints on usage
	7.6.3 sc_signed
	7.6.3.1 Description
	7.6.3.2 Class definition
	7.6.3.3 Constraints on usage
	7.6.3.4 Constructors
	7.6.3.5 Assignment operators
	7.6.3.6 Explicit type conversion
	7.6.3.7 Arithmetic, bitwise, and comparison operators

	7.6.4 sc_unsigned
	7.6.4.1 Description
	7.6.4.2 Class definition
	7.6.4.3 Constraints on usage
	7.6.4.4 Constructors
	7.6.4.5 Assignment operators
	7.6.4.6 Explicit type conversion
	7.6.4.7 Arithmetic, bitwise, and comparison operators

	7.6.5 sc_bigint
	7.6.5.1 Description
	7.6.5.2 Class definition
	7.6.5.3 Constraints on usage
	7.6.5.4 Constructors
	7.6.5.5 Assignment operators

	7.6.6 sc_biguint
	7.6.6.1 Description
	7.6.6.2 Class definition
	7.6.6.3 Constraints on usage
	7.6.6.4 Constructors
	7.6.6.5 Assignment operators

	7.6.7 Bit-selects
	7.6.7.1 Description
	7.6.7.2 Class definition
	7.6.7.3 Constraints on usage
	7.6.7.4 Assignment operators
	7.6.7.5 Implicit type conversion

	7.6.8 Part-Selects
	7.6.8.1 Description
	7.6.8.2 Class definition
	7.6.8.3 Constraints on usage
	7.6.8.4 Assignment operators
	7.6.8.5 Implicit type conversion
	7.6.8.6 Explicit type conversion

	7.7 Integer concatenations
	7.7.1 Description
	7.7.2 Class definition
	7.7.3 Constraints on usage
	7.7.4 Assignment operators
	7.7.5 Implicit type conversion
	7.7.6 Explicit type conversion

	7.8 Generic base proxy class
	7.8.1 Description
	7.8.2 Class definition
	7.8.3 Constraints on usage

	7.9 Logic and arbitrary width vector types
	7.9.1 Type definitions
	7.9.2 sc_logic
	7.9.2.1 Description
	7.9.2.2 Class definition
	7.9.2.3 Constraints on usage
	7.9.2.4 Constructors
	7.9.2.5 Explicit type conversion
	7.9.2.6 Bitwise and comparison operators
	7.9.2.7 sc_logic constant definitions

	7.9.3 sc_bv_base
	7.9.3.1 Description
	7.9.3.2 Class definition
	7.9.3.3 Constraints on usage
	7.9.3.4 Constructors
	7.9.3.5 Assignment operators
	7.9.3.6 Explicit type conversion
	7.9.3.7 Bitwise and comparison operators

	7.9.4 sc_lv_base
	7.9.4.1 Description
	7.9.4.2 Class definition
	7.9.4.3 Constraints on usage
	7.9.4.4 Constructors
	7.9.4.5 Assignment operators
	7.9.4.6 Explicit type conversion
	7.9.4.7 Bitwise and comparison operators

	7.9.5 sc_bv
	7.9.5.1 Description
	7.9.5.2 Class definition
	7.9.5.3 Constraints on usage
	7.9.5.4 Constructors
	7.9.5.5 Assignment operators

	7.9.6 sc_lv
	7.9.6.1 Description
	7.9.6.2 Class definition
	7.9.6.3 Constraints on usage
	7.9.6.4 Constructors
	7.9.6.5 Assignment operators

	7.9.7 Bit-selects
	7.9.7.1 Description
	7.9.7.2 Class definition
	7.9.7.3 Constraints on usage
	7.9.7.4 Assignment operators
	7.9.7.5 Implicit type conversion
	7.9.7.6 Explicit type conversion
	7.9.7.7 Bitwise and comparison operators

	7.9.8 Part-Selects
	7.9.8.1 Description
	7.9.8.2 Class definition
	7.9.8.3 Constraints on usage
	7.9.8.4 Assignment operators
	7.9.8.5 Explicit type conversion
	7.9.8.6 Bitwise and comparison operators
	7.9.8.7 Other methods

	7.9.9 Concatenations
	7.9.9.1 Description
	7.9.9.2 Class definition
	7.9.9.3 Constraints on usage
	7.9.9.4 Assignment operators
	7.9.9.5 Explicit type conversion
	7.9.9.6 Bitwise and comparison operators

	7.10 Fixed-point types
	7.10.1 Fixed-point representation
	7.10.2 Fixed-point type conversion
	7.10.3 Fixed-point data types
	7.10.3.1 Fixed precision fixed-point types
	7.10.3.2 Limited-precision fixed-point types

	7.10.4 Fixed-point expressions and operations
	7.10.5 Bit and part selection
	7.10.6 Arbitrary fixed-point value limits
	7.10.7 Fixed-point word length and mode
	7.10.7.1 Reading parameter settings
	7.10.7.2 Value attributes

	7.10.8 Conversions to character string
	7.10.8.1 String shortcut methods
	7.10.8.2 Bit pattern string conversion

	7.10.9 Finite word length effects
	7.10.9.1 Overflow modes
	7.10.9.2 Overflow for signed fixed-point numbers
	7.10.9.3 Overflow for unsigned fixed-point numbers
	7.10.9.4 SC_SAT
	7.10.9.5 SC_SAT_ZERO
	7.10.9.6 SC_SAT_SYM
	7.10.9.7 SC_WRAP
	7.10.9.8 SC_WRAP_SM
	7.10.9.9 Quantization modes
	7.10.9.10 Quantization for signed fixed-point numbers
	7.10.9.11 Quantization for unsigned fixed-point numbers
	7.10.9.12 SC_RND
	7.10.9.13 SC_RND_ZERO
	7.10.9.14 SC_RND_MIN_INF
	7.10.9.15 SC_RND_INF
	7.10.9.16 SC_RND_CONV
	7.10.9.17 SC_TRN
	7.10.9.18 SC_TRN_ZERO

	7.10.10 sc_fxnum
	7.10.10.1 Description
	7.10.10.2 Class definition
	7.10.10.3 Constraints on usage
	7.10.10.4 Assignment operators
	7.10.10.5 Implicit type conversion
	7.10.10.6 Explicit type conversion

	7.10.11 sc_fxval
	7.10.11.1 Description
	7.10.11.2 Class definition
	7.10.11.3 Constraints on usage
	7.10.11.4 Public constructors
	7.10.11.5 Operators
	7.10.11.6 Implicit type conversion
	7.10.11.7 Explicit type conversion

	7.10.12 sc_fxval_fast
	7.10.12.1 Description
	7.10.12.2 Class definition
	7.10.12.3 Constraints on usage
	7.10.12.4 Public constructors
	7.10.12.5 Operators
	7.10.12.6 Implicit type conversion
	7.10.12.7 Explicit type conversion

	7.10.13 sc_fix
	7.10.13.1 Description
	7.10.13.2 Class definition
	7.10.13.3 Constraints on usage
	7.10.13.4 Public constructors
	7.10.13.5 Assignment operators
	7.10.13.6 Bitwise operators

	7.10.14 sc_ufix
	7.10.14.1 Description
	7.10.14.2 Class definition
	7.10.14.3 Constraints on usage
	7.10.14.4 Public constructors
	7.10.14.5 Assignment operators
	7.10.14.6 Bitwise operators

	7.10.15 sc_fix_fast
	7.10.15.1 Description
	7.10.15.2 Class definition
	7.10.15.3 Constraints on usage
	7.10.15.4 Public constructors
	7.10.15.5 Assignment operators
	7.10.15.6 Bitwise operators

	7.10.16 sc_ufix_fast
	7.10.16.1 Description
	7.10.16.2 Class definition
	7.10.16.3 Constraints on usage
	7.10.16.4 Public constructors
	7.10.16.5 Assignment operators
	7.10.16.6 Bitwise operators

	7.10.17 sc_fixed
	7.10.17.1 Description
	7.10.17.2 Class definition
	7.10.17.3 Constraints on usage
	7.10.17.4 Public constructors
	7.10.17.5 Assignment operators

	7.10.18 sc_ufixed
	7.10.18.1 Description
	7.10.18.2 Class definition
	7.10.18.3 Constraints on usage
	7.10.18.4 Public constructors
	7.10.18.5 Assignment operators

	7.10.19 sc_fixed_fast
	7.10.19.1 Description
	7.10.19.2 Class definition
	7.10.19.3 Constraints on usage
	7.10.19.4 Public constructors
	7.10.19.5 Assignment operators

	7.10.20 sc_ufixed_fast
	7.10.20.1 Description
	7.10.20.2 Class definition
	7.10.20.3 Constraints on usage
	7.10.20.4 Public constructors
	7.10.20.5 Assignment operators

	7.10.21 Bit-selects
	7.10.21.1 Description
	7.10.21.2 Class definition
	7.10.21.3 Constraints on usage
	7.10.21.4 Assignment operators
	7.10.21.5 Implicit type conversion

	7.10.22 Part-Selects
	7.10.22.1 Description
	7.10.22.2 Class definition
	7.10.22.3 Constraints on usage
	7.10.22.4 Assignment operators
	7.10.22.5 Bitwise operators
	7.10.22.6 Implicit type conversion
	7.10.22.7 Explicit type conversion

	7.11 Contexts
	7.11.1 sc_length_param
	7.11.1.1 Description
	7.11.1.2 Class definition
	7.11.1.3 Constraints on usage
	7.11.1.4 Public constructors
	7.11.1.5 Public methods
	7.11.1.6 Public operators

	7.11.2 sc_length_context
	7.11.2.1 Description
	7.11.2.2 Class definition
	7.11.2.3 Public constructor
	7.11.2.4 Public member functions

	7.11.3 sc_fxtype_params
	7.11.3.1 Description
	7.11.3.2 Class definition
	7.11.3.3 Constraints on usage
	7.11.3.4 Public constructors
	7.11.3.5 Public member functions
	7.11.3.6 Operators

	7.11.4 sc_fxtype_context
	7.11.4.1 Description
	7.11.4.2 Class definition
	7.11.4.3 Public constructor
	7.11.4.4 Public member functions

	7.11.5 sc_fxcast_switch
	7.11.5.1 Description
	7.11.5.2 Class definition
	7.11.5.3 Public constructors
	7.11.5.4 Public member functions
	7.11.5.5 Explicit conversion
	7.11.5.6 Operators

	7.11.6 sc_fxcast_context
	7.11.6.1 Description
	7.11.6.2 Class definition
	7.11.6.3 Public constructor
	7.11.6.4 Public member functions

	7.12 Control of string representation
	7.12.1 Description
	7.12.2 Class definition
	7.12.3 Functions

	8. Utility class definitions
	8.1 sc_string
	8.1.1 Description
	8.1.2 Definition

	8.2 Trace files
	8.2.1 Class definition and function declarations
	8.2.2 sc_trace_file
	8.2.3 sc_create_vcd_trace_file
	8.2.4 sc_close_vcd_trace_file
	8.2.5 sc_write_comment
	8.2.6 sc_trace

	8.3 sc_report
	8.3.1 Description
	8.3.2 Class definition
	8.3.3 Constraints on usage
	8.3.4 sc_severity
	8.3.5 Copy constructor and assignment
	8.3.6 Member functions

	8.4 sc_report_handler
	8.4.1 Description
	8.4.2 Class definition
	8.4.3 Constraints on usage
	8.4.4 sc_actions
	8.4.5 report
	8.4.6 set_actions
	8.4.7 stop_after
	8.4.8 get_count
	8.4.9 suppress and force
	8.4.10 set_handler
	8.4.11 get_new_action_id
	8.4.12 sc_interrupt_here and sc_stop_here
	8.4.13 get_cached_report and clear_cached_report
	8.4.14 set_log_file_name and get_log_file_name

	8.5 sc_exception
	8.5.1 Description
	8.5.2 Definition

	8.6 Utility functions
	8.6.1 Function declarations
	8.6.2 sc_abs
	8.6.3 sc_max
	8.6.4 sc_min
	8.6.5 sc_copyright
	8.6.6 sc_version
	8.6.7 sc_release

	Annex A
	Annex B
	Annex C
	Annex D
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

